
Direct α-Shape on the GPU

Nathan Tihon Jonathan Lambrechts Jean-François Remacle

December 20, 2024

Fig. 2

Figure 1: The α-shape Cα(S) (in light blue) of a set of points
S (blue dots) is the union of all triangles of the Delaunay
triangulation DT(S) whose circumradius is less than α (blue
lines).

Abstract

In this note, we describe an innovative method for computing

the triangulation of the α-shape of a point set displaying

two benefits. First, it avoids the computation of the

Delaunay triangulation – hence directly computing the α-

shape. Second, it is entirely local and efficient on the GPU.

Our method is two orders of magnitude faster than CGAL’s

implementation.

1 Introduction

Let S = {s1, . . . , sn} be a set of n points of R
2 and

α be a positive real number which has the dimension
of a length. The α-shape Cα(S) of S [3] generalizes
the notion of convex hull and gives a formal definition
to the concept of shape of a given point set. In
1983, Edelsbrunner claimed this concept would find
applications in pattern recognition and cluster analysis.
Since then, α-shapes have been successfully applied to

molecular biology [6], surface reconstruction, ecology
[10] and even astronomy. Our main interest is with
the Particle Finite Element Method (PFEM)[1, 5], a
numerical method requiring the computation of the

α-shape at every time step of a finite element
simulation. The efficiency of this calculation therefore
plays a critical role in the overall performance of the
PFEM.

The current algorithms allowing one to compute α-
shapes work essentially as described in the original pa-
per [3]: compute the Delaunay triangulation DT(S) and
subsequently filter out the triangles whose circumra-
diuses are larger than α. In [7], authors have shown
that it is possible to calculate DT(S) quite efficiently.
Unfortunately, these results were followed by a dreary
conclusion: using the classical Bowyer-Watson al-

gorithm to compute the Delaunay triangulation

does not allow good parallel scaling when more
than about 10 cores were involved.

Some authors [9] have proposed to compute the Voronoi
Diagram VD(S) in parallel on a GPU. Their approach
requires to know a priori the maximum number of
neighboring points involved in the construction of the
Voronoi cells, and this number can be large. It turns out
it is possible to reformulate these ideas to obtain Cα(S)
by constructing local triangulations. To the best of
our knowledge, authors of [8] leveraged problem-specific
information to provide the only parallel implementation
of α-shapes without filtering Delaunay triangulations.

In this note, we develop a provably correct algorithm
that constructs Cα(S) directly i.e. without neither
computing DT(S) nor VD(S). Our algorithm is more
lightweight and faster than [8] thanks to theoretical
guarantees derived directly from the definition of the
α-shape.

2 A local Bowyer-Watson algorithm to

compute Cα(S)

The concept of α-shape is closely linked to the Delaunay
triangulation DT(S).

Definition 2.1. We refer to the triangle with vertices

si, sj , sk as ∆ijk. The α-complex Cα(S) of S is the set

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

of triangles of DT(S) whose circumradiuses Rijk are

smaller than α.

(2.1) Cα(S) := {∆ijk ∈ DT(S) : Rijk ≤ α}

Definition 2.1 is an intuitive way of understanding α-
shapes and leads to the algorithm described in [3].
Notice that the quantity Rijk is dependent on the
triangles, hence it cannot be evaluated a priori. This
is why classical algorithms first compute DT(S). As
mentioned in section 1, computing DT(S) classically
does not yield good scaling. To address this problem,
we propose a method that is completely local.
Let us first introduce the definition of local α-Delaunay :

Definition 2.2. A triangle ∆ijk is said to be locally

Delaunay if its circumcircle is empty i.e. it does not

contain points of S. Additionally, we say that a triangle

is locally α-Delaunay if it is locally Delaunay and if

Rijk ≤ α.

Intuitively, our algorithm computes a local triangulation
Ti around each point si ∈ S. Each triangulation is made
of all locally α-Delaunay triangles ∆ijk having si as a
vertex. A graphical representation is seen in black lines
on fig. 2 around point s.

(2.2) Ti := {∆ijk ∈ DT(S) : Rijk ≤ α} ⊆ Cα(S)

In this way, Ti represent the subset of ∆ijk ∈ Cα(S)
which have si as vertex. Hence, taking the union of all
local triangulations leads to the α-shape!

Let us now give some results to ensure the correctness
of those local triangulations.

Proposition 2.1. Suppose emax is the longest edge in

Cα(S), we have :

(2.3) emax ≤ 2α

Proof. Let Rmax be the largest circumradius of the
triangles in Cα(S). By definition of eq. (2.1) we have
Rmax ≤ α. Coupling this with the triangular inequality,
we find :

(2.4) emax ≤ Rmax +Rmax ≤ 2α

See fig. 3a for a graphical representation.

Definition 2.3. We say two points si, sj ∈ S are

neighbors if they share an edge of Cα(S). Following

proposition 2.1 we define Ni as the set of potential

neighbors of si in Cα(S) :

(2.5) Ni := {sj : ∥sj − si∥2 ≤ 2α}

s

Figure 2: Local triangulation around point s (red dot). All
circles have radius α. In the α-shape, s can only be connected
to points that are at a maximum distance 2α (gray and black
points). This condition is equivalent to a collision problem:
find all gray circles that intersect the red circle. Black dots
are neighbors kept in the final local α-shape whereas gray
dots are cut-off neighbors. The dashed orange triangle is an
example of invalid triangle with only valid neighbors.

Using proposition 2.1 and eq. (2.5), we can guarantee
that given a point si, any triangle ∆ijk constructed with
a neighbor sj ∈ Ni and a non-neighbor sk /∈ Ni is not
locally α-Delaunay.

(2.6) sj ∈ Ni, sk /∈ Ni =⇒ Rijk > α

Indeed, the edge between si and sk is longer than 2α,
resulting in a circumradius Rijk > α. Notice that

the converse is not true: it is possible to construct
a triangle ∆ijk with Rijk > α using only neighbors
sj , sk ∈ Ni as shown in fig. 3b and in dashed orange
in fig. 2. In consequences, we still have to ensure that
the circumradiuses of the generated triangles respect the
α-shape condition.

Furthermore, it is impossible for a point sk /∈ Ni

to violate the local Delaunay property of locally α-
Delaunay triangles. In other words, sk /∈ Ni cannot
induce edge flips in Ti. Indeed, the farthest point sk of si
inside the circumcircle of a locally α-Delaunay triangle
∆ijk is located at a distance 2α of si. Therefore any
point farther than 2α cannot be inside the circumcircle
of a locally α-Delaunay triangle. This property is
illustrated in fig. 3c.

Using these two results, we can guarantee that locally α-
Delaunay triangles ∆ijk ∈ Ti (i) only use vertices of the
set Ni and (ii) cannot be invalidated by points outside
of Ni. Therefore, the local triangulation Ti around si
can be constructed by using the points in Ni.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

emax

Rmax Rmax

R
m
a
x

(a) Relating α to emax.

si

sj

sk
2α

2α

√
2α

(b) Illegal triangle (Rijk ≥ α)
generated by accepted neighbors
(blue dot)

si

sj

sl

skα2α

Area for which sk violates locally
Delaunay property of ∆ijl

Area for which sk could violate
locally Delaunay property
for another admitted triangle

If ∆ijl has a vertex
outside the orange area,
it violates the α-shape condition

(c) Points outside of the disk of radius 2α centered on si
cannot violate the locally Delaunay property of triangles in
the local triangulation.

Figure 3: Graphical representation of properties detailed in
section 2.

3 Algorithm

Practically, there are 3 steps to our algorithm. The first
is to compute the neighbors Ni for each point si, after
which we compute the locally Delaunay triangles ∆ijk.
Finally, there remains to suppress the triangles violating
the α-shape condition. In the end, only the locally
α-Delaunay triangles containing si as vertex remain,
forming the local triangulation Ti.

3.1 Neighbor Detection. In this step, we are in-
terested by efficiently computing Ni. To do this, we
reformulate eq. (2.5) as a collision problem.

(3.7) Ni = {sj : Bα(sj) ∩Bα(si) ̸= ∅}

In other words, instead of searching for all points at
a maximum distance 2α from s (eq. (2.5)), we search
disks of radius α centered around each point (Bα(sj))
intersecting Bα(si). Figure 2 displays all collisions for
a given point si as gray circles.

The formalism of eq. (3.7) has two advantages over the
one of eq. (2.5). First, it can be solved efficiently on
the GPU by using a Linear Bounding Volume Hierar-

chy (LBVH) [4]. Secondly, it guarantees the symmetry

of the neighboring relation1 even for non-constant α,
which is not the case of eq. (2.5). We will exploit this
in our next research to handle space-varying α, particu-
larly useful for the Particle Finite Element Method [5].

3.2 Local Triangulations. The algorithm proposed
in [9] allows to compute every cell of the Voronoi Dia-
gram in parallel on the GPU. For a detailed explanation
we encourage the reader to look at sections 3.1-3.3 of [9].
The idea is to initialize each cell with the Axis-Aligned
Bounding-Box (AABB) of S and iteratively clip it by
adding the bisector line of the segments linking point si
and its neighbors Ni. By reformulating some key

steps of this algorithm, we are able to compute

our local triangulations entirely in parallel.

We adapt their algorithm as follows. First, [9] use a
sorted K-Nearest Neighbor (K-NN) structure to com-
pute Ni. As highlighted by the authors, the choice of
the parameter K has an impact on both runtime and
correctness of the algorithm. In our case we replace the
K-NN by a LBVH. Practically this is equivalent to an
automatic per-point fine-tuning of the number of neigh-
bors K required for the α-shape. Secondly, the pred-
icate employed in the original algorithm to decide if a
line participates in the construction of the Voronoi cell
is given by definition 3.1 and illustrated in fig. 4.

Definition 3.1. Considering the cell of point d and

given 2 bisecting lines d1, d2 corresponding to neighbors

e, f , does their intersection lie above, on or below the

bisecting line d3 corresponding to a new neighbor g ?

The predicate given in definition 3.1 is equivalent to the
classic incircle. Figure 4 gives a graphical intuition
of the equivalence of the two problems, an interactive
plot as well as the proof of equivalence can be found
in the supplementary materials. Using this equivalence,
we can reformulate the original algorithm to decide if a
point participates in the local triangulation.

First, we add 3 points to the set S that we call
”infinity points” and initialize each triangulation Ti by
a triangulation of the 3 infinity points and si. This
step is represented in top-left on fig. 5. The major
part of the algorithm is then to perform the following
iterations: for each neighbor sj of point si (i) identify
the circumcircles containing sj (the cavity in Bowyer-
Watson terms). (ii) Identify the boundary of this cavity.
(iii) Re-triangulate the boundary. Once the iterations
are done, we suppress the triangles violating the α-
shape condition. The result is Ti, the set of locally α-
Delaunay triangles with vertex si. Figure 5 shows the

1i.e. if i is neighbor to j then j is neighbor to i

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

d

e

f

g

v

d1
d2

d3

d

e

f

g

v

d1
d2

d3

Figure 4: Intersection-orient and incircle problem equiva-
lence. (Left) point g is in the circle therefore v is above d3.
(Right) point g is out of the circle therefore v is below d3

initialization and an iteration of the algorithm applied
on the neighbors of s taken from fig. 2. Whereas fig. 6
shows the suppression phase. The rest of the iterations
can be found in the supplementary materials. Although
performing a check of the α-shape condition at the end
causes some additional work, it actually allows us to

perform automatic boundary detection. Simply
put, an edge is on the boundary if one of the triangles
it belongs to have been removed during the last phase.
This additional feature of the algorithm makes it even
more attractive for the PFEM, but it could also be
useful for surface rectonstruction.

01
2

3
4

5

6
7

Triangle's circumcircles

01
2

3
4

5

6
7

Circumcircles containing 0

01
2

3
4

5

6
7

Cavity

01
2

3
4

5

6
7

Re-triangulation

Figure 5: Initialization of the local triangulation (top left, 3
triangles made by the infinity points and the red point) and
insertion of point 0. The point set is extracted from fig. 2

Figure 7 displays the time taken for our algorithm
to compute the α-shape of a random point set S of

01
2

3
4

5

6
7

Checking Rijk

01
2

3
4

5

6
7

Removing invalid triangles

Figure 6: Suppression of large triangles. As a bonus, we
can detect boundaries (blue lines) on the fly.

104 5 · 104 105 5 · 105 106
100

101

102

103

104

Size of point set (|S|)

T
im

e
[m

s]

Ours (GPU) Ours (CPU) CGAL

Figure 7: Time to compute the α-shape of a set of uni-
formly distributed points in [0, 1]2, supposed to be in general
position. This constitutes : array initialization, LBVH con-
struction and traversal, computing Ti. Note the logarithmic
axis.

increasing size. The testcases are run on a laptop
equipped with an RTX4060 and an Intel Ultra 7 155H,
all values are averaged over 10 runs. We compare the
runtime of our algorithm, both in GPU () and CPU
() against the implementation of α-shape provided
by CGAL [2](). We observe in this figure that our

GPU version is two orders of magnitude faster

than CGAL for large point sets. The code will be
published once it has reached a more mature state, but
can nonetheless be sent upon request to the authors.

Acknowledgements

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon research and innovation program (Grant agree-
ment No. 101 071 255).

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

References

[1] M. Cremonesi, A. Franci, S. Idelsohn, and

E. Oñate, A state of the art review of the particle finite
element method (pfem), Archives of Computational
Methods in Engineering, 27 (2020), p. 1709–1735.

[2] T. K. F. Da, 2D alpha shapes, in CGAL User and
Reference Manual, CGAL Editorial Board, 6.0.1 ed.,
2024.

[3] H. Edelsbrunner, D. Kirkpatrick, and R. Sei-

del, On the shape of a set of points in the plane,
IEEE Transactions on Information Theory, 29 (1983),
p. 551–559.

[4] T. Karras, Maximizing parallelism in the construc-
tion of bvhs, octrees, and k-d trees, in Proceed-
ings of the Fourth ACM SIGGRAPH / Eurograph-
ics conference on High-Performance Graphics, EGGH-
HPG’12, Goslar, DEU, 2012, Eurographics Associa-
tion, p. 33–37.

[5] T. Leyssens, M. Henry, J. Lambrechts, and J.-

F. Remacle, A delaunay refinement algorithm for the
particle finite element method applied to free surface
flows, International Journal for Numerical Methods in
Engineering, (2024), p. e7554.

[6] J. Liang, H. Edelsbrunner, P. Fu, P. V. Sud-

hakar, and S. Subramaniam, Analytical shape com-
putation of macromolecules: I. molecular area and vol-
ume through alpha shape, Proteins: Structure, Func-
tion, and Bioinformatics, 33 (1998), p. 1–17.

[7] C. Marot, J. Pellerin, and J.-F. Remacle, One
machine, one minute, three billion tetrahedra, (2018).
arXiv:1805.08831.

[8] T. B. Masood, T. Ray, and V. Natarajan, Parallel
computation of alpha complex for biomolecules, (2020).
arXiv:1908.05944.

[9] N. Ray, D. Sokolov, S. Lefebvre, and B. Lévy,
Meshless voronoi on the gpu, ACM Trans. Graph., 37
(2018), pp. 265:1–265:12.

[10] J. Vauhkonen, T. Tokola, P. Packalén, and

M. Maltamo, Identification of scandinavian commer-
cial species of individual trees from airborne laser scan-
ning data using alpha shape metrics, Forest Science, 55
(2009), p. 37–47.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

	Introduction
	A local Bowyer-Watson algorithm to compute C(S)
	Algorithm
	Neighbor Detection.
	Local Triangulations.

