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Objectives of the course

» To give a brief overview of current low-order polyhedral mesh
generation and PDE discretization methods.

» To introduce high-order polytopal discretization methods.

» To identify geometric requirements for the generation of
suitable high-order polytopal meshes.

» To show how current a posteriori curvilinear mesh generation
methods can be adapted to the generation of such meshes.

Landesgartenschau Exhibition Hall (University of Stuttgart)



Table of contents

Topics this course will cover:
1. What are polytopal meshes and why use them?
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b. Finite element methods (FEM)
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3. High-order discretization methods in polytopal meshes:
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Politopal elements

20D Triangle Quadrilateral Polygon /

Tetrahedron Uawemdion

— — - - -

3D

Square \/ Triangular

pyramid prism or “‘wedge”

Polyhedron Polygonal
Prism

Polytopal meshes are spatial partitions of a domain into non-overlapping elements, polygons
in 2D and polyhedra in 3D (not necessarily regular), that share common sides and faces.



Unstructured mesh typologies

Tetrahedral Hex-dominant Polyhedral

5 STAR-CCM+ meshing



Why polytopal meshes?

» Routinely used in second-order finite volume methods for CFD.

» General: encompass conventional cells, e.g. Tet, Hex.

» Handle complex geometries: distorted conventional meshes are usual.

> Facilitate automatic mesh generation.

> More d.o.f. per element means fewer elements.

» Robustness to mesh distortion.
5
» Ease coarsening by agglomeration (multigrid). \‘7<

> Easier/better meshing of domain features. \

» Generic shapes facilitate adaptive refinement.

» Automatic inclusion of “hanging nodes”.



LOW-ORDER DISCRETIZATION METHODS

a.Finite volume methods (FVM)
b.Finite element methods (FEM)
c. Polytopal mesh generation and optimization



Model PDE: Poisson’s equation

—V?u=f inQ
u=0 1in o()

€2,



Finite volume method (FVM)

Integral form of Poisson’s equation

~ [ Vudx= | fd
/qu Qfx

Apply Gauss’ theorem

- Vu-ndx:/fdx
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Numerical approximation
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Finite element method (FEM)

Weak form of Poisson’s equation

—/ Vzuvdx:/fvdx 0= 0in 90
@) ()

Apply Gauss’ theorem

/Vu-Vvdx—/ vVu-n:/fvdx
Q) a0 - Ja

.

=0

Numerical approximation u ~ u; € Vj,

/ Vuh . Vvh dx = / fvh dx v, €V,
@) @)

N
Chose a basis {qol (x), ceey QDN(X)} in Vj, — [E‘h — Z; ”i‘Pij fSuhnath)ieons
1=

;uZ/QV(PZVGD]dx: ng]dX ]:1//N —

KU =F|

Linear system of equations




11

Reference-to-physical mappings

To have integration quadrature rules that are independent
of element geometry, we introduce a mapping @ : €2, — (),

G2 ¢ X2
A ® ° .
0,
> gl > x1
¢ = (61,62 x = (x1,%2)
Reference element Physical element

Integration in the reference element

[, 70900 dx= [ Fx(@)) g5(x(2)) et dg
J = dx/9¢



Distorted/invalid elements

2 ? ®\

— R J = 0x/9¢ < 0
> 61 > x1
¢ = (C1,82) x = (x1,%)
Reference element Physical element

Distortions in the mapping may lead

to inaccuracies, even invalidity, of
the numerical approximation.

Note: HHO and VEM are more tolerant

as they do not use the mapping.
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Polytopal shape functions: Barycentric coordinates

Generalized barycentric coordinates are defined by a set
of weights w;(x); i = 1,...,n, to form shape functions:

w; (X)
i—1 wj(x)

@i(x) =

This bases should be a partition of unity

éq)z—(x) 1

For a polytope of n vertices with coordinates x;; 1 = 1,...,n
coordinates are an affine combination of the vertex coordinates

If @(x) > 0 the interpolant up (x) = Z,ﬁil u; i (X) is
within the convex hull of the coefficients {u;, ..., uy}.

M.S. Floater. Generalized barycentric
coordinates and applications. Acta
Numerica, 24:161—-214, 2015.



Wachspress barycentric coordinates

Consider the K faces, {fi, ..., fx}, incident on a vertex of
coordinates X; with outer normal vectors {ny, ..., Ng}.

Perpendicular distance of a point (coordinate X)
interior to the polytope to the face f, is h;, > 0.

Denoting px(Xx) := ni/hy(x), the shape functions are

Wy, K—2
¢ = =7 ; Wy, = Y det(pr, Prt1, PK)
Zizl Wx; k=1

Note: The values of the Wachspress shape functions are
strictly positive, p(x) > 0, only for convex polytopes.

14 E. Wachspress, Rational Bases and Generalized Barycentrics, Springer (2016)



Barycentric coordinates for non-convex polytopes

Harmonic shape functions

Solutions of the Laplace’s equation within the polytope €2, with
suitable Dirichlet boundary conditions prescribed on the boundary

V2pi(x) =0 in Q,; @;(x) = gi(x) in d,

Here g,(X) is a piecewise linear function on the boundary with gi(xj) = 0.

Maximum principle for Laplace’s equation ensures ¢; > 0.

Maximum-entropy shape functions

Maxima of the “Shannon entropy" functional Lagrange multipliers used to
impose the partition of unity and
L (%) affine combination constraints
£(§0//\O//\) — (Pl(x>ln<q)l )
1:21 w;(x)

[Ao (i(Pi(X) —1) —A- (il @i (x) (% X)B

These functions are very expensive to evaluate!
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POLYTOPAL MESH GENERATION

a.Voroni-based approach
b.Polytopal-dual meshes

c. Cut-cell meshes

d. Elemental agglomeration
e.Mesh quality and enhancement
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Preliminaries: Delaunay tessellations and Voronoi cells

= \/OroONOI

Delaunay
==== Gircumcircle
e Seed

Voronoi cell: set of points closer to a seed than any other seeds.
Convex cells by construction!

Circumcircle property: a circle passing through three seeds does
not contain any other seeds in the set.
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Caveat: Boundary-conforming meshes

» A Delaunay tessellation meshes the convex hull of the set of seeds.
> It does not preserve the boundary of non-convex domains!

» Boundary-recovery procedures required for non-convex domains.
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Voronoi-based approach: VoroCrust

1. Cover boundary
with overlapping
circles

3. Generate Voronoi
cells from boundary
seeds

2. Place seeds on
the circle both sides
of the boundary (at
their intersection)

4. Seed interior points
and generate the final
Voronoi mesh



VoroCrust

VoroCrust mesh example

A

%)
o AR S NEY,
E vy

VoroCrust mesh of a Chinese dragon

A. Abdelkader, C.L. Bajaj, M.S. Ebeida, A.H. Mahmoud, S.A. Mitchell, J.D. Owens, and A.A. Rushdi,
“VoroCrust: Voronoi meshing without clipping”, ACM Trans Graph., 39(3):1-40, 2020.



Polytopal-dual meshing

1. Subdivide elements
2. Link neighbours
3. Create elements

Initial mesh

Final mesh
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Cut-cell mesh generation workflow

Surface information of
3D target geometry

The categorization of the state
of the node inside the 3D

The constitution of background

hexahedral element
target geometry

@ MNode inside the 3D model

@ Intersection point
The construction of the

The calculating intersection polyhedral elements

point between 3D geometry and
background element

Hexahedral element
Polyhedral element

S. Kim, D. Sohn, and S. Im, “Construction of polyhedral finite element meshes based
upon marching cube algorithm”, Advances in Engineering Software, 128:98-112 (2019)
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Cut-cell mesh at boundaries

The shape of cells at the boundary is unrestricted
thus allowing more flexibility, but avoid small lengths!

Cut-cell

CAD I A
surface 7w > —~
¢/ TR
i 4K
H 4 X4
,: ’ : // z
T .
i Fl ¢
N A P /
\\ 2 > / y
-~ / /

N T NN
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Cut-cell mesh example

Cut-cell mesh obtained from a background octree mesh (STAR-CCM+)



Random

\Voronoi

Elemental agglomeration

Elements, or subdivisions of elements, of a conventional mesh are
aggregated into polytopes.

The mesh graph, composed of vertices and edges, is partitioned to
group elements into larger polytopal elements.

Initial Metis K-means GNN

(A
KN

K\/ ‘W;VAV}VAH
TR0
NS YAVANY /4

-

Useful for adaptive refinement and multi-grid solvers

applications to multigrid solvers, Computers & Mathematics with Applications, 154 (2024)

P.F. Antoniettiet al., “Agglomeration of polygonal grids using graph neural networks with
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Agglomerated mesh example

Agglomerated mesh near wing tip

H. Nishikawa and B. Diskin, “Development and Application of Parallel
Agglomerated Multigrid Methods for Complex Geometries”, AIAA paper 2011-3232.



28

Polytopal mesh quality
GOOD MESH — GOOD SOLUTION, but what is a “good” mesh?

Without solution behaviour knowledge, we rely on
a priori shape-based mesh quality measures.

FV discretization errors associated to mesh geometry

SO A P |- _ 40

Non-uniformity Skewness Non-orthogonality
Mapping-based quality metric

Distortion of the element shape with reference x = o(y)
to an “ideal” shape is evaluated using: —_—

- Jacobian: J = det(J); J = o¢p/dy

. y = (y1, y2) € Q° x = (z1, T3) €°
. Metric tensor: G = G'G 1, Y2) €3 1, 2

Ideal element Current element
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A recent survey of polytopal mesh quality

2D

polygons
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T. Sorgente et al., “A Survey of Indicators for
Mesh Quality Assessment”, Computer

Graphics forum, 42(2), 2023.
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Mesh modification techniques

Chose a mesh quality metric and improve the mesh by: 1. Side collapsing

Initial mesh 2. Element splitting

3. Agglomeration

1 4. Node movement

Final mesh
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HIGH-ORDER DISCRETIZATION METHODS

a.High-order finite volume methods (HOFVM)
b.Discontinuous Galerkin methods (DGM)

c. High-order hybrid methods (HOHM)

d.Virtual element methods (VEM)

e. A posteriori high-order polytopal mesh generation
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An “alphabet soup” of methods

» CDO = Compatible discrete operator schemes

» DEC = Discrete exterior calculus

» DPG = Discontinuous Petrov-Galerkin

» FES = Finite element systems

» GBC = Generalized barycentric coordinate methods
» GS = Gradient schemes

» HOFV = High-order finite volume methods

» HDG = Hybrid discontinuous Galerkin methods

» HHO = Hybrid higher-order methods

>» MFD = Mimetic finite difference

> VEM = Virtual element methods

» WG = Weak Galerkin methods

> VCFEM = Voronoi cell FEM

> DGFEM = Discontinuous Galerkin FEM

» PFEM = Conforming polygonal FEM

» n"SFEM = n-Sided polygonal smoothed FEM

» PSBFEM = Polygonal scaled boundary FEM

» BFEM = Base forces element method

>» BEM-based FEM = Boundary element based FEM
> VNM = Virtual node method (VNM)

> T/HT-FEM = Trefftz/Hybrid Trefftz polygonal FEM
>» TDGFEM = Trefftz Discontinuous Galerkin FEM
» HS-F = Hybrid stress-function polygonal element
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High-order finite volume methods

Compute the gradient term in the boundary integral of the
FV formulation with a higher degree of accuracy.

Reconstruct a polynomial of degree k > 1 uy(x) = u(y) + Pk (x — y)
where y are the centroid coordinates using e.g. a Taylor series

2 1 1 - 82u
up(xq1,x2) = M(yl,yz) + Z 3 (x; — yi)+ 5 Trox (xz' - yi)(x/‘ o y,)+
i=1 "7 (y1.2) =1 7 (yg,y0)
1 & d3u
c ijgz:l T (xi—yi)(x]‘—]/j)(xl_yl)_i'

In practice, it is often desirable to use elemental averages

uy(x) = i+ P(x —y)

dx; PF = PK(x —y)dx; |Q,] = d
0ol Jo, "X 0ol Jo, T X7yl Qe = | dx
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HOFV gradient reconstruction

The coefficients of the polynomial P¥ are the n, derivatives in the Taylor series

Their value is calculated by a least-
squares fitting to the values of i in

. . 4
n, neighbouring elements, n, > n,. NAAV
For instance, n, = 3 for second-order VAV
accuracy, n, = 9 for third order, and 4A
n, = 14 for fourth order. qvpr

The face gradient is discontinuous, it is averaged
at the quadrature points from the reconstructed

values from the two adjacent cells.

Boundary conditions

A quadrature rule is used to evaluate boundary integrals.
Values of the function (Dirichlet) or normal derivative
(Neumann) at the quadrature points are imposed as
constraints in the least-squares fitting process.

C. Ollivier-Gooch and M. Van Altena, “A High-Order-Accurate Unstructured Mesh Finite-Volume
Scheme for the Advection-Diffusion Equation”, Journal of Computational Physics 181 (2002)
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HOFVM convergence

Solution to Poisson equation in unit square

u(xy,x2) = sin(mxy) sin(mas)

—
S

T TT ]
&—e [ near reconstruction
«-a Quadratic reconstruction
& -A Cubic reconstruction

—
-

®
— .
= A
- p— A\.\ 1\ E
2 e “He \ :
= — S toa -
- ]0 l'\' “u\\ T
.:‘ 3 B 1 § \\“ =
g (E I -
- ‘"
Q 10
A
_SE 1 Y (I RO Y e | 1 I ) ] e I 1 1 | M (Y E L | .\-ll 1 111111:
10190 100 1000 10000 le+05

Number of control volumes

Increasing the degree k results in very large stencils. This requires
special care for elements near boundaries.

Alternative compact stencils minimize a functional that measures the
jumps of the reconstruction polynomial and its derivatives on each face.
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1 _
n, fw} = 5" +w")
Jump operator:
QF I I S
e lw|] =w"n" +w n

High-order discontinuous Galerkin

DG methods allow for discontinuous solution with a more compact stencil

/ V- Vopdxt [ {Vup) [on] dx = /Q fopdx

Average operator:

Polytopal DG methods construct the elemental bases in physical space,
without requiring a reference element.
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Physical-space basis

Monomial bases
If d is the dimension of the problem, monomials are defined as

Integer indices
X — {zxi;i — 1,...d}

Cartesian coordinates
X = {Xi;i =1,.. d}

x o [ TR & £ %) % :
xX* =1 ]x =% ox with

d
1=1

A Gram-Smith orthogonalization is use to improve the conditioning of
the matrices that become stiffer as the polynomial order increases.

Tensor-product bases

element and define a tensor-product of 1D
polynomial bases within the box.

Attach a Cartesian bounding box to each

In both cases, the challenge is now to devise efficient and accurate
guadrature rules for the approximation of elemental and face integrals.

A. Cangiani, Z. Dong, E. H. Georgoulis, and P Houston. “hp-Version Discontinuous

Galerkin Methods on Polygonal and Polyhedral Meshes”. Springer (2017)



High-order hybrid method

An approximation of degree k + 1, an elliptic projection, of a function can be computed
from L? projections of degree k on the polytopal element and on each of its faces.

S G @Y

The HHO method requires:

» Polynomial spaces of degree k > 0 in the element and its faces, possibly
discontinuous.

» A local interpolator constructed from L? projections of degree k.

» A local potential reconstruction operator of degree k + 1.

» A stabilization term to match the elements trace values with the face values.

M. Cicuttin, A. Ern, and N. Pignet, “Hybrid High-Order Methods -
38 A Primer with Applications to Solid Mechanics”, Springer (2021)
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HHO building blocks

Inner product

(a,b)x = / a b dx X = e (element), f (face)
X

L*-orthogonal projection ﬂ%k (X =e¢f)

(n%kv—v,w)x =0 we Pk

Elliptic projection ﬂ%(’kﬂ

(V(n%('kv —0),Vw)x =0 and (ﬂ%('kv —0,1)x=0 welP*

The first condition defines the polynomial up a constant and
the second one fixes the value of the constant.
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(GGradient reconstruction

To reconstruct the gradient, the starting point is the expression

(Vo, V)e = —(v, VW), + Y (v, Vw- n) ¢
f

Replace v by suitable projections

(Vrr oy, V), = — (%, Vw), + Z(n?'kv, Vw-n);
f w € Pkl

The elliptic projection ﬂ;’kﬂdoes not require the full knowledge
of the function v, only its projection, since

(Ao —0,1)e = (7o — 7%0,1), =0

We only require the projections n? ’kv and ﬂ?’kv(for all faces).
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HHO discretization

Consider a set of elemental unknowns which are
polynomials of degree k on the element and its faces

= [Ug,’()f],' Ve € lPk(e), ’Uf - ]Pk(f)

A natural choice is the local interpolator 0 f

e ~ Lv = [10%, ﬂ?’kv]

Calculate an approximation of the elemental gradient through the local
potential reconstruction operator Ré‘“ such that RE+19, € Pkt

(VREF19,, Vw)e = — (v, V20)e + Y (07, Vo -m) i w € PF]
f

again, to fix the constant, we impose

(R, —v,,1)e = 0
This construction leads to optimal approximation in P+ since we have

RSN (Tv) = nt o
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Stabilization

An approximation of the form
ae(u,v) — /Q Vu-Vodx =~ (VRk+1ue/ VR§+1'36)6

IS not stable in general because VR’CfHﬁ =0 =% v, = vy = cons.

To fix the mismatch, a stabilization term, Sf, is added of the form
ae( le, @e) — (VRIH—lue/ RkJrl Ue) + Sf(ue; Ue)

Introducing two operators that capture the difference of these values as
. 0,k A
5kue = 7r0k(Rkle — Ve), 5j§ue = Ty (ng“ae — af)

we build a symmetric and positive definite form of Sf that ensures
polynomial consistency and stability

£(1le, De) Zh I ( — 6¢1le), (6500 — (S’g@e))f
The final discrete problem IS

ay ulzr 0/1 Zaé’ — Z(f' Ué’)é’
e



HHO convergence

Solution to Poisson equation in unit square u(x1,x2) = sin(mx1) sin(mxs2)

E = Hu — uhHLz
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Virtual element method

VEM functions can be interpreted as the solution of Vi, = p;; p; € P with
prescribed values at the element’s boundary.

The solution is not a polynomial and the VEM space may contain non-polynomials.

We define the 2D VEM space as D1
Vi = {v: &v € Py_o(E), 0] € Px(e))

A function v is uniquely determined by:

> D1: value of v at the vertices.
» D2: k + 1 values of v on the edge nodes.

» D3: k(k + 1)/2 moments (v, pr) E .

The function v is not known a priori, it may not have a explicit expression,
it is virtual: never computed explicitly, but known only through its d.o.f.

L. Beirdo da Veiga et al., “Basic principles of virtual element methods”, Math. Models Methods Appl. Sci., 23 (2013)



VEM building blocks

To obtain a VEM discretization of the form

a(vp, wp) =Y (Vop, Vwy)e =) _(f, wi)E

E E
we use (again) the expression

(Vo,Vpr)e = — (v, Vopr)e + (0,0 Vpi)oE

Elliptic projection: v —» n,ls’kv can be calculated from the d.o.f.

To obtain a computable approximation, dropping indices, consider

Uy = TTOy, + Uy — TTOy = 710y, —}—@I — ﬂ)va Projection error

so that
Computable Not computable

a(vy, wy) =|a(moy, Twy,) +@ (I — 7)oy, (I — n)whD

Replace by a computable symmetric bilinear stabilisation term S(.,.) ~ a(.,.)

a(vp, wy) = a(moy, wwy) + S ((I — 7)oy, (I — m)wy)



Curvilinear VEM

Define a curved edgebyamapx =y(¢); 0 <t <1
Polynomial space in the curved edge:
V|er € Pk([(), 1]) o~
A function v is now determined by:
> D1: value of v at the vertices.

» D2: k + 1 values of v on the edge nodes.
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» D2’: k- 1 values on the parameter space [0, 1].
associated with the curved edge e’.

» D3: k(k + 1)/2 moments (v, P ) E.

Integration in £

Quadrature
point

..............
1

Define a reference line.
>

Compress
Points

Locate quadrature points on the
(orthogonal) s_egment Wlthln the ec_jge < G
guadrature point and the intersection  roint
point with the reference line.

Reference line
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Triangular
Elements

VEM vs FEM
4 )
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® *—o
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<
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VEM k =2 VEMk =3

VEM k =1

SAME

FEM k=1

\VEM/\':I j

@
s
FEM k = 2 FEM k = 3
®
" o0
o o—0

VEM«k =2 VEM«k =3

Quadrilateral
Elements



Boundary conformity matters!

u(ry, ro) = — [332 — % Sin(wazl)] [332 —1 - % sin(Swazl)} 13 + sin(5xy) sin(7x2)]

r _ ~
Convergence in boundary

non-conforming meshes
. IS sub-optimal!
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Meshing requirements for high-order methods

A curvilinear discretization requires this geometrical information:

1. The coordinates of a set of points on the vertices and edges of the
polygonal mesh which are used to interpolate the numerical solution v.

2. The coordinates of a set of quadrature points and their corresponding
weights for evaluating integrals over:

a. Curved edges, and

b. Polygons with curved edges

3. The mapping y(t) defining the curved edge which is used to compute
tangent and normal vectors appearing in some of the integrals.



A posteriori high-order polytopal mesh generation

/
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Straight-sided Curved Mesh
mesh
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Create a CAD Geometry

|
.step
A4

.ccm
Y

Convert 3rd party linear mesh

h 4

Load CAD Module
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il

Generate a Linear Mesh «

Associate CAD objects with Boundary
Vertices & Edges

Generate Quadrature Points

i

Project Quadrature Edge Nodes to CAD

I

Yes

\ 4
Run VEM Output Module

| |

.mesh .nmg
4 v

End / Run VEM Solver

High-order mesh generation workflow

o o &~ W D

CAD geometry input via API.

Straight-sided (linear) mesh generation.
CAD-mesh reconstruction.

VEM edge quadrature and interpolation points.
Projections onto CAD.

Output VEM geometrical information.
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1.

2.

CAD queries and “linear” mesh generation

CAD API - NekMesh
* BRep - OpenCascade or CADfix.

« STEP (CATIA, SolidWorks, etc.)

“Linear” mesh generation
» External polyhedral mesh generator (STAR-CCM-+).
* Mesh conversion to NekMesh linear N-sided polygonal element.

* Applicable to other linear polygonal mesh generators.



Recovering the CAD missing link

Frequently when importing third-party meshes:

> Vertices of the linear mesh are not on the CAD.

> No CAD-mesh connectivity is available.

CAD Curve #2

CAD Curve #1. 1

[] v4 (No SurfVertex)

> o=

CAD recovery steps:

Construct bounding boxes around the CAD curves.

Assign CAD curves to vertices.
Project mesh vertices to the CAD curve.
Assign CAD curve to edges.




Quadrature point projection onto CAD

1. VEM edge quadrature rules (Arbitrary order)

I O O I Quadrature Points (Gauss-Legendre)
1 1
O O O Interpolation Points (Gauss-Lobbato-Legendre)
-1 1
2. Parametric projection 3. Multi-NURBS edge projection
Quadrature Rule [-1:1] OCE Projection to the
FO—O—C0OH Closest CAD
N N} B Map Quadrature yT X
\\\ —— _)
v v v t CAD Curve
----0-------0-----0--[F--»
t1 \ \‘+ "\: to

Y OCE Projection

Quadrature Rule [-1:1

Fail-safe approach
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Geometrical queries and VEM integration

Linear mesh output

TN
Linear mesh 025
Vertex Edge* Polygon :
N _ N o
High-order geometrical information ol
Edge-Nodes S
\l_/
X/Y/Z t[0:1] Tangent Ngmal
~_ N N -~

All geometrical queries are processed by the CAD-API.
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VEM solution

u(z, y) = log(z? + y°)

1. Curvilinear mesh accuracy is better than for
straight-sided mesh for the VEM (k = 2)

2. Mesh convergence (h):

L? norm error: O(h°) [‘;"5

]

9 —1.5

L?® norm error  »

°ﬁ = 25

——withGeo

1021 e | 3.5
10'35—
107}

om) -~

105}
10°

107"

e




Automotive aerofoill

P2 — Quadrature points

CAD

Linear
mesh

P2 — Interpolation points
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What next for HO polytopal methods?

» Streamlining of high-order methods.

> Integration rules on curvilinear polytopes.

» Robust 3D mesh generation.

» Polytopal mesh quality metrics.

» CFD implementations: hyperbolic/non-linear.
» Large-scale simulation and adaptation.

» General-purpose implementations/libraries.

» High-order FE exterior calculus.



http://www.nektar.info/
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