
AN ERGONOMIC APPROACH TO TOPOLOGICAL

TRANSFORMATIONS OF UNSTRUCTURED MESHES

Daniel Shapero1

1University of Washington, Seattle, WA, USA, shapero@uw.edu

ABSTRACT

In this paper, we will describe an approach to performing local transformations to the topology of an unstructured
mesh. Our approach, borrowing some ideas from algebraic topology, represents the mesh topology using linear
operators. We can then define transformations through purely linear algebraic means. This choice of representation
makes for much easier verification of the transformation kernels.

Keywords: mesh generation, computational geometry, algebraic topology

1. INTRODUCTION

All algorithms for generating unstructured meshes are
based on applying a sequence of local transformations
to the mesh topology. For example, to compute the
Delaunay triangulation, the Lawson algorithm uses a
sequence of bistellar flips, while the Bowyer-Watson
algorithm is based on splitting star-shaped polytopes
along a vertex [1]. Implementing these transforma-
tions, however, can be difficult and error-prone.

In this paper, we will show how to implement topologi-
cal transformations on the boundary operators from al-
gebraic topology. Boundary operators are really just
integer matrices, which means we can describe trans-
formations using linear algebra. Our contribution is
a linear algebraic representation of splitting a star-
shaped collection of polytopes on a vertex, together
with a proof-of-concept application to computing con-
vex hulls. The key result is in equations (10) and (11).

The idea of using linear algebra as a low-level de-
scription language for building applications in other
domains of science or engineering is not new. The
GraphBLAS project aims to implement common al-
gorithms for the analysis of large graphs using linear
algebra [2]. In computational geometry, DiCarlo and
others [3] used chain complexes to implement the Eu-
ler make/kill operators from solid modeling.

2. CHAIN COMPLEXES

CW complexes are the most general structure describ-
ing spaces obtained by gluing cells together. Simpli-
cial, cubical, and polygonal meshes are all CW com-
plexes, but each category has different constraints on
what a cell can be. The boundary operators of a com-
plex are integer matrices that encode the adjacency
relations between k- and k − 1-dimensional cells. The
boundary operators describe what the faces of a given
cell are, but they also describe how faces are oriented
in the cells that contain them. Orientation allows us
to express the intuitive idea that two neighboring cells
see their common face from opposite sides. In the fol-
lowing, we briefly recall some definitions; see [4].

CW complexes are defined inductively by dimension.
A 0-dimensional complex X0 is a finite collection of
points. A regular n-dimensional CW complex consists
of an n − 1-dimensional complex Xn−1 together with
a collection {φn

α} of homeomorphisms, called attach-
ing maps, from the unit sphere Sn−1 into Xn−1. The
space Xn is then the disjoint union of copies of the
unit ball with each copy’s boundary identified with
its image in Xn−1 under the attaching map with the
quotient topology.

Given a k-cell σ and a k− 1-cell τ of a complex X, we



can define the incidence number as

[σ, τ ] =











0 τ is not in σ

+1 τ is positively oriented in σ

−1 τ is negatively oriented in σ

(1)

The formal definition of incidence number uses the
topological degree of the attaching map φ of τ into ∂σ,
which we will not define here. For simplicial and cu-
bical complexes, the incidence numbers between cells
can be read off directly from their constituent vertices.

The key objects of interest for us are the boundary
operators, which are mappings between chain modules.
The chain module Ck is the set of all formal Z-linear
combinations of cells of dimension k. Given a single
k-cell σ of X, we define

∂kσ =
�

τ∈Xk−1

[σ, τ ]τ (2)

and extend ∂k by Z-linearity to a map from Ck to Ck−1.
The most important fact about boundary operators
and the wellspring of homology theory is that

∂k · ∂k+1 = 0. (3)

A collection of Z-modules Ck together with homomor-
phisms ∂k : Ck → Ck−1 that satisfy equation (3) is
called a chain complex.

∂1 =

�

− + −

+ − +

+ −

+ −

�

∂2 =

�

+ −

+

+

+

+

�

Figure 1: Pair of adjacent triangles (left) and their
boundary matrices (right).

The abstract concept of a CW complex can be made
computable by representing its boundary operators as
(sparse) matrices with integer entries. We can read off
the faces and sub-faces of a particular cell by looking at
which rows are non-zero in the corresponding columns
of the boundary matrices. Equation (3) is easy to ver-
ify in practice and guarantees the topological validity
of the data structure. See figure 1 for an illustration
of a simple topology together with the corresponding
boundary operators.

We’ll introduce one final conceit that makes later con-
structions much more elegant. The definition above
assumes that the chain complex stops at C0 – formal
linear combinations of vertices. Instead, we will add
a bottom module C−1 consisting of a single cell ⊥ of
dimension -1. We then define the boundary of every
vertex vi to be +⊥. If we write 1 for the column vec-
tor of all 1s, then ∂0 = 1

∗, i.e. the row vector of all 1s.

The addition of this bottom cell is especially conve-
nient because the condition ∂0∂1 = 0 implies that the
boundary of every edge e has a negative and a positive
vertex: ∂e = vi−vj for some i, j. We cannot have, for
example, ∂e = vi + vj , which would be undesirable.

3. TRANSFORMATIONS

If we choose to represent mesh topologies using
boundary operators, we can describe transformations
through linear algebra. Phrasing the problem in this
way makes verifying correctness easy.

First, observe that if A, B are integer matrices such
that the image of ∂k+1 is an invariant subspace of A·B,
then the matrices

∂
′

k = ∂k ·A, ∂
′

k+1 = B · ∂k+1 (4)

still satisfy ∂′

k · ∂′

k+1 = 0. A particular case is A ·B =
I, which includes permutations of the cell ordering.
The more general case regarding the image of A ·B is
needed for some irreversible transformations.

3.1 Merging

A merge of a set of k-cells replaces them with a single
cell (provided that their union is simply-connected).
Merging is a column operation on the matrix ∂k. In
the simplest case, the result column is the sum of all
the columns to be merged, but in general we might
need to flip some signs:

∂
′

k = ∂k · diag(s0, . . . , sm) · 1, (5)

∂
′

k+1 =
�

0 . . . 1 . . . 0
�

∂k+1. (6)

where si are all ±1. The signs are chosen so that any
higher-dimensional cell σ has the same incidence with
respect to any of the cells τ to be merged. The trans-
formation to the rows of ∂k+1 collapses all incidence to
any of the desired k-cells into incidence to the merged
k-cell. For merging cells of top dimension n, there are
no higher-dimensional cells to apply equation (6) to
and this step is left out.

Edge collapsing, the key transformation in surface sim-
plification algorithms [5], is a merge of two vertices.

3.2 Splitting

A split divides up the union of several polytopes along
a vertex. The key correctness criteria for this oper-
ation are that (1) every newly-created polytope con-
tains the splitting vertex and (2) the boundary of the
sum of all polytopes does not change. We’ll describe
the 2D case first and then proceed to arbitrary dimen-
sions.



Suppose that a collection of adjacent polygons has the
boundary operators ∂1 and ∂2. We first have to draw
edges between the new vertex and all the vertices of
the polygon. The orientation of these new edges is ar-
bitrary, so we can assume that every edge goes from
the splitting vertex v to the polygon vertices. An-
other way of stating this is that every new edge e

is negatively-incident to v and positively-incident to
some polygon vertex. In terms of matrices, the new
1-boundary operator is

∂
′

1 =

�

∂1 I

0 −1∗

�

(7)

where I is the identity matrix. The key step here is
defining the 2-boundary matrix:

∂
′

2 =

�

diag(∂2 · 1)
−∂1 · diag(∂2 · 1)

�

(8)

A rudimentary calculation shows that ∂′

1∂
′

2 = 0. Since
diag(z) · 1 = z for any vector z, we also find that

∂
′

21 =

�

∂21

0

�

(9)

or in other words the new polygon has the same bound-
ary as the old. Figure 2 illustrates the split transfor-
mation on a single quadrilateral and shows the bound-
ary matrices before and after.

∂1 =

�

− +

+ −

+ −

+ −

�

, ∂2 =

�

+

+

+

+

�

∂
′

1 =

�

− + +
+ − +

+ − +
+ − +

− − − −

�

, ∂
′

2 =









+
+

+
+

+ −

− +
− +

− +









Figure 2: Quadrilateral before and after splitting on a
new vertex in the center (top) and boundary matrices
before and after (bottom).

We can get an idea for how to extend this to n dimen-
sions by remembering that 1∗ = ∂0 in equation (7).
This suggests the transformation

∂
′

k =

�

∂k I

0 −∂k−1

�

(10)

∂
′

n =

�

diag(∂n · 1)
−∂n−1diag(∂n · 1)

�

(11)

Again, a rudimentary calculation shows that the fun-
damental equation (3) still holds and that the new
polytopes have the same boundary as the old.

Equation (10) has appeared before in the literature on
homological algebra as the expression for the boundary
operators of the cone of a space [6]. To our knowledge,
using these equations for doing real computations is
entirely new.

The Bowyer-Watson algorithm for Delaunay triangu-
lation and all common algorithms for computing con-
vex hulls only require the split transformation [1].

3.3 Splitting and merging

Other transformations can be defined by combining a
sequence of splits and merges. For example, figure 3
shows how to perform a 2-2 flip in 2D by first splitting
the quadrilateral into four triangles and then perform-
ing a sequence of merges and figure 4 shows the same
process for a 2-3 flip in 3D. (We’ve shown an initial
merge step for illustrative purposes, but this merge is
actually part of the subsequent split.)

merge
triangles

split merge
triangles

merge
edges

Figure 3: A 2-2 flip, implemented as a sequence of
merges and splits. The vertex added by splitting the
quadrilateral is deleted when the two edges are merged
in the final transformation.

merge
tetrahedra

split merge
tetrahedra

merge
triangles

Figure 4: A 2-3 flip implemented as a sequence of merges
and splits. We’ve shown the tetrahedra in an “exploded”
view to help with visualization.

A few papers have proposed using multi-cell trans-
formations for 3D mesh improvement [7]. Multi-cell
transformations are more complex than 2-3 or 3-2 flips,
but [8] showed that they can be implemented as a se-
quence of flips. Using the boundary operators might
make it possible to implement complex transforma-
tions with less effort. The split transformation that



1 import numpy as np
2 from typing import List
3

4 def split(D: List[np.ndarray]) -> List[np.ndarray]:
5 # Create the boundary matrices for 1 <= k < n

6 n_vertices = D[0].shape[1]
7 E = [np.ones((1, n_vertices + 1), int)]
8 for k in range(1, len(D) - 1):
9 n_cells = D[k].shape[1]

10 n_sub_faces, n_faces = D[k - 1].shape
11 I = np.identity(n_faces, int)
12 Z = np.zeros((n_sub_faces, n_cells), int)
13 E_k = np.block([[D[k], I], [Z, -D[k - 1]]])
14 E.append(E_k)
15

16 # Create the top-dimensional boundary matrix

17 C = np.diag(np.sum(D[-1], axis=1))
18 E_n = np.vstack((C, -D[-2] @ C))
19 E.append(E_n)
20 return E

Figure 5: Python source code for the split transforma-
tion. Line 13 corresponds to equation (10); lines 17 and
18 correspond to equation (11). The real version has
some additional logic to remove empty cells.

we derived here is based on computing the topologi-
cal cone of a space and then removing the base of the
cone. Multiface retriangulation, as advocated in [8], is
a transformation of a suspension, a related construc-
tion in algebraic topology [4].

4. DEMONSTRATION

As a proof of concept, we developed a software pack-
age called zmsh which implements the split transfor-
mation defined above [9]. The source code for the split
transformation is shown in figure 5. We used the split
transformation to implement a convex hull algorithm
that works in arbitrary dimensions. To test the convex
hull code, we used (1) random point sets up to dimen-
sion 5 and (2) several synthetic input sets with various
degeneracies such as coplanarity. For geometric pred-
icates, we used the Python standard library’s built-in
routines to convert a floating point value exactly to a
ratio of big integers.

5. CONCLUSION

Doubly-connected edge lists have historically been
popular for mesh generation because they offer a sim-
ple interface for traversing the topology [10]. Here we
propose that boundary operators are an ideal repre-
sentation if the goal is to perform topological transfor-
mations. This idea has appeared before, for example
in the work of DiCarlo and others [3].

Boundary operators are only necessary for represent-
ing a small patch of the topology at a time. Once
the transformed patch is computed, it can be trans-

lated back to a set of simplexes. Boundary operators
are useful for describing non-simplicial intermediate
states of a transformation; they are not space-optimal
for describing an entire simplicial complex.

When the objects of study can be represented as linear
operators, we can apply linear algebraic reasoning to
define transformations and verify that they preserve all
of the important invariants. The condition in equation
(3) that the product of two boundary operators is zero
is a very powerful invariant for ensuring the validity
of the underlying topology.

References

[1] Cheng S.W., Dey T.K., Shewchuk J., Sahni S.
Delaunay mesh generation. CRC Press Boca Ra-
ton, 2013

[2] Mattson T., Bader D., Berry J., Buluc A., Don-
garra J., Faloutsos C., Feo J., Gilbert J., Gonzalez
J., Hendrickson B., et al. “Standards for graph
algorithm primitives.” 2013 IEEE High Perfor-
mance Extreme Computing Conference (HPEC),
pp. 1–2. IEEE, 2013

[3] DiCarlo A., Milicchio F., Paoluzzi A., Shapiro
V. “Solid and physical modeling with chain com-
plexes.” Proceedings of the 2007 ACM symposium
on Solid and physical modeling, pp. 73–84. 2007

[4] Hatcher A. Algebraic Topology. Cambridge Uni-
versity Press, 2002

[5] Guéziec A. “Surface simplification with vari-
able tolerance.” Second Annual Symposium on
Medical Robotics and Computer Assisted Surgery,
1995. 1995

[6] Gelfand S.I., Manin Y.I. Homological algebra,
vol. 38. Springer Science & Business Media, 1994

[7] Klingner B.M., Shewchuk J.R. “Aggressive tetra-
hedral mesh improvement.” Proceedings of the
16th international meshing roundtable, pp. 3–23.
Springer, 2008

[8] Misztal M.K., Bærentzen J.A., Anton F., Erleben
K. “Tetrahedral mesh improvement using multi-
face retriangulation.” Proceedings of the 18th
international meshing roundtable, pp. 539–555.
Springer, 2009

[9] Shapero D. “zmsh.” URL
https://doi.org/10.5281/zenodo.7502592

[10] Guibas L., Stolfi J. “Primitives for the manipu-
lation of general subdivisions and the computa-
tion of Voronoi diagrams.” ACM transactions on
graphics (TOG), vol. 4, no. 2, 74–123, 1985


