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Abstract

Polyhedron intersection is a fundamental problem in
computational geometry with applications in fields such
as interface reconstruction, high-order remap, and nu-
merical methods requiring polyhedra moments. Tra-
ditional methods for polyhedra intersection based on
the ”Clip-and-Cap” method [17] are hard to port to
GPUs for harnessing their parallel processing capabili-
ties. This is because the computational complexity of a
kernel that clips an arbitrary polyhedron with a plane
can be highly variable whereas GPUs and other accel-
erators, prefer simple kernels with fixed complexity. In
this paper, we propose a novel approach to efficiently
compute polyhedra-polyhedra intersections on GPUs
by decomposing all polyhedra into tetrahedra and per-
forming exclusivley tetrahedra-tetrahedra intersections
in parallel. This method, while increasing the number
of intersection tests, reduces and bounds the complex-
ity of each intersection operation making it amenable
to porting to the GPU. We optimize the efficiency of
the tetrahedra-tetrahedra intersection algorithm by pre-
computing bounding boxes to eliminate non-intersecting
pairs and using static arrays to avoid dynamic mem-
ory allocation. Additionally, we address the efficient
implementation of tetrahedra-plane intersections, iden-
tifying five geometric cases and precomputing resulting
topologies for rapid lookup. Our approach simplifies
the problem of polyhedra intersection and reduces it to
many smaller computations, making it well-suited for
applications requiring high-performance geometric pro-
cessing. Experimental results validate the effectiveness
and scalability of our method on CPUs with with the
porting and testing on GPUs planned as the next steps.

1 Introduction and Motivation

Polyhedron intersection is a fundamental problem in
computational geometry with numerous applications
across various fields, including interface reconstruc-
tion [3], high-order remap [6, 7, 2], and numerical
methods [5, 14, 1]. This problem is particularly sig-
nificant in hydrodynamic simulations involving mov-
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ing meshes, such as the Arbitrary Lagrangian-Eulerian
(ALE) method [8]. Moving meshes can become dis-
torted, causing elements to invert. To address this is-
sue, many codes employ a remapping or remeshing step,
transferring the solution from the distorted mesh to a
new, higher-quality mesh. These ALE methods [11]
sometimes require the computation of the intersection
between the old and new meshes, which can be compu-
tationally expensive.

The problem of mesh-mesh intersection is addressed
by breaking it down into polyhedron-polyhedron inter-
sections. Initially, a bounding box intersection check is
performed to identify all cells in the source mesh that
are close to a cell in the target mesh. Usually, a geo-
metric accelearation data structure (such a KD-tree) is
used. After this preprocessing step, the problem sim-
plifies to computing the intersection of two polyhedra
at a time and computing the moments of the resulting
intersection polyhedron. These moments are used to ac-
cumulate integrated values from the source cell to the
target cell for conservative remap [6, 7], as well as the
Moment of Fluids (MOF) method [15].

While several methods have been proposed to ad-
dress this problem [16, 12, 4, 13], most do not take ad-
vantage of modern architectures, such as GPUs. Al-
though these existing methods are robust, they do not
scale well on GPUs as they are not designed to lever-
age the parallelism that GPUs offer. There are a couple
of reasons for this: first, the size of data necessary for
polyhedra-polyhedra intersection using the Clip-and-
Cap method is highly variable and potentially expensive
to store on the GPU. In the absence of dynamic mem-
ory management capabilities on the GPU, one must de-
cide on the maximum data size at compile time and
statically allocate it. In order to do this, the maximum
number of vertices and edges must be decided at compile
time. Second, the Clip-and-Cap method often involves
complex conditional logic involving the current polyhe-
dron, which leads to thread divergence on the GPU.
This divergence can significantly impact performance,
as threads that take different paths must be serialized,
reducing the overall parallelism.

In this work, we address the challenge of effi-
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ciently computing polyhedra-polyhedra intersections by
proposing a novel approach that leverages the parallel
processing capabilities of modern GPUs. Our method
decomposes all polyhedra into tetrahedra and performs
numerous tetrahedra-tetrahedra intersections in paral-
lel. Although this approach may seem counterintuitive
due to the increased number of intersection tests, it al-
lows us to fully exploit the massive parallelism offered
by GPUs. This is achieved by utilizing a simpler ker-
nel with bounded complexity. By optimizing the ef-
ficiency of the tetrahedra-tetrahedra intersection algo-
rithm and minimizing branch divergence, our method
demonstrates excellent performance on GPUs.

This note is organized as follows: In Section 2, we
provide background information on existing methods for
polyhedra intersection. In Section 3, we describe our
methodology for polyhedra-polyhedra intersection, in-
cluding the tetrahedra-tetrahedra and tetrahedra-plane
intersection algorithms. In Section 4, we present experi-
mental results demonstrating the effectiveness and scal-
ability of our approach on modern GPU architectures.
Finally, in Section 5, we conclude with a summary of
our findings and future research directions.

2 Background

Previous methods for polyhedra intersection often use
variations of the Sutherland-Hodgman algorithm [17],
also known as the ”Clip-and-Cap” method. In this
approach, one polyhedron is decomposed into planes
forming convex shapes, which sequentially clip the
other polyhedron. After each clipping, the resulting
polyhedron is reconstructed for the next step. This
method, along with extensions [16], forms the basis for
many intersection codes, such as r3d [13] and IRL [4].

A key constraint is that the polyhedron trans-
formed into planes must be convex. Non-convex
polyhedra can be decomposed into convex subsets
through techniques like tetrahedralization, allowing
each tetrahedron-polyhedron intersection to be pro-
cessed independently. However, this step can add com-
putational overhead and complexity, especially for ir-
regular polyhedra.

The robustness of the Clip-and-Cap method comes
from the fact that nodes can only lie on one side of a
plane, mitigating numerical accuracy and roundoff er-
rors. When a node is exactly on the plane, it is con-
sistently assigned to the positive or negative side, mak-
ing coincidence manageable algorithmically. However,
these methods can sometimes produce unexpected poly-
hedra [10], where disconnected pieces are erroneously
connected by flat volumes. Such anomalies can be de-
tected and eliminated by a post-processing step if nec-
essary. However, they do not affect the overall moments

of intersection.
As discussed before, despite its robustness, the Clip-

and-Cap method has limitations in handling complex
and concave polyhedra and leveraging modern compu-
tational architectures like GPUs. Addressing these lim-
itations requires innovative approaches that efficiently
handle polyhedra intersections while fully exploiting the
parallel processing capabilities of modern hardware.

3 Methodology

Our approach to polyhedra-polyhedra intersection is
simple but effective. Instead of decomposing only
one, possibly non-convex, polyhedron into tets and
intersecting those tets with the other polyhedron, we
decompose both polyhedra into tets and perform only
tet-tet intersections.

Suppose we have a polyhedron-polyhedron intersec-
tion where both polyhedra have the same topology (the
same number of nodes,edges and faces and same connec-
tivity). One polyhedron is decomposed into n tetrahe-
dra, which become 4n planes. To find the intersection
of these polyhedra, we would require 4n polyhedron-
plane intersections. With a full decomposition of both
polyhedra, the number of tetrahedron-plane intersec-
tions becomes 4n2. While this estimate may initially
seem worse, we leverage several key optimizations to
speed up the process.

Firstly, we precompute the bounding boxes of the
tetrahedra and eliminate pairs whose bounding boxes do
not intersect, reducing the number of intersection tests.
Bounding box precomputation helps quickly discard
non-intersecting pairs, focusing computational resources
on potential intersections.

Secondly, we use a static array of tetrahedra co-
ordinates instead of complex data structures with dy-
namic memory allocation. Static arrays improve cache
coherence and reduce overhead, which is beneficial in
high-performance computing environments.

Additionally, the simplicity of tetrahedra makes
intersection tests straightforward with fewer special
cases. By reducing the problem to tetrahedra-plane
intersections, we use efficient algorithms optimized for
these basic geometric primitives.

Moreover, our approach is highly scalable. As the
number of polyhedra increases, the decomposition into
tetrahedra and intersection tests can be distributed
across multiple processors or computing nodes. This
parallelization capability is crucial for handling large-
scale simulations and datasets, achieving significant
speedups and managing complex scenarios efficiently.

3.1 Vertex-Plane Distance Calculation A plane
P in n-dimensional space is defined by n · x = d, where
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n ∈ R
n is the normal vector and d is the distance from

the origin. The signed distance between a vertex v and
the plane is computed as ∥v∥P = n · x− d.

The sign indicates the side of the plane: ∥v∥P ≥ 0
means the vertex is opposite the normal vector, while
a negative distance means it is on the same side. This
is crucial for determining vertex positions relative to a
polyhedron in intersection tests. A vertex is clipped if
the distance is negative.

For the intersection of a line segment defined by
points v1 and v2 with the plane, the intersection point
vi is given by:

(3.1) vi =
∥v1∥P · v2 − ∥v2∥P · v1

∥v1∥P − ∥v2∥P

3.2 Tetrahedra-plane Cut To discuss the com-
plete algorithm for tetrahedra-tetrahedra intersection,
we must first address the efficient implementation of
tetrahedra-plane intersection. Given that a tetrahedron
is a simple shape, we simply account for all the geome-
tries resulting from the intersection of a plane with a
tetrahedron.

(a) (b) (c)

Figure 1: (a) A tetrahedra being cut by a plane. (b)
The resulting two new shapes from the cut. (c) If the
prism shape is chosen it is split into three tetrahedra
which are put back into the algorithm.

There are five geometric cases for the intersection
of a tetrahedron and a plane, each corresponding to the
number of vertices of the tetrahedron that are clipped
by the plane:

Number of Vertices Clipped Resulting Shape

0 The tetrahedron itself
1 Triangular prism
2 Triangular prism
3 Tetrahedron
4 No resulting polyhedron

Table 1: Resulting shapes based on the number of
vertices clipped from tetrahedra.

Since the only two possible shapes from this clipping
are a tetrahedron or a triangular prism, we can ensure
that only tetrahedra remain after the clip by splitting

the triangular prism into three tetrahedra. This case
is illustrated in Figure 1. The process of splitting a
triangular prism into tetrahedra involves identifying the
vertices and edges of the prism and then constructing
new tetrahedra that fill the volume of the prism without
overlapping. This process occurs once and then the
splits are recorded in topology tables.

Given that a tetrahedron has four vertices, each
with two states (clipped or unclipped), there are only
24 = 16 possible ways a tetrahedron can be clipped by
a plane. This allows us to precompute the resulting
topologies and store them in lookup tables. These
lookup tables are then used to quickly determine the
resulting polyhedra for any given clipping scenario,
significantly speeding up the intersection computation.
We index into this tables by using the bits set by
clipped vertices to construct an integer between 0 and
15. For example, assume we have a tetrahedron with a
plane that clips its first and third vertices. This would
result in the set of bits 1010 which once converted from
binary to an integer would be 10. We then use 10 as
the index which gives us the corresponding topological
infromation from out table.

The precomputation involves analyzing each of the
16 possible clipping configurations and determining the
resulting set of tetrahedra for each case. This analysis
is done offline and the results stored in a compact and
efficient data structure.

The use of lookup tables is particularly advan-
tageous in high-performance computing environments,
where the overhead of dynamic computation can be
a bottleneck. By leveraging precomputed results, we
achieve constant-time lookups for each clipping sce-
nario, thereby reducing the overall computational com-
plexity. This approach also enhances the robustness of
the algorithm, as it eliminates the need for complex con-
ditional logic and ensures that all possible cases are han-
dled correctly.

In addition to the computational benefits, the use
of precomputed lookup tables also simplifies the imple-
mentation of the algorithm. By encapsulating the clip-
ping logic in a set of precomputed results, we reduce
the complexity of the code and make it more maintain-
able. This modular approach also facilitates debugging
and testing, as each component of the algorithm can be
verified independently.

3.3 Overall Tetrahedron-Tetrahedron Intersec-

tion Algorithm With the tetrahedra-plane intersec-
tion algorithm established, we now discuss the overall
tetrahedra-tetrahedra intersection algorithm. First, we
check if the bounding boxes of the two tetrahedra in-
tersect. If they do, we proceed with the intersection
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algorithm.
We add one tetrahedron to a list to store interme-

diate and final results. We then loop over the planes
of the other tetrahedron, performing a tetrahedra-plane
intersection with each tetrahedron in the list. If the
intersection is non-empty, the resulting tetrahedra are
added to a new list. This process is repeated for all
planes of the second tetrahedron.

Since we can add at most three tetrahedra to the
list for each tetrahedra in the list, the maximum size
required for the list of all tetrahedra is

∑i=4
i=0 3

i =
121. This is a manageable size for a static array
and is parallelized on a GPU. The use of a static
array allows for good cache performance and reduced
memory overhead when compared to dynamic memory
structures.

3.4 Moment Calculation In many simulations, the
moments of the intersection of two polyhedra are essen-
tial. These moments are utilized in remap methods [6, 7]
and other numerical techniques that require the volume
or centroid of the intersection. Typically, the moments
of the intersection are computed by summing the mo-
ments of the tetrahedra that are created through the
facetization of the polyhedra [9]. Since our algorithm
provides the intersecting polyhedra as a list of tetrahe-
dra we also directly use these methods as well.

Also, in practice only the first few moments of inter-
section are needed. Therefore, we opt to calculate the
moments of tetrahedra directly using formulas derived
from their coordinates. The moment of a tetrahedron
T is defined as the integral

(3.2)

∫ ∫ ∫

T

xiyjzk dV.

Where i+ j + k ≤ n, with n being the chosen moment
order.

Let the coordinates of a tetrahedron T be given by
(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), and (x4, y4, z4). To
calculate the analytic moments over the tetrahedron,
we use a coordinate transformation from a reference
tetrahedron with coordinates TR = (0, 0, 0), (1, 0, 0),
(0, 1, 0), (0, 0, 1). The transformation is given by

(3.3)
x = x1 + (x2 − x1)ξ + (x3 − x1)η + (x4 − x1)ζ,
y = y1 + (y2 − y1)ξ + (y3 − y1)η + (y4 − y1)ζ,
z = z1 + (z2 − z1)ξ + (z3 − z1)η + (z4 − z1)ζ.

Where ξ, η, and ζ are the barycentric coordinates
of the reference tetrahedron. The Jacobian of this
transformation is given by

(3.4)

J =
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x2 − x1 x3 − x1 x4 − x1

y2 − y1 y3 − y1 y4 − y1
z2 − z1 z3 − z1 z4 − z1



 .

From this Jacobian, we know the volume V of the
tetrahedron is given by V = 1

6
|J|. The moments of

the tetrahedron are calculated by integrating the coor-
dinates over the tetrahedron. Using the transformation
from reference coordinates, the moment of a tetrahedron
is given by

(3.5)

∫ 1

0

∫ 1−ξ

0

∫ 1−ξ−η

0

xiyjzk dζ dη dξ |J|.

We found that for the first several moments, using
these analytic expressions is faster than the more gen-
eral recursive such as the one given by Koehl [9].

4 Experimental Results

We implemented a basic prototype of our algorithm
for tets only in C++ using Kokkos [18], a library for
performance portability across multi-core CPUs and
GPUs. The tetrahedra vertices are stored in a flattened
array. We evaluated our algorithm on an AMD EPYC
7713 64-Core Processor with 128 threads, comparing it
to the r3d library [13]. In the test, one tetrahedron
was the unit tetrahedron, and the other was randomly
generated on the unit sphere with a volume of at
least 0.001. We executed ‘r3d init tet’, ‘r3d clip’, and
‘r3d reduce’ in parallel using OpenMP through Kokkos.
The test was run 10 times, and the average execution
time was recorded. The results are presented in Table 2.

The results in Table 2 show that our algorithm
outperforms the r3d library as the number of tetrahedra
increases. While our initialization time (‘init’) is slightly
higher, the ‘clip+reduce’ phase is much faster, leading
to a lower total execution time (‘total’). This efficiency
gain becomes more pronounced with larger tetrahedra
counts, demonstrating better scalability. Overall, our
approach is more efficient and scalable.

5 Conclusions

In this work, we presented an algorithm which presented
a new algorithm for polyhedra-polyhedra intersection
that leverages the parallel processing capabilities of
modern GPUs. Our method decomposes all polyhedra
into tetrahedra and performs numerous tetrahedra-
tetrahedra intersections in parallel. We believe this
algorithm will be amenable to the GPU architecture in
the future and will be able to handle complex polyhedra
intersections efficiently.
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# of tet-tet intersections
r3d Our Algorithm

init clip+reduce total init clip+reduce total
100000 0.00253203 0.00703764 0.00956967 0.00397144 0.00693702 0.01090846
200000 0.00604507 0.00906832 0.01511339 0.00596718 0.0114017 0.01736888
400000 0.0101806 0.0213422 0.0315228 0.0107987 0.017279 0.0280777

800000 0.0199746 0.0480378 0.0680124 0.0212801 0.0295645 0.0508446
1600000 0.0505566 0.095476 0.1460326 0.0408311 0.0547552 0.0955863
3200000 0.0918407 0.181224 0.2730647 0.0788684 0.104732 0.1836004
6400000 0.193545 0.369134 0.562679 0.156132 0.20269 0.358822

Table 2: Timing results for different numbers of tet-tet intersections. The times are in seconds. The row in bold
represents the point at which our algorithm becomes faster than r3d.
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