
Exploring polyhedral mesh generation from Delaunay tetrahedral meshes

Sergio Salinas-Fernández∗ Magdalena Alvarez† Nancy Hitschfeld-Kahler‡

Abstract

In this paper, we present the conceptual framework and a

new algorithm for building polyhedral cells by the union of

tetrahedrons. Two tetrahedrons are joined if the shared face

fulfills some criteria. As preliminary results, statistics of the

polyhedral cells generated by using the face area and the

face in-circle radius metrics as joining criteria, are shown

and discussed.

1 Introduction

Due to the requirements to count with polyhedral
mesh generators that allow researchers to evaluate how
general polyhedral cells can be and still give accurate
simulation results in VEM [1], we present a first attempt
to study the kind of polyhedra that can be generated
by joining tetrahedra from a tetrahedral mesh. We
present an algorithm and describe the properties of the
built polyhedral cells. The preliminary experimental
evaluation shows that the generated polyhedra are very
far from convex cells and need to be further study too
see if these kind of cells are useful and provide some
advantages in the context of some specific simulation
in comparison to Voronoi cells. A mesh composed
of proper non-convex polyhedral cells should require
less cells and points to model complex geometries than
meshes composed of convex cells.

2 Basic concepts

We want to extend the concept of the terminal-edge
region, defined in [3], to faces in 3D. One of the
problems of doing this extension, is what is “the largest
face of a tetrahedron”. There are several criteria to
define which face of a tetrahedron is the largest or the
smallest, we are going to call them “Joining criteria”.
Given a tetrahedral mesh τ = (V,E, F), we can define:

Definition 1. Joining criterion For any tetrahe-
dron ti, the Joining criterion is a metric used to rank
the faces of ti ordered from the largest to the smallest.
There is only one largest-face; if two faces have the same

∗ssalinas@dcc.uchile.cl. DCC, Universidad de Chile, Chile.
†magdalena.alvarez@ug.uchile.cl. DCC, Universidad de Chile,

Chile.
‡nancy@dcc.uchile.cl. DCC, Universidad de Chile, Chile.

size, then one of them is chosen as the largest arbitrar-
ily.

Examples of joining criteria for a tetrahedron ti ∈ τ

include the area criterion, where the largest and smallest
faces are determined by the maximum and minimum
areas of the ti faces, respectively, and the in-circle
radius criterion, where the largest and smallest faces
are identified based on the maximum and minimum in-
circle radius of the ti faces. With this already defined,
we can extend the concept of terminal-edge and longest-
edge propagation path [2] to faces in a tetrahedral mesh
τ with a Joining criterion J :

Definition 2. Terminal-face A face is a terminal-
face fi if two adjacent tetrahedrons ta, tb to fi share
their respective (common) largest-face, according to
J . This means that fi is the largest-face of both
tetrahedrons that share fi. If tb = ∅, then fi is called
border terminal-face.

Definition 3. Largest-face propagation path
(Lfpp) For any tetrahedron t0 of any tetrahedralization
τ , the Largest-Face Propagation Path of t0 (Lfpp(t0)) is
the ordered list of all the tetrahedrons t0, t1, t2, ..., tn−1,
such that ti is the neighbor tetrahedron of ti−1 by the
largest face of ti−1, for i = 1, 2, ..., n− 1.

Definition 4. Terminal-face region A terminal-
face region R is a region formed by the union of all tetra-
hedrons ti such that Lfpp(ti) has the same terminal-face.
Figure 1 displays an example of a terminal-face region.

In order to accelerate the generation of terminal-
face regions we develop a classification system for each
face of τ . For each face fi ∈ τ , a face can be a frontier-
face or internal-face.

Definition 5. Frontier-face A frontier-face fi is
a face that is shared by two tetrahedron t1, t2, each
one belonging to a different terminal-face region, that
means that fi is not the largest-face of neither t1 nor
t2. If t2 = ∅ then fi is a frontier-face even if efi is a
border terminal-face.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 1: Terminal-face region generated with the
incircle criterion

Definition 6. Internal-face A internal-face fi is
a face that is shared by two tetrahedrons t1, t2, each
one belonging to the same terminal-face region. In
other words, fi is an internal-face if fi is neither a
terminal-face nor frontier-face.

For the context of this work, we only need the
frontier-faces, as those faces will be faces of the poly-
hedral mesh at the end of the algorithm, internal-faces
will be removed during the process of joining tetrahe-
drons.

One property that terminal-face regions must obey,
for their use as polyhedrons in a polyhedral mesh, is
that they must not overlap.

Lemma 2.1. Let τ be a tetrahedral mesh of any set of
points P with a Joining criterion J . Then the set of
terminal-face regions in τ do not overlap.

As in 2D, terminal-edge regions can contain
frontier-edges in its interior, in 3D, terminal-face regions
can contain frontier-faces in their interior. We will refer
to this kind of frontier faces as barrier-faces.

Definition 7. Barrier-face Given a terminal-face
region Ri, any frontier-face f ∈ Ri that is not part of
the boundary δRi is called a barrier-face.

Definition 8. Barrier-edge tip A barrier tip in a
terminal-face region Ri is an edge incident to only one
frontier-face (particularly a barrier-face), and the rest
of the faces are internal-faces.

3 Algorithm

In this section, we present our algorithm to generate
polyhedral meshes. The algorithm takes as input a
tetrahedral mesh τ = (V,E, F), a Joining criterion J ,
and return a polyhedral mesh τ ′ = (V,E′, F ′). The

algorithm has 3 main phases: Label phase, Traversal
phase and Repair phase.

For the understanding of the algorithm, we are
going to assume that we have a data structure with
all geometrical information of the tetrahedral mesh.
For the output we use a list of polyhedrons, and each
polyhedron is represented as a list of faces.

3.1 Label phase The first step to generate the new
polyhedral mesh is to define whose faces are going to
be faces of the output mesh (i.e. the frontier-faces),
and choose one tetrahedron ti per terminal-face region
Ri, to be used in the Traversal phase to generate
the new polyhedron, we are going to name to ti as
seed tetrahedron, and it is a tetrahedron adjacent to
a terminal-face. For this reason, as equal as the 2D
algorithm, we first with the Label phase.

The Label phase takes as input the mesh τ =
(V,E, F) and outputs two auxiliary arrays containing
mesh information: the Seed array, which is the size
of the number of tetrahedrons and stores the indices
of all seed tetrahedrons in τ , and the Frontier-face

bitvectors, an array of size |F | where each element i

is set to true if the face fi is a frontier-face and false
otherwise. Those arrays will be use in the Traversal
phase and the Repair phase.

The algorithm first calculates the faces that meet
the joining criterion J of each tetrahedron ti ∈ τ .
Afterwards, the algorithm labels the seed tetrahedrons,
those are the tetrahedrons adjacent to a terminal-face,
and that are used in the traversal phase to generate the
polyhedrons. Finally, the algorithm labels the frontier-
faces, those are the faces of the final mesh τ ′. For each
face fi ∈ τ , the algorithm gets the both tetrahedrons
ti, tj , that shares fi, if fi is not the largest face of neither
ti nor tj , or if fi is a border face, then fi is labeled as
frontier-edge (sets as true) in the frontier Bitvector.
This process is exemplified in Figure 2.

With the tetrahedrons and faces already labeled,
the algorithm continues to the Traversal phase.

3.2 Traversal phase In this phase the algorithm
converts terminal-face regions into polyhedral cells.
To do this, starting from a seed tetrahedron ti ∈
seed array, the algorithm build the polyhedron P by
calling adepth first search (DFS) algorithm. This algo-
rithm travels inside the terminal-face region using the
faces of the seed tetrahedron ti. For each tetrahedron
tj adjacent to ti by its face, the algorithm checks if tj
contains a frontier-face fi, if it is true, then fi is stored
in P , as part of the polyhedron, and if its is not the case,
then fi is a internal-face. Consequently, the DFS travel
to the neighbors of tj looking for others frontier-faces.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

f1

f2

t2

t3

Figure 2: Example of labeling with adjacent 3 tetrahe-
drons, Red faces are the terminal-faces, and green faces
are frontier-faces. Tetrahedron t1 is connected to t2 by
face f1, and tetrahedron t1 is connected to t3 by face
f2. According to the Joining criterion of the largest
area, f1 is the largest face of t1 and t2, meaning that f1
is a terminal-face, thus t1 is chosen as a seed tetrahe-
dron. f2 is not the largest face of t1 and t3, thus f2 is
labeled as a frontier-face.

For each P generated from the DFS, the algorithm
checks for barrier edge tips. The algorithm counts the
number of repeated faces in P , if there are repeated
faces, it means that a face was stored two times during
the DFS, indicating a barrier-face. In such cases, P is
sent to the Repair phase.

3.3 Repair phase For any not simple polyhedron
Pi, the algorithm uses the barrier edge tips to split a
polyhedron in two. A barrier tips is an edge ei ∈ Pi

that is adjacent to only one frontier-face of Pi, and the
rest of faces adjacent to ei are internal-faces. The first
question to answer is how to know if edge ei is a barrier
edge tip.

Theorem 3.1. Given a terminal-edge region Ri, with
Ff the set of frontier-faces of Ri, an edge e belonging to
a barrier-face of Ri, and the set Fe of faces incident to
e., e is a barrier tip if ||Fe ∩ Ff | = 1.

Using Theorem 3.1 we define the following algo-
rithm to get a list Bp with all the barrier edge tips of
polyhedron P . The algorithm takes all edges ei of the
barrier-faces in P , and iterates over all them, to check if
they are a barrier tip. The check is done by calculating,
the formula of above, if it is true, then there is only a
barrier-face adjacent to ei, thus ei is barrier tip.

Once the algorithm has computed the set of barrier
tips B, we can use them to split the polyhedron P . This
split consists of converting internal-faces fi to frontier-
faces, and using the two tetrahedra adjacent to fi as
seeds to repeat the traversal phase.

The algorithm of the repair phase first defines a
subseed list Lp to store the seed tetrahedra that will
be used as seeds to generate the new polyhedra. And
the usage bitarray A that is used as a flag to check if a

seed tetrahedron has been used during the creation of a
new polyhedron, thus the algorithm can avoid creating
duplicate polyhedra.

Then the algorithm iterates over all the barrier edge
tips bi ∈ B. For each bi, the algorithm selects the
barrier-face fi incident to bi, circles around the internal
faces of bi, and stores them in order of appearance
in a sublist l. The middle internal face fm of l is
calculated. fm is converted to a frontier-face by setting
frontier bitvector[fm] = True. The two tetrahedron
t1 and t2 adjacent to fm are stored in the list Lp to be
used as seed tetrahedra, and they are also marked as
True in the usage bitarray A.

Later the algorithm constructs the polyhedron. For
each tetrahedron ti ∈ Lp, the algorithm checks if ti
has been used during the generation of a tetrahedron.
If this is not the case, then the algorithm proceeds to
generate a new polyhedron P ′ by calling the traversal
phase. However, for each tetrahedron tj visited in the
traversal phase, A[fm] is set to False to avoid using tj
to generate the same polyhedron P ′ again. This process
is repeated until there are no more seed tetrahedra in
Lp, at which point all the new polyhedrons are simple
polyhedrons, and are added to τ ′.

Finally, τ ′ is a mesh composed of simple polyhedra.
Notice that a more simple strategy to generate simple
polyhedra is just to eliminate the barrier faces because
they are internal faces and do not represent geometrical
aspects to be respected from the input domain.

4 Experiments

The experiments consist in testing the algorithm with
4 different kinds of tetrahedral meshes in a cube:
Random, Poisson, Grid, and Quality meshes. Examples
of those meshes can be seen in 3.

For each kind of mesh, we generate 5 different sizes,
with 500, 1000, 5000, 10000 and 50000 vertices. The
summary of the experiments can be seen in Table 1.
In general, regardless of the point distribution of the
meshes, the algorithm merges, on average, 3 tetrahe-
dron per polygon, reducing the tetrahedron mesh by
around 70% of the elements, and about one-fifth of the
polyhedrons contain barrier faces. This is even true for
points not in general position, as it is the case of Grid
meshes.

We can see differences between the two joining
criteria; the maximum face in-circle radius criterion
tends to join more tetrahedrons than the maximum face
area criterion. The resulting polyhedral cells include
less barrier-edge tips, but the generated meshes contain
in average more tetrahedrons.

The unique statistic that seems to vary depending
on the point distribution is the percentage of polyhe-

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

(a) Random mesh (b) Poisson mesh (c) Quality mesh (d) Grid mesh

Figure 3: Example of the meshes generated for the experiments, all meshes have near 5000 vertices. The cubes
were cut by a plane to show the interior of the mesh.

In-circle criterion Area max criterion

Random Poisson Quality Grid Total Random Poisson Quality Grid Total

Reduction 70.2% 66.4% 66.6% 66.4% 67.4 70.7% 68.8% 68.3% 70.1% 69.5%
Avg Tetras 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.2 3.0
Barriers 25.0% 25.6% 24.9% 8.5% 21.0% 21.1% 18.8% 19.4% 21.1 20.1%
Tetrahedrons 24.8 23.5 22.0 2.3 18.1 18.6 16.0 17.6 21.9 18.5

Table 1: Summary of the results from the joining criteria In-circle and max area. The “Reduction” row shows
the percentage of tetrahedrons removed by the algorithm. The “Avg tetras” row indicates the average number
of tetrahedrons contained within each polyhedron. The “Barrier” row displays the percentage of polyhedrons
containing barrier faces. And lastly, the “Tetrahedrons” row presents the total number of tetrahedrons remaining
in the mesh. For each row, the colored numbers compare the maximum, in red, and minimum, in blue, value
obtained in each distribution experiment.

drons that remain as tetrahedrons after the algorithm
was applied. Poisson’s meshes have the lowest percent-
age of tetrahedrons, while grid meshes have the highest.
However, on average, all meshes retain approximately
18.6% of their elements as tetrahedrons.

5 Conclusions and future work

In this paper, we have presented the theoretical concepts
and a preliminary version of an algorithm designed to
convert a tetrahedral mesh into a polyhedral mesh. We
have introduced the concept of terminal-face region in
order to guide the polyhedral construction. Preliminary
results show that the algorithm reduces the number
of polyhedrons by approximately 70%, and that the
average number of tetrahedrons per polyhedron is 3.
The algorithm also retains approximately 20% of the
tetrahedrons in the polyhedral mesh. Those results
seem to be almost the same, independent of the chosen
joining criterion. This means that the concept of
terminal-face region as defined in this paper needs to
be improved by considering joining strategies that also
considers quality criteria of the generated polyhedron.
Our ongoing work is taken in consideration of the latest
findings. Moreover we have to test if these polyhedral
cells are useful in the context of numerical simulations
using the Virtual element method simulations [4].

6 Acknowledgments

This research is supported by Fondecyt Regular Project
1241596.

References

[1] L. Beirão da Veiga, F. Brezzi, A. Cangiani,

G. Manzini, L. Marini, and A. Russo, Basic princi-
ples of virtual element methods, Mathematical Models
and Methods in Applied Sciences, 23 (2013), pp. 199–
214.

[2] M.-C. Rivara, New longest-edge algorithms for the re-
finement and/or improvement of unstructured triangu-
lations, International Journal for Numerical Methods
in Engineering, 40 (1997), pp. 3313–3324.

[3] S. Salinas-Fernández, N. Hitschfeld-Kahler,

A. Ortiz-Bernardin, and H. Si, POLYLLA: polygo-
nal meshing algorithm based on terminal-edge regions,
Engineering with Computers, 38 (2022), pp. 4545–
4567.

[4] T. Sorgente, S. Biasotti, G. Manzini, and

M. Spagnuolo, A survey of indicators for mesh qual-
ity assessment, Computer Graphics Forum, 42 (2023),
pp. 461–483.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	Basic concepts
	Algorithm
	Label phase
	Traversal phase
	Repair phase

	Experiments
	Conclusions and future work
	Acknowledgments

