
Known-authors Automatic Multi-Material Mesh Generation for the

Simulation of Metal Casting Processes

Robert Schneiders, Jan Thomsen, Andreas Schulz∗

[R]Copyright © 2025 by SIAM

Unauthorized reproduction of this article is prohibited

Abstract

We describe a robust algorithm for the auto-

matic generation of mixed-element meshes for multi-

material domains. Geometries are given as a set

of overlapping triangulations, with minimal require-

ments to geometric quality. The algorithm overlays a

geometry with a octree-like base mesh which is then

adapted to the interfaces between materials and to

external boundaries. Invalid elements are dealt with

by smoothing, splitting, topology changes and opti-

mization so that only valid elements remain. No user

intervention is required. It was written by Schnei-

ders, Thomsen and Schulz.

1 Introduction

MAGMA GmbH was founded in 1989 in Aachen
and develops the program MAGMASOFT©
for the simulation of metal casting processes:
Mold filling, thermal solidification and shrinkage,
residual stresses and distortion[MAG].It is a ded-
icated software solution to analyze the foundry
processes, with a high focus on usability and ease
of use for solving complex industrial problems.

1.1 Problem Specification

A cast part is manufactured by carving its neg-
ative form out of a mold. That also includes the
runners, overflows and other parts of the casting

∗MAGMA Giessereitechnologie GmbH.

Figure 1: Part, runner and overflows

Figure 2: Mold, cooling channels and cavity

system. Fig. 1 shows a cast part with runner and
overflows, Fig.2 the corresponding cavity in the
mold.

The full casting layout with part geometries,
cores, inserts and cooling channels leads to a
complex geometrical setup. This geometry must
be meshed with a mixed-element mesh that con-
forms to the material interfaces and external
boundaries, with only minimum user interaction
allowed.

1



Figure 3: Cut through background mesh

2 The Meshing Algorithm

2.1 Background mesh generation

The geometry to be meshed is given as a se-
quence of overlapping triangulations T0...Tn−1,
with materials M0...Mn−1, T0 usually being the
mold and M0 being mold material. The part of
the mold to be meshed is defined as

T0\(T1 ∪ T2 ∪ ... ∪ Tn−1)(1)

and its elements have material M0. In gen-
eral, the non-overlapped part of a triangulation
T i which is assigned material Mi is

T i = Ti\(Ti+1 ∪ Ti+2 ∪ ... ∪ Tn−1)(2)

Each T i is thus not overlapped by any Tk, k >
i. To determine whether a given point p is inside
a triangulation T i without actually computing
T i, ray casting is used. The material m a given
point is assigned to is defined as Mm, where

Mm = max
k=0...n−1

: p ∈ Tk(3)

The domain to be meshed is overlayed by a
balanced octree-based background mesh. Cells
at material boundaries are diagonally split, if
necessary, and assigned materials according to
the position of their barycenter in the triangula-
tion (3). Fig. 3 shows a cut through the resulting
mesh, fig. 4 shows part of the background mesh
with interface elements split [Tim].

Figure 4: Background mesh with splits at bound-
ary for the cavity

Figure 5: Projected and smoothed surface mesh

The quality requirements on the triangulations
Si are minor, small gaps are allowed. Triangu-
lations may overlap or have gaps between them.
This makes the algorithm robust and removes
much of the requirements to geometry prepara-
tion for the user.

2.2 Capturing material interfaces

For triangulation Ti with material m = Mi, we
consider the elements with material m. They de-
fine a submesh. The faces at the outer boundary
of the submesh represent the material interfaces
and constitute a polygonal surface mesh Si that
roughly corresponds to the triangulation Ti. To
fit Si to Ti, first the nodes of Si are projected
onto Ti. The surface mesh is then smoothed in a
volume-preserving manner [Tau], and its nodes
are re-projected on Ti. Fig. 5 shows the result.

2



Figure 6: Edge capturing

Figure 7: Optimized surface mesh

The smoothed surface mesh Si in many places
cuts off the edges of the triangulation Ti (fig. 6).
To capture the edges, an algorithm proposed
in [Bid] is used. In Fig. 6, the edge (P1, P2)
cuts off the triangulation edge. P1 and P2 are
on the triangulation Ti, with N1 and N2 being
the normals on Ti. The normals planes intersect
at line g, and P2 is then projected onto g. The
algorithm manages to capture most of the edges
of Ti.

Edge capturing may deform triangles and
quadrilaterals. Collapsed triangles are dealt with
in a special step, and quadrilaterals with obtuse
edges later.

The mesh surface nodes on Tn−1 are now fixed
for the rest of this part of the algorithm. The
procedure is repeated for all nodes not yet fixed,
for triangulations Tn−2, ..., T0.

This part of the algorithm takes a mesh surface
Si and fits it to a triangulation Ti. This is a
special case of remeshing algorithms which take
a polygonal mesh and fit it to another one. There
exists extensive research on this topic [All] [Kha].

Figure 8: Edge Swapping

2.3 Guarantee element quality of

the volume mesh

When projecting to and optimizing at material
boundaries, internal element quality is is affected
and often compromised. Several steps are done
(see [Lo]):

• Volume weighted Laplacian smoothing is
applied to the internal nodes.

• Elements with degenerated quads are split.

• Clusters of internal elements are improved
by edge swapping.

At this stage, some invalid elements remain
and must be dealt with. To do so, we first need
to define the geometrical quality of an element E.
The following properties are taken into account:

• Element Jacobian J(E): For each node N of
an element E, normalize the adjacent edges
ej , j = 0, 1, 2, and calculate the triple prod-
uct J(N) = e0 × (e1 · e2). Element jacobian
is then defined as J(E) = maxN∈E J(N).
We require that J(E) ≥ Jmin.

• Face warpage: W (E) ≤ Wmax

• Element diameter D(E) = 3

√

V ol(E)/c,
where c is a characteristic edge length of the
background mesh. We require that D(E) ≥
Dmin.

The limits can be set by the user.
The values are normalized and combined into

a single quality value Q(E) ≥ 0 so Q(E) = 0 for
a perfect element, Q(E) = 1 being the largest
accepted value. If Q(E) > 1, E is considered
degenerate.

3



Figure 9: Accept deviation from geometry

For a mesh node N , node quality is defined as

Q(N) = max
E:N∈E

Q(E)(4)

For a node N with q = Q(N) > 1, the al-
gorithm tries to improve its position by moving
it to 6 new positions; if it finds a position where
Q(N) ≤ q−ϵ, it moves the node to that position.
This procedure is repeated, until no better posi-
tion is found (ϵ = 0.001 chosen for performance
reasons).

Nodal optimization is then used as follows:

• Interior nodes are optimized

• Interior and boundary nodes are optimized;
boundary nodes are constraint to stick to
the corresponding geometry Si (they are
projected on Si before quality evaluation.

This procedure improves many of the remain-
ing bad elements. However, for non-trivial ge-
ometries, some remain. These are then improved
by node optimization, boundary nodes being al-
lowed to move away from the geometry. After
this step, all elements fulfill the quality require-
ments.

Fig. 9 shows the principle: For a simple geom-
etry, we want to generate a mesh with minimum
jacobian value Jmin = 0.35, a severe limit. This
cannot be achieved by using the standard op-
timization procedure (fig. 9 left). After moving
some nodes away from the geometry, all elements
fulfill J(E) > Jmin (for lower values of Jmin, no
geometry deviation would be necessary).
In practice, all bad elements are healed, with

the number and amount of geometry deviations

Figure 10: Final mesh

Figure 11: Final mesh, detail

being small (fig. 10). This optimization step acts
as a safety valve: In almost all cases, meshes
of numerically valid elements are generated, and
the visual quality of the mesh is not compro-
mised. The whole process does not require any
user intervention!

3 Conclusions

We have presented an algorithm for meshing
complex multi-material geometries for use in
metal casting simulation. The algorithm is
very robust and works without user intervention,
making it easy to use for people in industry.

References

[MAG] www.magmasoft.com.

4



[Tim] A. Timalsina, M. Knepley, Tetrahedraliza-
tion of a Hexahedral Complex, Proceeding of
the 23th International Meshing Roundtable
(2022)

[Tau] G. Taubin, A Signal Processing Approach

to Fair Surface Design, Computer Graphics
Proceedings, pp. 351–358 (2005)

[Bid] K. Bidmon and T. Ertl, Generation of

Mesh Variants via Volumetrical Represen-

tation and Subsequent Mesh Optimisation,
Proceedings of the 14th International Mesh-
ing Roundtable, 8 (2005), pp. 275–286

[All] P. Alliez, G. Ucelli, C. Gotsman, M. At-
tene, Recent Advances in Remeshing of

Surfaces, In: De L. Floriani, M. Spagn-
uolo, (eds) Shape Analysis and Structuring.
Mathematics and Visualization. Springer,
Berlin, Heidelberg (2008), pp. 53—82.

[Kha] Khan et al., Surface Remeshing: A Sys-

tematic Literature Review of Methods and

Research Directions, IEEE Transactions on
Visualization and Computer Graphics. PP.
1-1. (2020) 10.1109/TVCG.2020.3016645.

[Lo] S.H. Lo, Finite Element Mesh Generation,
CRC Press (2015)

5


	Introduction
	Problem Specification

	The Meshing Algorithm
	Background mesh generation
	Capturing material interfaces
	Guarantee element quality of the volume mesh

	Conclusions

