
Data Structures for Fast Polyhedral Intersections in 3D

Joseph Donato∗ Daniel Shevitz∗ Rao Garimella∗

1 Abstract

The operation of intersecting two polyhedra is funda-
mental to intersection based remap and interpolation[1].
This is done under the assumption that one of the two
polyhedra is convex and we clip the other polyhedra
with the planes representing the faces of the convex
polyhedra. R3D[3] is a widely used library for such op-
eration which implements the algorithm of Sugihara[4].
In this paper, we describe the implementation of R3D,
its shortcomings, and propose a novel implementation
named J3D which provides substantial performance im-
provements.

2 Introduction

Intersection based remap which conservatively interpo-
lates values from a source mesh onto a target mesh heav-
ily relies on polyhedral intersections. That is, for each
target cell, intersecting source cells are determined and
the target cell field value(s) is calculated by using the
moments of each intersection as weights. Before dis-
cussing intersection routines, it is important to define
and distinguish between the boundary representation
(BREP) and the 1-skeleton representation of a polyhe-
dra. A boundary representation describes a hierarchy
between faces and the nodes on each face ordered in the
outward normal direction. The 1-skeleton is a graph
representation of the polyhedra in which each node has
a list of nodes which are edge-connected to it which we
also refer to as neighbors. Within the context of this pa-
per however, we will also include the requirement that
the neighbors of a node are ordered counter-clockwise
relative to the exterior of the polyhedra (Table 1).

∗Los Alamos National Laboratory.

1 2

3 4

5 6

7 8

f1
f2

f3
f4

f5

f6

BREP
face vertices
f1 [1,2,4,3]
f2 [7,8,6,5]
f3 [3,7,5,1]
f4 [8,4,2,6]
f5 [3,4,8,7]
f6 [1,5,6,2]

1-skeleton
vertex neighbors

1 [3,5,2]
2 [4,1,6]
3 [7,1,4]
4 [8,3,2]
5 [7,6,1]
6 [8,2,5]
7 [8,5,3]
8 [4,6,7]

Table 1: A hexahedron with labeled vertices and faces.
The left table demonstrates the corresponding BREP
with faces and their nodes ordered in the outward
normal direction. The right table demonstrates the
corresponding 1-skeleton with nodes and their neighbors
ordered counter-clockwise relative to the exterior of the
the hexahedron.

Meshes typically represent their cells/polyhedra in
the boundary representation and R3D converts them
into a 1-skeleton. R3D implements the robust intersec-
tion algorithm by Sugihara[4] which is more natural in
the 1-skeleton since only local information (neighbors)
has to be updated. The intersection algorithm has two
stages referred to as clip and cap. In the clip step, the
edges which intersect the plane are identified, new ver-
tices are introduced on such edges, and vertices above
the plane are removed. After this however, we are left
with open faces, or, faces which no longer form a closed
cycle, as well as an open volume. In the cap step, the
new nodes are linked together to construct the cycle or
capping face to seal these open faces (Figure 1).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



(a)

1 2

3

4

× ×
×

(b)

1 2

3

4 5
6

(c)

1 2

3

4 5
6

Figure 1: The clip and cap algorithm divided into
three stages. (a) Points on the edges of the polyhedra
which lie on the plane (denoted by ×) are identified.
(b) Vertices above the plane are removed and the new
vertices are labeled and included in the 1-skeleton. (c)
The new vertices are linked to form the capping face.

3 R3D’s Implementation

R3D represents its polyhedra as a 1-skeleton but with
the additional restriction that every node has a valence
of three to take advantage of loop unrolling by com-
pilers. This representation proves to be disadvanta-
geous when initializing from a BREP and computing
moments. In the case of initialization, if a polyhdera
is provided which has a maximum valence greater than
three, then R3D has to duplicate vertices and intro-
duce edges which hurts performance (Figure 2). To
compute the moments, for each face, one must pick a
starting vertex on the face and walk the face to con-
struct triangular facets. Each of these facets are ori-
ented counter-clockwise relative to the exterior of the
polyhedra. In addition to the origin which is used as a
reference point, these facets define tetrahedra to be inte-
grated over[2]. This is very straightforward and perfor-
mant in the BREP, but in the case of R3D, the neighbors
of each node on the walk must be searched in order to
ensure the next node in our walk is properly selected.

(a)

1

23

4 5

(b)

23

4 5

67

8 9

(c)

23

4 5

67

(d)

23

4 5

67

Figure 2: R3D’s procedure (a)-(d) of duplicating nodes
to enforce that all node have a valence of three. (a)
Vertex 1 is identified to be a vertex with valence of four.
(b) Vertex 1 is replaced with a cycle composing of four
vertices 6, 7, 8, and 9 with coordinates equivalent to
that of vertex 1. (c) Two edge connected vertices 8 and
9 from the cycle are removed. (d) The vertex clockwise
from 8 in the cycle (7) is joined with 8’s old neighbor
(4). The vertex counter-clockwise from 9 in the cycle
(6) is joined with 9’s old neighbor (5).

4 J3D’s Implementation

In our novel implementation J3D, we also represent the
polyhedra in the 1-skeleton but without any restrictions
on the valence of nodes. In addition, we also enrich
the 1-skeleton with some data structures that eliminate
the small searches described in the previous section.
This becomes advantageous since degenerate vertices
are no longer necessary in the initialization step and the
memory footprint is substantially reduced as a result.
However, with an arbitrary valence, additional data
structures and algorithms are necessary to efficiently
initialize the 1-skeleton, clip and cap, and compute
moments. Given a face from a BREP and the ordered
set of nodes forming that face, a directed edge is a pair
of sequential nodes. From this, the data structures we
introduce are two mapsMprev andMnext. Mprev maps a
directed edge to the vertex preceding it in the face walk
andMnext maps a directed edge to the vertex succeeding
it in the face walk. Alternatively, Mprev(A,B) can
be viewed as mapping to the node following B in the
counter-clockwise iteration of neighbors around A. In
addition, Mnext(A,B) can alse be viewed as mapping
to the node following A in the clockwise iteration of
neighbors around B.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



4.1 1-skeleton Initialization For the sake of initial-
izing the 1-skeleton, we let V be the set of vertices in the
1-skeleton and we define a map Start : V → V which
for a vertex v simply returns a neighbor of v. From here,
the algorithm to initialize the 1-skeleton with counter-
clockwise node ordering is as follows.

Algorithm 4.1. Counter-Clockwise Neighbor Initial-
ization

Require: Mprev, Start.
Ensure: 1-skeleton G with counter-clockwise neighbor

ordering.
function NeighborsInitialization(G, Mprev, S)

for v ∈ G.vertices do

G.neighbors[v].append(Start(v))
vprev ←Mprev(v, Start(v))
while vprev ̸= Start(v) do

G.neighbors[v].append(vprev)
vprev ←Mprev(v, vprev)

end while

end for

end function

4.2 Cap Before defining the new algorithm for cap,
it is important to note that all new vertices on a
polyhedra after clip and cap always have a valence of
three. Moreover, all new vertices immediately after the
clip step will have only a single valid neighbor which is
a vertex from the old polyhedra kept after clip (Figure
1b). We will set the first element in the list of neighbors
of a new vertex to this valid neighbor.

Algorithm 4.2. Capping After Clip

Require: Mnext

Require: 1-skeleton G with open faces.
Ensure: 1-skeleton G is a valid polyhedra with closed
faces
function Cap(G, Mnext)

for vnew ∈ G.new vertices do

prev ← vnew
curr ← prev.neighbors[0]
next←Mnext(prev, curr)
while next /∈ G.new vertices do

prev ← curr
curr ← next
next←Mnext(prev, curr)

end while

vnew.neighbors[1]← next
next.neighbors[2]← vnew

end for

end function

4.3 BREP Traversal for Moment Calculation

The map Mnext will also prove necessary for efficient

moments computation. To compute the volume or the
zeroth order moment for example, we traverse each face
and construct triangular facets from a starting vertex
on the face. Each facet is defined by three vertices A,
B, and C that are oriented counter-clockwise relative to
the exterior of the polyhedra. By using the origin O as
a reference point, the volume of the tetrahedra formed
by O, A, B, and C is the following[2].

volT (A,B,C) =
1

6

∣

∣

∣

∣

∣

∣

xA yA zA
xB yB zB
xC yC zC

∣

∣

∣

∣

∣

∣

With this, the volume of the whole polyhedra can be
computed via the following algorithm

Algorithm 4.3. Volume Computation

Require: Mnext

Require: 1-skeleton G
Ensure: Volume vol of the polyhedra.
function BREPWalk(G, Mnext, vol)

vol← 0
visited edges[G.num vertices][G.num vertices]
for v ∈ G.vertices do

for n = 1 : G.num neighbors[v] do
if not visited edges[v][G.neighbors[v][n]]

then

prev ← v
curr ← G.neighbors[v][n]
next←Mnext(prev, curr)
visited edges[prev][curr]← true
while next ̸= v do

vol← vol + volT (v, curr, next)
prev ← curr
curr ← next
next←Mnext(prev, curr)
visited edges[prev][curr]← true

end while

visited edges[curr][next]← true
end if

end for

end for

end function

5 Benchmarks

For our benchmarks we test against a set of polyhedra
listed below. For each of these, we run 107 trials. For
each trial we initialize the internal data structure from
a BREP representation, clip with a random plane, then
compute the volume. The runtimes listed below are the
CPU time in seconds provided by HPCToolkit. The last
column is the R3D runtime divided by the J3D runtime.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



polyhedra J3D R3D R3D/J3D

tetrahedra 3.16 3.66 1.15
triangular prism 4.46 4.62 1.03

cube 5.63 6.43 1.14
quadrilateral pyramid 3.62 10.1 2.79
pentagonal pyramid 4.70 10.9 2.31
hexagonal pyramid 5.32 13.1 2.46

octahedron 4.95 13.3 2.68
triangulated cube 14.5 61.7 4.25

Figure 3: A visual representation of a triangulated cube
to serve as a visual aid. Note that none of its vertices
have a valence of three.

References

[1] A. Herring, C. Ferenbaugh, C. Malone, D. She-

vitz, E. Kikinzon, G. Dilts, H. Rakotoariv-

elo, J. Velechovsky, K. Lipnikov, N. Ray, and

R. Garimella, Portage: A modular data remap li-

brary for multiphysics applications on advanced archi-

tectures, Journal of Open Research Software, (2021).
[2] P. Koehl, Fast recursive computation of 3d geometric

moments from surface meshes, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 34 (2012),
pp. 2158–2163.

[3] D. Powell, r3d: Software for fast, robust geometric

operations in 3d and 2d, Los Alamos National Labora-
tory, (2015).

[4] K. Sugihara, A robust and consistent algorithm for

intersecting convex polyhedra, Computer Graphics Fo-
rum, 13 (1994), pp. 45–54.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited


	Abstract
	Introduction
	R3D's Implementation
	J3D's Implementation
	1-skeleton Initialization
	Cap
	BREP Traversal for Moment Calculation

	Benchmarks

