
High-Order Mesh Adaptivity Using Goal-Oriented Error Estimation

Tzanio Kolev ∗ Ketan Mittal ∗ Boyan Lazarov ∗ Mathias Schmidt ∗

Vladimir Tomov ∗

Abstract

We explore a new approach to goal-oriented mesh opti-

mization in PDE-driven computational simulations. Tar-

geting high-order mesh adaptivity, the approach combines

geometric quality optimization with control of the PDE so-

lution error. By leveraging the Target-Matrix Optimization

Paradigm (TMOP) in conjunction with adjoint sensitivity

analysis, the method employs a goal-oriented error estima-

tion framework to optimize the mesh adaptively. We demon-

strate that the optimized mesh simultaneously achieves good

geometric quality and reduces the PDE solution error in re-

gions critical to a predefined computational objective.

1 Introduction

Traditional mesh optimization methods primarily aim
to improve geometric quality, often assuming this will
lead to better accuracy in solving a PDE on the opti-
mized mesh. However, geometric properties alone do
not necessarily guarantee the most accurate PDE so-
lutions. Existing approaches that incorporate solution
fields tend to focus on interpolation errors [5, 7] or
impose ad-hoc size control based on solution features
[8, 9, 6, 3]. In this note, we explore an alternative strat-
egy: optimizing a given starting mesh by directly min-
imizing the PDE error on the resulting mesh through
adjoint sensitivity analysis. This approach is inte-
grated with the Target-Matrix Optimization Paradigm
(TMOP) to maintain high geometric quality while en-
hancing solution accuracy.

2 Optimization Approach

Let u(x) be the finite element solution of the PDE of in-
terest with respect to mesh positions x. Our optimiza-
tion problems minimize a multi-objective formulation,
namely:

(2.1) min
x

wµFµ(x) + wuFu(x, u(x)),

where Fµ is a mesh quality term, Fu a measure for
the finite element error, and the weights wµ are wu are
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constants that control the balance between the terms.
The mesh quality Fµ and finite element error term Fu

are defined as follows:

(2.2) Fµ(x) =

∫

Ω

µ(x) dΩ

and

(2.3) Fu(x, u(x)) =

∫

Ω

(u(x)− u∗)2 dΩ,

where µ(x) is a mesh quality metric and u∗ is the exact
solution of the PDE of interest.

2.1 Sensitivity analysis In the adjoint, i.e. reverse
mode sensitivity analysis, we compute the sensitivities
for both objective contributions. The derivative of
a performance measure F with respect to the node
coordinates xi is

(2.4)
dF(u(x),x)

dxi
=

∂F

∂xi
+

(

∂F

∂u

)T
∂u

∂xi
.

The explicit dependence of the performance measure
on the shape ∂F

∂xi

is accounted for by the first term
of the right hand side, while the implicit dependence
on the displacement derivative ∂u

∂xi

is accounted for by
the second term. Because the physical field u satisfies
the Residual equation RU(u;x) = 0, the sensitivity ∂u

∂xi

is annihilated from Eq. 2.4 by evaluating the adjoint
variable λu that solves

(2.5)

(

∂RU

∂u

)T

λu =
∂F

∂u

and then computing

(2.6)
dF(u(x),x)

dxi
=

∂F

∂xi
− λT

u

∂RU

∂xi
.

The Jacobian ∂RU

∂u
is the stiffness matrix used to solve

the physical problem and ∂RU

∂xi

is obtained using the
material derivative, cf. [4]. Note that the mesh
quality performance measure Fµ is not a function of
the physical field u and consequently this term’s implicit
dependency is zero.
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3 Numerical Results

We present preliminary numerical results using simple
meshes and a diffusion PDE to illustrate the fundamen-
tal concept of the method. All optimization problems
are solved by employing the non-linear programming
Method of Moving Asymptotes (MMA) [10] and the
MFEM finite element library [1, 2].

3.1 Good initial mesh We use a diffusion problem
with a manufactured solution to measure the error.
The finite element PDE solver finds a temperature field
u ∈ H = {u ∈ H1(Ω) : u = 0 on ΓD} such that

(3.7)
0 = RU(u)

=
∫

Ω
(∇δκ∇u + δ · f) dΩ,

for all δ ∈ H with conductivity κ = 1. The exact
solution for this problem is u∗ = sin(πx) · sin(2πy).

The finite element errors over the domain Ω, before
and after optimization, are presented in Figure 1. As
the finite element error is small compared to the mesh
quality term, we choose wu = 106 and wµ = 1.

error
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Figure 1: Finite element error before(left) and af-
ter(right) mesh optimization

3.2 Randomly perturbed initial mesh The pre-
vious example is repeated with a randomly perturbed
initial mesh. The finite element errors over the domain
Ω, before and after optimization, are presented in Fig-
ure 2. The convergence of the objective value as well as
its scaled contributions Fµ and wuFu(x, u(x)) are pre-
sented in Figure 3.

3.3 Alternative Objective Norms The method is
not restricted to the objective formulation of Fu given
in (2.3). We have explored alternative norms, including
cases involving error estimators when the exact solution
is unknown — a critical capability for practical compu-
tations. Next we outline several alternative objective
formulations we have implemented.

error
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Figure 2: Meshes and finite element errors before (left)
and after (right) mesh optimization.

Figure 3: Convergence of optimization problem

H1-semi norm

(3.8) Fu(x, u(x)) =

∫

Ω

(∇u−∇u∗)2 dΩ,

with derivatives

Fu

du
=

∫

Ω

2 · (∇u−∇u∗)
dN

dx
dΩ

=

∫

Ω

2 ·

(

dN

dx
û−∇u∗

)

dN

dx
dΩ.

(3.9)

Zienkiewich-Zhu norm When the exact solution
u∗ is not known, a common practice is to employ error
estimators, such as the Zienkiewicz-Zhu norm, defined
as:

(3.10) Fu(x, u(x)) =

∫

Ω

(∇u− G(u))2 dΩ,

with

(3.11) G(u) =

∑

e

∑

i∈Nodes∈e
dNi

dx
ûNi

∑

e

∑

i∈Nodes∈e Ni

.
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The derivatives of Fu are:

Fu

du
=

∫

Ω

2 (∇u− G(u))

(

dN

dx
−

dG(u)

du

)

dΩ

=

∫

Ω

2

(

dN

dx
û−N Ĝ(u)

)

(

dN

dx
−N

∑

e,i
dNi

dx
Ni

∑

e,i Ni

)

dΩ.

(3.12)

Norm based on average element value This
is another approach when the exact solution u∗ is not
known:

(3.13) Fu(x, u(x)) =

∫

Ω

(u− B(u))2 dΩ,

with scalar B(u):

(3.14) B(u)|Ωe =

∫

Ωe u
∫

Ωe 1
.

The derivatives of Fu are:

Fu

du
=

∫

Ω

2(u− B(u))

(

N −
dB(u)

du

)

dΩ

=

∫

Ω

2 · (N û− B(u))

(

N −

∫

Ωe N
∫

Ωe 1

)

dΩ.

(3.15)

4 Conclusion

This brief note outlines ongoing work on a mesh adap-
tation method that integrates the Target-Matrix Op-
timization Paradigm with adjoint sensitivity analysis.
Preliminary results demonstrate the method’s poten-
tial to reduce PDE solution errors and optimize PDE-
dependent metrics. Future efforts will focus on extend-
ing the approach to a broader range of PDEs and more
complex physical scenarios.
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