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ABSTRACT 

Mesh quality is a crucial aspect when dealing with partial differential equations (PDEs) as it affects both solution accuracy and 

respective solving time.  Optimization of 2D complex domains with non-convex boundary can be difficult to perform using classical 

gradient-based optimization methods with boundary inequality constrains as they fail to properly define the non-convex search 

space of the design variables. The proposed procedure uses an evolutionary optimization method, a genetic algorithm (GA), with 

a penalty-based cost function to obtain the optimal coordinates for inner nodes of generic non-convex polygons meshes with 

triangular elements.  
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1. INTRODUCTION 

Numerical methods such as the Finite Element Method 

(FEM) are commonly used for solving Partial Differential 

Equations (PDE9s). The capacity of a numerical PDE 

simulation to correctly represent the underlying physics is 

intrinsically linked, amongst other factors, to the domain9s 
discretization, called mesh. In fact, the accuracy, stability, 

and efficiency of the numerical methods are directly 

impacted by the quality of the elements of the mesh. Low 

quality elements can lead to slow convergence rate, 

inaccurate results, and consequent problem 

misinterpretation. Optimization of unstructured meshes is 

challenging and numerical optimization methods often 

experience problems such as slow convergence and getting 

stuck in a local minima which can be far from the optimal 

nodal positions. The objective function as well as the design 

variable vector are then function of all these coordinates. 

While it is possible to iteratively compute nodal position 

updates to this consequently large vector, it is quite 

inefficient to do so, [1]. 

The use of  gradient based methods for mesh optimization 

problems can lead to potential issues such as increased 

computational overhead for computation of second-order 

derivative information for the Hessian matrix of the 

objective function and the possibility of the Hessian matrix 

not being positive definite, [1]. Hence, derivative-based line-

search solvers cannot be directly applied to solve these mesh 

optimization problems, [2]. On the other, even if the nodal 

connectivity is known a-priori and enforced throughout the 

optimization procedure, the definition of an analytical 

expression of the overall quality as function of the nodal 

coordinates of the inner nodes quickly becomes impractical 

and complex to obtain as well as its derivatives. 

Consequently, derivative-free optimization methods become 

good candidates. Resulting from their global optimization 

property, genetic algorithms (GA)  have been widely applied 

in different relevant fields of engineering such as machine 

learning or nonlinear optimization. These methods proved to 

have an efficient and robust heuristic for optimal search in 

complex spaces solving complex optimization, [3]. 

To optimize a given mesh, one must ensure that the interior 

nodes remain within the domain9s boundary. For convex 

domains, this task can be easily performed by assigning an 

inequality constraint for each segment of the discretized 

boundary. However, this method fails to properly define 



non-convex domains. To overcome this, a penalty-based 

objective function is proposed to force the fitness landscape 

to converge its optimal value within the desired boundary.  

This research note then focuses on the development of a 

mesh optimization procedure for non-convex domains by 

mean of a GA using penalty-based objective function.  

2. PROBLEM FORMULATION 

We define a conforming triangular partition � of an arbitrary 

bounded domain �, as the union of sets of triangular 

subdomains (or elements) � = {�1, & , ��}. 
The set of nodes of � can be split into the set of boundary 

and interior nodes, Ɲ� and Ɲ�, respectively.  

2.1 Non-Convex domain definition  

To optimize a triangular partition, boundary nodes Ɲþ can 

be fixed and the interior nodes Ɲ� relocated to optimize a 

given mesh metric. For convex domains, the use of boundary 

inequality constraints can be applied to restrict the feasible 

space within the discretized boundary, as � can be defined 

as the intersection of the resultant half-spaces, [4]However, 

for non-convex domain, the use of such mathematical and 

geometrical property fails as the intersection of the half-

spaces defined by the inequalities of the domains9 boundary 
fail to correctly represent the full geometry. To unsure 

convergence into the desired domain, a penalty-based 

objective function was implemented into the optimization 

process, as explained further in section 2.4. 

2.2 Mesh Evaluation Metric 

Many mesh quality metrics can be found in the literature 

such as element skewness, Jacobian condition number, 

orthogonal quality, amongst others.  

Area is orientation, skew, and aspect ratio invariant but 

depends on the scale, [5]. Thus, this metric is not bounded 

between 0 and 1. However, by applying statistical operators, 

such as variance, to the area distribution of elements of a 

given mesh, one can obtain a metric from 0 to ∞ that presents 
better information about the mesh uniformity 

When a fixed number of nodes is considered, r-adaptivity 

allows the nodes to move within the domain to uniformly 

distribute the value of the chosen quality metric, [6]. 

However, r-adaptivity implies an unchanged nodal 

connectivity between nodes. For connectivity changing 

procedures with an unchanged number of nodes, an adapted 

h-adaptivity procedure can be performed. By varying the 

location of the nodes and, consequently, the area of mesh 

elements, a possible metric to evaluate element area 

uniformity can be defined as: 

 Ā =  �2(�) ( 1 ) 

 

In which Ā is the variance �2 of the element areas 

throughout the mesh given by the vector �. By creating 

equal area elements throughout the mesh, hence better 

uniformity, the metric Q will tend to 0.  

2.3 Objective Function 

As presented, the objective of the optimization process will 

be to minimize the element area variation Ā within the 

desired bounded partition �̅. This will be achieved through 

an optimal positioning of the interior nodes Ɲ� with nodal 

coordinates {ý, þ}. Hence, the mathematical formulation of 

the optimization problem is stated as follows: 

 minĀ Āā. (ý, þ) * �̅ 
( 2 ) 

 

Genetic algorithms, however, often require the definition of 

upper and lower bounds for the design variables. Since each 

node will be required to <explore= the entire domain, these 

bounds form a quadrilateral search space ψ that inscribes the 

domain �̅, as depicted in Figure 1. 

As a result, the original constrained formulation was 

transformed into an unconstrained problem by adding a 

geometrical penalty term. The new unconstrained 

optimization formulation can then be defined as minimizing 

the penalized function �(Ɲ�, ÿ): 
 �(Ɲ�, ÿ) = �(Ɲ�) + ÿ(Ɲ�, ÿ) ( 3 ) 

In which  �(Ɲ�) = �2(�) ( 4 ) 

 

Where � is an array containing the element areas of the 

resulting mesh. The penalty term ÿ(Ɲ�, ÿ) is defined as such: 

             ÿ(Ɲ�, ÿ) = ÿ ∙ { 1 0    , ∃{ý, þ} * Ɲ� +  �̅, ∃{ý, þ} * Ɲ� *  �̅ÿ              �ÿ−āĀ�þ�Āÿ Ă��ăþ  ( 5 ) 

 

 

The proposed penalty term includes an in-polygon query 

routine in which each point of the population is checked to 

be either in or out of the domain �̅. The full reference for the 

algorithm can be verified in [7]. If any of the query points 

presents to be laying on ��̅ or outside, the objective function 

is penalized by the factor of ÿ. The graphical representation 

of the objective function is illustrated in Figure 1. 

 

 
Figure 1.  Graphical representation of the proposed 
penalized objective function 

2.4 Optimization Approach 

For optimizing the objective function, an all-node approach 

is considered where the positions of all inner nodes are 

moved simultaneously within each generation. 

ψ 



For each population of random interior nodes, a Delaunay 

Triangulation (DT) is performed to obtain nodal 

connectivity of the triangular partition �. Due to the random 

nature of the population generation, it is not possible, with 

the proposed algorithm, to maintain the nodal connectivity 

throughout the optimization process,  leading to 

discontinuities of the fitness landscape. Considering this, the 

use of a GA shows to be more promising than a gradient 

based optimization algorithm. By using a GA, it would then 

be possible to deal with the eventuality of a non-smooth 

fitness landscape as well as explore the extremities of the 

variable search domain, in which the mesh metrics can 

present abrupt changes.  The pseudocode of the proposed 

algorithm is presented in Figure 2.  

 

START Mesh Optimization Routine  

1. Define: (by user input OR feature extraction 

from base mesh to optimize) 

a. Mesh Boundary Nodes 

b. Number of interior Nodes 

2. Define: 

a. Penalty parameter r 

b. Genetic Algorithm parameters 

3. Optimization Process → Genetic Algorithm 

4. Post-Processing and results evaluation. 

END return optimized mesh 

Figure 2.  Pseudocode of the proposed 
optimization routine 

Further detailing step (3), the GA carries out several 

operations to assess the mesh metric and return its value. 

These operations are presented in the following pseudocode. 

For further explanation on the definition of a generic GA, 

consult, [8]. 

 

START Mesh Metric Assessment  

1. Distribute ÿ points randomly over the domain-

inscribing searching space � * ℝ2 

2. For the configuration �ÿ perform a Delaunay 

Triangulation to obtain partition �(�ÿ) 
3. Calculate area  ý�  of each triangle   �� * �(�ÿ)  and variance �2(�) 
4. Perform in-polygon query 

5. Calculate fitness value based on Eq.3, Eq.4 

and Eq.5 

END return fitness value 

Figure 3.  Pseudocode for metric assessment at 
each generation 

3. NUMERICAL RESULTS 

In this section, numerical results are described to illustrate 

the applicability of the proposed method, displaying the 

optimization of test meshes and its applicability to non-

convex domains. To verify the smoothness of the fitness 

landscape for the considerd quality metric, a simple 1 free 

node mesh optimization was performed.  Figure 4 shows the 

fitness landscape contour plot as well as the evolution of the 

initial distibution of individuals until convergence of the 

considered example mesh.  

 

 
Figure 4.  Contour plot of fitness value for a 1 free 
noded. Population distribution at generation 1 and 
after convergence 

The proposed algorithm successfully converged to the global 

optimal node location leading to the mesh illustrated in 

Figure 5. 

 

 

Figure 5.  Resulting optimal mesh 

The proposed algorithm was then tested to optimize meshes 

generated previously through a commercial mesher software 

and with higher number of internal nodes. Figure 6 illustrates 

the base and optimized mesh for the considered domain. 



 

Figure 6.  (left) Initial base mesh and (right) mesh 
after optimization 

To quantitatively evaluate the effect of this adaptivity on the 

element areas, an error map is presented in Figure 7. This 

map shows the sample standard deviation of the each 

element of the mesh. 

 

 

Figure 7.  Area standard deviation of (left) Initial 
base mesh and (right) mesh after optimization 

4. CONCLUSIONS 

The aim of this study was to develop a mesh optimization 

method capable of handle simple non-convex polygons 

efficiently. A genetic algorithm was proposed to handle 

possible non-smoothness of the objective metric function. 

To deal with to impossibility to use constraint conditions to 

properly define the non-convex domain, a penalty based 

objective function with an in-polygon query was 

implemented.  

The proposed method showed to be capable of optimizing a 

given mesh considering a mesh uniformity metric. 

Numerical results clearly show an increase in the number of 

elements with low area deviation, which suggest 

improvement of the mesh considering the mesh metric 

employed.  

The implemented method can also be used either as an 

optimizer or as an optimal mesh generator.  As mesh 

generator, the algorithm only requires information about 

boundary discretization and number of desired interior 

nodes. Other evaluation metrics can easily be incorporated 

into the developed algorithm.  
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