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Abstract

Higher-order surface and volume meshes are essential for

better approximating PDEs. While a large body of lit-

erature focuses on PDE solvers for higher-order methods,

there is still a need for robust grid generators that can

produce higher-order surface/volume meshes. We propose

practical workflows that provide fully automatic processes

for higher-order mesh generation. We utilize the MLS algo-

rithm, demonstrating its robustness in higher-order surface

reconstruction. We also show its effectiveness in generating

higher-order meshes in geometries with non-uniform trian-

gulation, aided by intermediate support structures. Build-

ing on recent advancements in surface multigrid methods,

we propose the simplest coarse higher-order mesh genera-

tion approach to date. We illustrate the proposed workflows

with examples to showcase their utility and effectiveness.

1 Introduction and Related Works

Discrete surface meshes, particularly triangular meshes,
are widely used as CAD representations and play a cru-
cial role in industrial applications. These meshes are
typically generated by discretizing NURBS geometries
in Computer-Aided Engineering (CAE). Once created,
these linear meshes can be converted into volumetric
meshes for use in numerical methods such as Finite El-
ement and Finite Volume methods. While higher-order
numerical solvers have seen notable advancements, the
development of higher-order mesh generation techniques
has not progressed at the same pace.

Over the past two decades, higher-order CFD meth-
ods have gained considerable popularity, as highlighted
by [9]. This paper focuses on techniques that use only
surface meshes, without requiring access to CAD data.
In many cases, CAD data may be unavailable, propri-
etary, or impractical to use, especially when dealing
with 3D scans or reverse engineering tasks. Essential
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geometric information, such as feature curves and cur-
vatures, can be derived directly from surface meshes
[6]. This work focuses on such techniques and excludes
methods that do not cater to engineering simulations,
as covered in [5].

One of the most comprehensive workflows for gen-
erating higher-order meshes was introduced by [7], with
their WALF (Weighted Average of Local Fittings) tech-
nique. It involves surface reconstruction and local poly-
nomial fitting, combined with a weighted average ap-
proach for global fitting. This method was later refined
by [4], who released a practical tool called meshCurve,
one of the few free tools available for higher-order mesh
generation. WALF was further extended into H-WALF,
incorporating Hermite interpolation for improved mesh
quality. Our work builds on this foundation.

Similar research includes the work by [3], who used
B-Splines for curved mesh generation, and [11], who
employed subparametric transformations to produce
higher-order meshes compatible with third-party mesh
generators. These techniques have been successfully
applied in aerodynamic simulations. Recently, the
graphics community has also shown interest in analysis-
suitable higher-order meshes. For instance, [10] used
Isogeometric basis functions to generate higher-order
meshes, applying them in their Poly Spline FEA solver.

Additionally, [5] introduced a method for generating
coarse higher-order meshes from dense linear meshes,
maintaining a bijective projection from the original sur-
face. Our approach provides a simpler and more prac-
tical alternative for coarse higher-order mesh genera-
tion. Another recent work by [1] focuses on higher-order
multi-block meshes specifically for tubular structures.

2 Series of Local Fittings

In this study, we suggest the potential for generaliz-
ing methodologies akin to Weighted Average of Local
Fittings (WALF) [4] to a broader spectrum of local sur-
face fitting techniques. We introduce a workflow that
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employs the Moving Least Squares (MLS) method for
generating higher-order meshes. Although the authors
of the WALF method have outlined specific drawbacks
of the MLS approach in comparison to WALF, we argue
that these limitations can be effectively addressed and
integrated within the MLS framework. This is partic-
ularly feasible given the diverse array of MLS variants
that exist (as discussed in [2]), many of which have not
been thoroughly investigated for higher-order mesh gen-
eration. We utilize the simplest MLS techniques along
with point cloud support to perform higher-order sur-
face reconstruction and extend this to produce coarse
higher-order meshes in a more general way. We rely on
the surface multigrid method proposed by [8] for coarse
meshes, where they show a provable way to achieve a
bijective mapping between coarse and fine meshes. This
allows us to extend the proposed MLS-based surface fit-
ting approach to produce coarse higher-order meshes.

3 Higher-Order Mesh Generation Using the
SOLF Method

Higher-order mesh generation using the Series of Local
Fittings (SOLF) method involves the workflow outlined
below. Each step of the algorithm is explained in the
subsequent subsections.

Algorithm 3.1. Higher Order Mesh Generation
Workflow

Require: Input surface mesh
1: Calculate a feature distance field
2: Analyze surface density for uniformity
3: Build an intermediate support structure (random

point sampling)
4: if mesh density is globally uniform then
5: Proceed with mesh stencils alone
6: else
7: Include points from intermediate support struc-

tures (for local fittings)
8: end if
9: Estimate local fittings using dynamic stencils (based

on the feature distance field)
10: Determine initial positions for higher-order points
11: Apply a weighted Moving Least Squares (MLS)

method to refine the higher-order point positions

This technique is similar to the surface reconstruc-
tion approach described in [4], but it incorporates inter-
mediate support structures and feature distance fields.
Using feature distance fields, instead of heuristic-based
stencil selection, eliminates the need for special handling
of specific geometries.

3.1 Feature Distance Field In existing literature,
complex heuristic-based techniques [6] were used. We

found that it is sufficient to estimate a distance field
from feature curves onto the mesh and use it to select
stencils. The presence of points from the intermediate
support structure ensures that there are always enough
points for building the local surface.

Figure 1: Feature distance fields for selected geometries.
We use a viridis color map here. Purple indicates a
distance field of zero.

3.2 Uniformity Check (or Remeshing) This
check is straightforward and involves a two-step pro-
cess. First, we evaluate the edge lengths in the mesh,
followed by the surface areas of individual triangles.

(3.1) elen =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
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Having a reasonably uniform mesh is advisable, as
it significantly aids in the generation of coarse higher-
order meshes. One may opt to use a surface remeshing
tool or proceed with the intermediate support structure
outlined in the subsequent sections.

3.3 Intermediate Support Structures This is one
of the key differentiators between existing techniques
and ours. Rather than relying solely on vertices from
the input mesh, we build an intermediate support
structure. If required, we can combine points from
the intermediate support structure for local polynomial
fitting. In our experiments, we found that even random
point sampling [12] works well enough. This, combined
with feature distance fields, allows us to dynamically
handle non-uniform meshes.

3.4 Reconstruction with MLS Given a point xi

and its neighboring points chosen from the stencil or a
combination of the stencil along with points from the
support structure, the MLS local approximation at a
given point xi is achieved by fitting a polynomial P (x;β)
to the values yj at neighboring points xj .

This is formalized as minimizing the weighted sum
of squared differences:

min
β

n
∑

j=1

w(xi, xj)(yj − P (xj ;β))
2(3.3a)

w(xi, xj) = exp

(

−
∥xi − xj∥

2

2σ2

)

(3.3b)

Here, w(xi, xj) is the weight function that decreases
with the Euclidean distance between xi and xj , empha-
sizing closer points more significantly in the fit, and σ is
a scale parameter. This weighting scheme ensures that
the fitting function P smoothly adapts to local varia-
tions in the mesh.

One of the key drawbacks stated in theWALF paper
is that MLS relies on Euclidean measures, while theirs
relies on stencils. However, MLS can use any measure to
find neighbors. Indeed, we use this combination of sten-
cil along with Euclidean measures (and an additional
filtering mechanism that discards points from triangles
not in the same local planar neighborhood). This turns
a traditional MLS-based workflow into a useful surface
fitting approach.

3.5 Reconstruction with MLS Algorithm The
MLS-based surface reconstruction method, integrated
with local stencil-based fittings and intermediate sup-
port structures, is outlined below. This method ad-
dresses the limitations of traditional MLS workflows by
leveraging both stencils and Euclidean distance mea-
sures to find neighbors, ensuring effective handling of
non-uniform meshes.

Algorithm 3.2. Reconstruction with
MLS

Require: Input surface mesh, feature distance field,
intermediate support structure (optional), LGL
points

1: for each mesh node xi do
2: Identify neighboring points for xi using a combi-

nation of stencil and Euclidean measure
3: Construct a local polynomial fitting P (xj ;β) us-

ing neighboring points xj

4: Minimize the weighted least squares error:

(3.4) min
β

n
∑

j=1

w(xi, xj)(yj − P (xj ;β))
2

5: Compute the weight function w(xi, xj) =

exp
(

−
∥xi−xj∥

2

2σ2

)

, where σ is a scale parameter

6: Update higher-order point positions using the
local polynomial fit P (xi)

7: end for
8: Return the reconstructed surface with higher-order

points

Once the local fits are established, the new posi-
tions for the higher-order nodes can be estimated by
weighting these fits within their local neighborhood. We
generate the higher-order points using Lebesgue-Gauss-
Lobatto points, as outlined in [4]. Alternatively, any
generic technique for generating higher-order points can
be used, depending on the application. Various strate-
gies are discussed in the numerical experiments section.

4 Coarse Mesh Generation

For coarse meshes, we rely on the multigrid surface gen-
eration method proposed by [8]. Originally developed
for solving surface PDEs efficiently, it also provides a
way to decimate a dense mesh and create a bijective
map between points in the coarse and dense meshes.
By combining intermediate support structures with the
coarse-to-fine mapping provided by the multigrid sur-
face technique, we can generate a coarse higher-order
mesh without using complex variational methods.
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4.1 Coarse Mesh Generation Using the Multi-
grid Framework

Algorithm 4.1. Require: A dense linear surface
mesh

Ensure: Positions of higher-order points on a coarse
SOLF surface

1: Decimate the mesh.
2: Generate a coarse-to-fine mesh mapping using the

multigrid framework.
3: for each point in the coarse mesh do
4: Estimate a SOLF surface for the point, using the

corresponding mapped points on the dense mesh
to preserve detail.

5: Find nearby points from the intermediate support
structure and use them to generate the local MLS
surface as discussed earlier.

6: end for
7: Estimate the positions of the higher-order points

based on the coarse SOLF surface using the MLS
reconstruction algorithm.

The preservation of feature curves in mechanical
parts depends on the decimation strategy and the num-
ber of decimation cycles. While the coarse-to-fine map-
ping allows us to retrieve points from the input mesh,
control over the level of decimation is necessary. There-
fore, we recommend using these techniques primarily on
smooth surfaces. However, as demonstrated in the nu-
merical experiments, with careful parameter selection,
it is possible to produce coarse higher-order meshes that
are suitable for analysis.

5 Numerical Experiments

This section presents various numerical experiments to
demonstrate the algorithms outlined in previous sec-
tions. The code for the entire paper was implemented
using a combination of C++ and Python, and bench-
marks were conducted on a laptop with an 8-core Intel
i5-8350U CPU and 64 GB of RAM. For dense meshes,
the workflow described in the first algorithm was ap-
plied directly. We demonstrate the reconstruction algo-
rithm on a selection of geometries from the Thingi10k
[13] dataset. All experiments were reconstructed with
P = 4.

As outlined in Section 4.1, we use the surface multi-
grid technique. Here, we show the points of the sphere
geometry, decimated and mapped onto the original
mesh. These points were obtained using the coarse-
to-fine mapping provided by the surface multigrid tech-
nique.

Figure 2: Dense higher-order meshes (all meshes are
generated with P = 4) with an L2-norm deviation
within 3% of the original mesh.

Figure 3: Coarse points mapped onto the dense mesh.

6 Conclusion

We have developed and demonstrated practical work-
flows for generating higher-order meshes. Our exam-
ples highlight the practicality and efficiency of these
methods. We emphasize the usefulness of feature dis-
tance fields in estimating a local neighborhood that
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Figure 4: Coarse higher-order mesh of a cylinder visualized with refined elements to showcase the smoothness
and reconstruction of the mesh.

preserves the features of the input surface. Addition-
ally, we demonstrate how combining surface multigrid
techniques with sensible decimation strategies can effec-
tively produce coarse, higher-order meshes.

It is essential to start with the best possible level
of detail, allowing the grid generator to handle the
coarsening process while preserving critical information.
However, we have not generalized our algorithms to
work for every possible geometry; they require fine-
tuning for each new case. Nevertheless, this workflow
can be further improved to become more robust for real-
world applications.
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