MAINTAINING 2D DELAUNAY TRIANGULATIONS ON
THE GPU FOR PROXIMITY QUERIES OF MOVING
POINTS

Heinich Porro! Benoit Crespin?

Nancy Hitschfeld?

Cristébal Navarro®

Francisco Carter?

LXLIM UMR CNRS 7252, University of Limoges, Limoges, France.
heinich.porro@unilim.fr, benoit.crespin@unilim.fr
2Department of Computer Science (DCC), Universidad de Chile, Santiago, Chile.
nancy@dcc.cl, francisco.carter@ug.uchile.cl
3 Instituto de Informatica, Universidad Austral de Chile, Chile.
cristobal.navarro@uach.cl

ABSTRACT

In this paper we explore the problem of maintaining the Delaunay triangulation of moving 2D points on the GPU
with discrete time steps, using only local transformations. We show that our Delaunay triangulation structure is
efficient at answering proximity queries, such as closest neighbor or fixed-radius nearest neighbors problems. We also
characterize the difficulties of updating the triangulation, and also the cases where it is possible to do it only through

local operations.

Keywords: Delaunay triangulation, Parallel mesh data structure, Dynamic mesh modifications, Mesh

untangling

1. INTRODUCTION

Delaunay Triangulations (or DT) are useful in numer-
ous applications related to meshing as they are com-
posed of good quality triangles that maximize their
minimum angle, preventing the existence of very thin
ones and favoring precision when doing numerical com-
putation. For example, terrain generation techniques
are frequently based on DT to obtain surface meshes
from 2D elevation points or from noise functions. They
are also used to construct meshes for finite element
methods because of the guarantee on the angles and
the speed of the algorithms. DT can also be found in
finite volume methods to generate meshes on complex
geometries, especially in fluid mechanics or deformable
objects simulations. Algorithms for constructing DT
rely on efficient data structures to store triangles and
vertices. The neighbourhood relations stored in such

structures can then be used to implement FEM simu-
lations or proximity queries in particle based simula-
tions.

In this work we study how efficient is a DT as a data
structure for answering parallel proximity queries effi-
ciently. More in detail, we are interested in the par-
allel GPU computation of the DT for sets of points
whose position evolves over time. In this case it is
generally more efficient to try to fix the inconsisten-
cies of the mesh dynamically during the simulation
rather than reconstruct the triangulation entirely at
each time step, especially for very large sets of points.
The problem to be solved in this case is that of mesh
untangling, since the displacement of the points over
time generally induces situations in which the mesh
presents self-intersections and no longer satisfies the
Delaunay condition.

Below we present a quick summary of the various ap-
proaches for dynamically managing DT on the GPU
is presented, along with more details on specific GPU
data structures. The structure we have created and
the fundamental procedures required to maintain the
DT are covered next, followed by a discussion on prox-
imity queries.

2. PREVIOUS WORKS

Computing Delaunay triangulations in parallel
There is a vast amount of work in different algo-
rithms to build DT in parallel. Divide-and-conquer
approaches [1, 2] separate the work in different threads
and then merge these partial solutions in a final step.
This has been done in a variety of parallel models:
many-cores, GPU, multi-GPU, etc. In flip-based ap-
proaches, an initial mesh is built without explicitly
satisfying Delaunay conditions, before the topology is
modified through local transformations implemented
on the GPU to get the final DT [3, 4].

The method designed by Navarro et al. [4] stores the
mesh in neither counter clock-wise (CCW) order nor
clock-wise (CW) order. It checks in parallel, for ev-
ery edge, if it fulfils the Delaunay condition. If the
edge doesn’t fulfil the Delaunay condition, it may be
flipped if the thread gets the ownership of both trian-
gles that share it. Finally, they perform a final step to
fix inconsistencies in the data structure. These three
steps are repeated in sequence until the triangulation
is legalized. Also, the data structure used in this work
doesn’t allow building the graph related to the tri-
angulation efficiently, as it stores only the necessary
information to check the Delaunay condition, and flip
the edges. Another approach is the GPU computation
of a discrete Voronoi diagram [5], which can in turn
be converted into a valid DT.

Maintaining triangulations without rebuilding
Filtering methods to maintain triangulations have
been studied and experimentally tested [6, 7]. These
methods rely on two phases : filtering, then displacing
the vertices. Filtering consists in defining a safe re-
gion around each vertex, computed through geometric
tests on its neighborhood. If a point ends up inside the
region after the perturbation, then no further action
is required. Otherwise, the point is removed from the
triangulation and reinserted afterwards. Even though
these methods are efficient, their parallelization im-
poses additional difficulties related to the order of dis-
placement of the points and the computation of the
safe regions.

Untangling triangulations instead of deleting
and reinserting

Carter et al. [8] built an algorithm that maintains a
triangulation under small movements in the GPU in

order to speedup NNS in a colloids simulation. After
each time-step of the simulation, they fix the triangu-
lation whenever the points go through one edge (so the
triangle gets invalid). Afterwards they utilize Navarro
et al. [4] approach to legalize the triangulation. This
algorithm doesn’t handle movements further than one
edge crossing, and uses the same data structure as
Navarro et al. [4]. Shewchuk [9] describes an algo-
rithm that updates a triangulation by taking decisions
through only local geometric tests, even when trian-
gles get inverted after vertex displacements. In order
to do that, it performs flips, vertex insertion, vertex
deletion and vertex displacement. Another approach
to fix the triangulation after displacement is the one
described by Agarwal et al. [10], which defines and
identifies regions in the triangulation composed of in-
verted triangles. A re-triangulation is applied after
fixing those cases.

Mesh representations on the GPU

Matrix based representations of static meshes [11, 12]
have been tailored to efficiently retrieve information
about the neighborhood of the elements in the mesh
on the GPU. These representations do not allow ef-
ficient modifications of the elements, and Mahmoud
et al. [11] also show that an implicit half edge repre-
sentations on the GPU is more efficient for the same
purposes.

Proximity queries

Many GPU implementations of proximity queries are
already available in existing software. The most used
techniques rely on cell sorting [13, 14]. This tech-
niques sort the particles according to where they are
on a regular grid, and then use adjacent cells to ex-
plore neighborhood. Such a method is used for exam-
ple in [14] for molecular surface generation, as well as
in particle-based fluid simulations in computer graph-
ics [14]. Other important method to solve proximity
queries is based on hardware ray-tracing acceleration
[15], which reports a significant performance over grid-
based methods.

3. OUR METHOD

3.1 Data structure and basic operations

We use an indexed half edge data structure to conduct
flip operations while also verifying the local geometri-
cal requirements of each edge. Our data structure is
very similar to the ”parallel directed edges” described
in [11]. The most important difference is that we store
the index of the vertex opposed to each half edge to
efficiently check the geometric conditions of the edge.

Listing 1: Data structure memory layout

struct half_edge {
/* Indices to the vertex position buffer */

int v; // Vertex at the beginning of the half-edge

int op; // Vertex oposite to the half-edge
[okskokskok kst okskoksk ok ok ks sk ok sk ok sk ok sk ko sk ok sk ok sk ok sk ks sk sk sk ok ok /

int t; // Triangle index that contains this half-edge
int next; // Index to the next half-edge in this triangle

B

struct triangulation {
double v[numVertices*2]; // Vertex positions

int v_to_e[numVertices]; // Vertex to edges
uint t_to_he[numTriangles]; // Triangles to half_edges
indices

half_edge he[numEdges*2]; // Half-edges

5

Along with the vertices coordinates, the triangulation
is stored as three data arrays as seen in Listing 1. This
representation is practical primarily because it enables
retrieval of the two triangles for each fully indexed edge
with only one random access to global memory per
edge, and of the geometrical information of the points
in these triangles in only four more random reads to
global memory (in order to check the geometry of the
triangles that share that edge). It also makes the 1-
to-1 mapping from threads to edges easy, as we have
to assign only 1 thread per every 2 half-edges.

The flipping operation using this data structure
takes only 5 reads and 5 writes to global memory (all
the edges of the two triangles we are flipping), and 2
global atomic operations. Opposed to the data struc-
ture used by Navarro et al. [4] and Carter et al. [§],
with this data layout we don’t need to repair any in-
consistent data after performing the flips.

3.2 Updating the triangulation

Starting with a fixed set of particles S, we assume
this set undergoes a series of displacements d; with
i € {0,n} and n the number of timesteps in the sim-
ulation; particles positions at timestep 4 are noted S;.
We start the simulation with a triangulation 7o built
offline from the initial set Sp, and modify it to meet
the Delaunay condition on the GPU as in [4]. The goal
now is to keep the triangulation Delaunay for each
timestep ¢ € {1,n} from the previous triangulation
Ti—1 and displacements d;_1.

In our approach the problem is divided in two steps:
first, we check if T;4+1 is still a valid triangulation for
the positions S;11. If it’s not, we fix it only with local
geometric tests and flips, just like [8]. In the second
step, we flip as many edges as necessary in order to en-
sure the Delaunay condition of the edges, just as in [4].
We call the first part of the process fixing (described
in the next section), and the second legalizing.

In the case where it is not possible to fix the trian-
gulation after displacements d;, we simply divide the
displacements in smaller (and fixable) steps. An ex-
ample of the whole process is depicted in Fig. 1.

(a) Initial positions and (b) Points displaced im-

triangulation plying inverted triangles
I N I~ o
[N N . /’ \\\
gL::fi-——--"___”___"--——-__:E% jaé%:;——-"____ e =
(c) Fixed valid triangula- (d) Legalized triangula-
tion tion

Figure 1: Fixing and legalizing a triangulation

3.3 Fixing the triangulation

In the following we take some definitions from
Shewchuk [9], slightly adapted to simplify the expo-
sition of the ideas in this research note.

Assuming that T; is a CCW oriented mesh, once we
move the points to S;+1 and keep the connectivity of
T;, some triangles become CW oriented and can be
called inverted triangles. Let’s note first that an
inverted triangle could be part of a larger group of
inverted triangles that all share common edges, also
called inverted triangle zone in [10]. This zones are
delimited by edges shared between an inverted triangle
and a non-inverted triangle. We will call those edges
creased edges, and the ones shared by two inverted
triangles will be called inverted edges. Finally, if an
edge is shared by two non-inverted triangles we call it
an upright edge.

It is easy to see that if there are no inverted triangles
nor creased edges after the displacement, no other ac-
tion is required in this step because the triangulation
is still valid and will be legalized afterwards.

As stated in [8], if there are points going through only
one edge, we can fix the triangulation by simply flip-
ping the crossed edge. We can also fix an inverted
triangle whenever it has a creased edge and the vertex
?coming” from that edge is inside the triangle. We
implement this check by testing if another edge has
both of its opposite vertices in opposite sides of the
plane defined by the current edge. An example of this
process is shown on Figs 1b and lc.

The real problems arise if a point goes through two
or more edges, i.e. if a creased edge is shared by an
inverted triangle which is not contained by an non-
inverted one or the opposite. This is illustrated in Fig.
2: In this case flipping one of the creased edges -the
three edges of the inverted triangle- does not guarantee

Table 1: Performance results for RTX 3090 and RTX A3000 GPUs for a diffusion limited aggregation simulation,
comparing our Delaunay approach with a grid-based structure [14]. Timings are averaged over 1K timesteps.

Particles Scale GPU Delaunay Grid
Mesh update NN Total (ms) | Construction NN Total (ms)
RTX 3090 0.65 0.06 0.71 0.56 0.01 0.57
100K 10K RTX A3000 0.67 0.06 0.73 0.64 0.01 0.65
1M 10K RTX 3090 1.71 0.13 1.84 0.69 0.04 0.73
RTX A3000 3.59 0.26 3.85 1.03 0.02 1.05

b) Point displaced, a tri-

o

(a) Initial position, initial
triangulation angle got inverted

Figure 2: A point going through two edges. None of
the creased edges is shared by a triangle that contains
the other.

that the triangulation gets fixed.

We characterize this as the difficult case of fixing the
tangled triangulation, as it is still an open question
whether or not we can solve this in a local and effi-
cient way using only flips. It is important to note that
Shewchuk [9] handles this case by adding, removing
and/or displacing vertices to untangle the triangula-
tion and fix the topological information before going
back to the original geometrical positions stored in S;.

4. RESULTS AND DISCUSSION

From our data structure storing a Delaunay trian-
gulation, it is easy to compute the associated graph
traversing the neighborhood of each vertex, thus al-
lowing to compute the nearest neighbor (NN) of any
vertex since they are both connected by an edge of the
graph.

Table 1 shows how well our algorithm implemented
with CUDA performs in a simple Diffusion-Limited
Aggregation simulation [16], by comparing against a
grid-based approach [14]. We made sure that the dis-
placements in this simulation are small enough so we
can always fix the triangulation, by keeping a displace-
ment radius 100M times smaller than the whole sim-
ulation box.

Even though our method is efficient at answering prox-
imity queries, it is not as fast as a grid-based method.
However, we store a lot of information on the connec-
tivity of points and a complete triangulation of the
points during the simulation, which we believe can
be beneficial in other applications. One of them is
to retrieve the vertices within a certain distance to

Figure 3: Depiction of the Delaunay triangulation of
the final state of diffusion limited aggregation with 1K
points.

a given vertex, also called fixed-radius near neighbors
(FRNN). For this we can apply a Breadth First Search
(BFS) algorithm in the graph, using a naive approach
where each thread on the GPU has its own queue of
non-visited vertices. In order to check whether or not
a vertex has been visited before, we search linearly in
the set of already discovered neighbors. This linear
pass is currently the bottleneck of our algorithm and
needs to be improved before we can make comparisons
with state-of-the-art methods.

5. CONCLUSION AND FUTURE WORK

The approach presented in this paper is slightly behind
state-of-the-art techniques, still we believe it is a valu-
able method to update triangulations in slow moving
scenarios, and a starting point towards a more robust
method. It would be interesting to evaluate the perfor-
mances in other simulation scenarios, because updat-
ing the mesh depends heavily on how fast the points
move. This would require to define metrics, to esti-
mate which simulations could benefit the most from
our approach.

One possible way of improvement is the fact that a se-
quence of flips that can untangle a triangulation should
always exist, as stated by Agarwal et al. [10]. It would
be interesting to find this sequence using only local ge-
ometric tests, or to prove that it is indeed impossible in

some situations. Another future work concerns the De-
launay graph, which could be enhanced to make prox-
imity queries faster. The Voronoi diagram could be
used alternatively because it has a fixed vertex degree
of 3, thus decreasing thread divergence. Finally, we
could also try to improve our naive BFS algorithm by
using a concurrent approach to solve FRNN queries.
This is an interesting ongoing research topic in the
GPU community, e.g. Liu et al. [17] address a very
similar problem, and we could use or even improve
their approach to solve the problem. In addition, we
believe our method can be naturally extended to use
constrained Delaunay triangulations to simulate par-
ticle movement a non rectangular domain.

References

[1] Chen M.B. “A Divide-and-Conquer Algorithm
of Delaunay Triangulation with GPGPU.” 2012
Fifth International Symposium on Parallel Archi-
tectures, Algorithms and Programming, pp. 175—
177. 2012

[2] Marot C., Pellerin J., Remacle J.F. “One ma-
chine, one minute, three billion tetrahedra.” In-
ternational Journal for Numerical Methods in
Engineering, vol. 117, no. 9, 967-990, 2019

[3] Cao T.T., Nanjappa A., Gao M., Tan T.S. “A
GPU accelerated algorithm for 3D Delaunay tri-
angulation.” Proceedings of the 18th meeting of
the ACM SIGGRAPH Symposium on Interactive
3D Graphics and Games, pp. 47-54. 2014

[4] Navarro C., Hitschfeld-Kahler N., Scheihing E.
“A parallel gpu-based algorithm for delaunay
edge-flips.” The 27th FEuropean Workshop on
Computational Geometry, EuroCG, vol. 11. 2011

[5] Qi M., Cao T.T., Tan T.S. “Computing 2D con-
strained Delaunay triangulation using the GPU.”
IEEFE transactions on visualization and computer
graphics, vol. 19, no. 5, 736-748, 2012

[6] Manhées de Castro P.M., Tournois J., Alliez P.,
Devillers O. “Filtering relocations on a Delau-
nay triangulation.” Computer Graphics Forum,
vol. 28, pp. 1465-1474. Wiley Online Library,
2009

[7] Zhou Y., Sun F., Wang W., Wang J., Zhang
C. “Fast Updating of Delaunay Triangulation of
Moving Points by Bi-cell Filtering.” Computer
Graphics Forum, vol. 29, pp. 2233-2242. Wiley
Online Library, 2010

[8] Carter F., Hitschfeld N., Navarro C.A., Soto R.
“GPU parallel simulation algorithm of Brownian
particles with excluded volume using Delaunay

(17]

triangulations.” Computer Physics Communica-
tions, vol. 229, 148-161, 2018

Shewchuk J.R. “Untangling Triangulations.” Un-
published paper, p. 10, 2006

Agarwal P.K., Sadri B., Yu H. “Untangling tri-
angulations through local explorations.” Proceed-
ings of the twenty-fourth annual symposium on
Computational geometry, pp. 288-297. 2008

Mahmoud A.H., Porumbescu S.D., Owens J.D.
“RXMesh: a GPU mesh data structure.” ACM
Transactions on Graphics (TOG), vol. 40, no. 4,
1-16, 2021

Yu C., Xu Y., Kuang Y., Hu Y., Liu T. “Mesh-
Taichi: A Compiler for Efficient Mesh-based Op-
erations.” vol. 41, no. 6, 18, 2022

Green S. “Particle simulation using cuda.”
NVIDIA whitepaper, vol. 6, 121-128, 2010

Hoetzlein R.C. “Fast fixed-radius nearest neigh-
bors: interactive million-particle fluids.” GPU
Technology Conference, vol. 18, p. 2. 2014

Zhu Y. “RTNN: accelerating neighbor search us-
ing hardware ray tracing.” Proceedings of the
27th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pp. 76-89.
2022

Spicher A., Fatées N.A., Simonin O. “From Re-
active Multi-Agent models to Cellular Automata
- Ilustration on a Diffusion-Limited Aggregation
model.” Springer, editor, 1st International Con-
ference on Agents and Artificial Intelligence. Por-
tugal, Jan. 2009

Liu H., Huang H.H., Hu Y. “ibfs: Concurrent
breadth-first search on gpus.” Proceedings of the
2016 International Conference on Management of
Data, pp. 403-416. 2016

