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ABSTRACT

Constructing smooth cross fields on surfaces plays a crucial role for structured quad-mesh generation. This work
develop a theoretical framework, which treats a cross field as a section of the cross bundle over the surface, the
singularities as the topological obstruction to the existence of global section, namely the characteristic class of the
bundle. The work proves the necessary and sufficient condition for the singularity configuration of cross fields based
on Ricci flow, which leads to a rigorous and efficient algorithm for cross field construction. Experimental results
demonstrate the efficiency and efficacy of the algorithm.
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1. INTRODUCTION

Surface cross field construction is a fundamental prob-
lem in geometric modeling, which is often applied for
quad-mesh generation in CAD/CAE fields.

There are intensive researches concentrated on cross
fields based on their different representations, such
as spherical harmonic basis[1], N-Rosy[2, 1], com-
plex function[3] and seamless parameterization [4].
The singularity configurations have been studied using
Poincare-Hopf theorem [5] and Abel-Jacobi theorem
[6, 7]. Our current work generalized the Hopf-Poincaré
theorem to the cross field.

A cross field is a generalization of an orthonormal
frame field on the surface. From the point of view
of modern algebraic topology [8], a frame field can be
treated as a section of the orthnormal frame bundle
of the surface. In general, there is no global section
of the frame bundle, the obstruction is represented
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by the singularities of the frame field, which can be
treated as a cohomological class in the cohomology
group H2(S,Z), the so-called characteristic class of
the othronormal frame bundle. Different frame fields
are different sections of the same fiber bundle, and
have different singularity configurations. But if the
singularity configurations are treated as cohomological
classes, they are identical. The surface orthonormal
frame bundle is a special circle bundle of the surface,
non-isomorphic circle bundles have different character-
istic classes.

In this work, we systematically generalize the theoretic
framework to cross fields, each cross field is treated
as a section of the cross bundle over the surface, the
singularity configuration is the topological obstruction
to the existence of global section [8]. Different cross
fields give different singularity configurations, they are
identical in the cohomology group H2(S,Z), namely
the characteristic class of the cross bundle. Further-
more, we give the sufficient and necessary conditions
for the singularity configuration which leads to a rigor-



ous and efficient algorithm for constructing cross fields
with prescribed singularities.

The algorithm computes a flat Riemannian metric us-
ing Ricci flow [9, 10], such that all the curvatures are
concentrated on the singularities. A cross at the base
point can be parallel transported everywhere on the
surface. A special harmonic 1-form is constructed to
compensate the holonomy.

The algorithm has been validated by constructing
smooth cross fields on surfaces with various topolo-
gies. The experimental results show the efficiency and
efficacy of the method.

2. THEORETIC FOUNDATION

This section briefly introduces the theoretic back-
ground for the characteristic class theory for fiber bun-
dles. For more details, we refer readers to [8] for more
thorough treatments.

2.1 Fiber Bundle and Characteristic Class

Fiber Bundle The fiber bundle and its section play
fundamental roles.

Definition 2.1 (Group Action). A topological group
G acts on a spaceX if there is a group homeomorphism
G → Homeo(X) such that the adjoint

G×X → X (g, x) �→ g(x)

is continuous. We usually write g · x instead of g(x).

An action is called free if g(x) ̸= x for all x ∈ X and for
all g ̸= e. An action is effective if the homomorphism
G → Homeo(X) is injective.

Definition 2.2 (Fiber Bundle). Let G be a topolog-
ical group acting effectively on a space F . A fiber
bundle E over B with fiber F and structure group G is
a map π : E → B together with a collection of home-
omorphisms {ϕ : U ×F → π−1(U)} for open sets U in
B, ϕ is called a a chart over U , such that

1. The diagram

U × F π−1(U)

U

f

πU π

commutes for each chart ϕ over U .

2. Each point of B has a neighborhood over which
there is a chart.

3. If ϕ is a chart over U and V ¢ U is open, then
the restriction of ϕ to V is a chart over V .

4. For any charts ϕ,ϕ′ over U , there is a continuous
map θϕ,ϕ′ : U → G so that

ϕ′(u, f) = ϕ(u, θϕ,ϕ′(u) · f), ∀u ∈ U, ∀f ∈ F.

The map θϕ,ϕ′ is called the transition function
for ϕ,ϕ′.

5. The collection of charts is maximal among collec-
tions satisfying the previous conditions.

A section of the fiber bundle π : E → B is a continuous
map, σ : B → E, such that π ◦ σ = id.

π(σ(x)) = x ∀x ∈ B.

Cross Bundle and Cross Field Suppose M is
a Riemannian manifold, namely each tangent space
TpM is assigned with an inner product. Let Fo

p (M) be
the space of all possible orthonormal frames of TpM ,
then

Fo(M) =
�

p∈M

Fo
p (M)

π
−→ M

is called the orthonormal frame bundle of M . The
structure group is SO(n).

Suppose the base manifold is a surface (S,g), on each
tangent plane TpS, all the orthonormal frames form
the space Fo

p (S). A subgroup N of SO(2) is defined
as

N =
�

ei
kπ

2 , k = 0, 1, 2, 3
�

.

N acts on Fo
p (S), each orbit is called a cross, the quo-

tient space is called the cross space,

Co
p(S) := Fo

p (S)/N.

The cross bundle of the surface is defined as

Co(S) =
�

p∈S

Co
p(S)

π
−→ S,

namely Co(S) = F0(S)/N . A section σ : S → Co(S)
is called a cross field on S.

Topological Obstruction Given a fiber bundle π :
E → B, there may not exist any global section σ :
B → E, the obstruction can be represented as the
characteristic class of the bundle. For convenience, we
assume the base space B is a CW-complex, the fiber
space F is path connected.

Definition 2.3 (CW-complex). A CW complex is
constructed by taking the union of a sequence of topo-
logical spaces

∅ = X−1 ¢ X0 ¢ X1 ¢ · · ·Xn = X,

such that each Xk is obtained from Xk−1 by gluing
copies of k-cells ekα, each homeomorphic to Dk, to
Xk−1 by continuous gluing maps gkα : ∂ekα → Xk−1.
Each Xk is called the k-skeleton of the complex.



The global section σ : B → E can be constructed step
by step:

1. At the initial step, we define the section on the
0-skeleton X0, namely for each point e0α ∈ X0, we
choose a point σ(e0α) in the fiber F at e0α;

2. At the 1-st step, we extend σ to X1. For each
cell e1α ∈ X1, we find a path γ in π−1(e1α) ¢ E, γ
connects σ(∂e1α) defined at the initial step;

3. At the 2-nd step, we extend σ to X2. For each
cell e2α ∈ X2, σ(∂e

2
α) has been defined in the 1st

step, which is a loop in the fiber space F . If
σ(∂e2α) = e, then σ can be extended into the in-
terior of e2α, otherwise, we encounter an obstruc-
tion. Therefore we define a π1(F )-valued 2-form
θ2(σ),

θ2(σ)(e2α) = [σ(∂e2α)] ∈ π1(F ).

4. At the k-th step, we extend σ to Xk. For each cell
ekα ∈ Xk, σ(∂e

k
α) has been defined in the k− 1-th

step, we obtain a πk−1(F )-valued k-form θk(σ),

θk(σ)(ekα) = [σ(∂ekα)] ∈ πk−1(F ).

θk(σ) is the topological obstruction class, which
determines whether σ can be extended to Xk.

Theorem 2.1 (Topological Obstruction). If πk−1(F )
is trivial, then σ can be extended to Xk; otherwise, if
πk−1(F ) is Abelian, the obstruction class θk(Σ) is 0,
then we can modify σ on Xk−1 then σ can be extended
to Xk. Otherwise, σ can not be extended.
Furthermore, if σ1 and σ2 are two different construc-
tions of global sections, then there is a πk−1(F ) valued
(k − 1)-form on B, such that

θk(σ1)− θk(σ2) = dω.

Namely, the θk(σ1) and θk(σ2) are cohomological
equivalent.

Therefore, we call the class [θk(σ)] ∈ Hk(B, πk−1(F ))
the topological obstruction class of the bundle π : E →
B, which is also the characteristic class of the bundle.

Characteristic Class of Surface Cross Bundle

We apply the above topological obstruction theory to
study the cross fields on a closed metric surface (S,g).
The cross space at each point Co

p(S) is a topological
circle S

1,

Co
p(S) = Fo

p (S)/N =
�

eiτ : τ ∈ [0,
π

2
)
�

.

Therefore its fundamental group π1(C
o
p(S)) = Z. Each

cross field is a global section σ of the cross bundle

Co(S), the singularities of σ with indices form a 0-
form, θ0(σ) =

�

i λipi, where λi ∈ π1(C
o
p(S)) = Z.

0-forms and 2-forms are dual to each other, therefore
θ(σ) can be treated as a 2-form in H2(S, π1(C

o
p(S))) =

H2(S,Z),

θ2(σ) =
�

i

λi∆i, λi ∈ Z,

where each singular point pi is inside the triangular
face ∆i, pi ∈ ∆i, the cross field σ maps ∂∆i to the
fiber C0

pi
, σ# : π1(∂∆i) → π1(C

0
pi
), Z → Z, z �→ λiz.

Namely, the index λi of pi is the winding number of
σ at the singularity. Hence, we obtain the following
sufficient and necessary condition for the cross field
singularities:

Theorem 2.2 (Cross Field Singularity). Suppose
(S,g) is an orientable, closed metric surface. Given
a 0-form θ =

�n

i=1
λipi, then θ is the singularity con-

figuration of a continuous cross field on S, if and only
if

n
�

i=1

λi = 4χ(S), (1)

where χ(S) is the Euler characteristic number.

Proof. Necessary Condition: suppose σ is a global
continuous cross field on S, and its obstruction class
is θ2(σ). We can find a tangential vector field τ ′, τ ′

can be treated as a special case of cross field, but each
index differs by a factor 4. Then [θ2(σ)] = [θ2(σ′)].
By Hopf-Poincaré vector field index theorem, we
know the total index of σ′ is χ(S) treated as a vector
field, and 4χ(S) treated as a cross field. Hence the
total index of σ is 4χ(S), Eqn. (1) holds.

Sufficient Condition Given θ =
�

i λipi, we set tar-
get discrete Gaussian curvature K̄(pi) = λiπ/2 and
zero at the other points. Then the total target curva-
ture satisfies the Gauss-Bonnet condition

�

i K̄(pi) =
2πχ(S). According to the discrete Ricci flow theorem
[9], there is a flat metric ḡ with cone singularities at
pi’s, conformal to the original metric. We choose a
base point q ∈ S \ {pi}. Suppose the fundamental
group generators of S are γ1, γ2, · · · , γ2g−1, γ2g, where
g is the genus of the surface. We fix a cross c ∈ TqS,
and parallel transport the cross c along γk, when the
cross c returns to the based point q, the rotation angle
is βk, we say the cross holonomy along γk is βk. We
compute the basis of the deRham cohomology group
H1

dR(S,R), ω1, ω2, · · · , ω2g, which are harmonic and
satisfy

�

γi

ωj = δji , ∀1 f i, j f 2g.

Then we define a harmonic 1-form

ω = β1ω1 + β2ω2 + · · ·+ β2g−1ω2g−1 + β2gω2g.



Then we construct the global smooth cross field σ as
follows: fix a cross c at the base point q, for any
point p on the punctured surface S \ {pi}, find a path
γ ¢ S \ {pi} from q to p, we parallel transport c along
γ to p to get c′, then rotate c′ clockwisely by an an-
gle

�

γ
ω to obtain σ(p). This procedure produces a

global smooth cross field σ, with singularity configu-
ration θ2(σ), which is dual to the given θ.

3. COMPUTATIONAL ALGORITHMS

This section briefly introduces the computational al-
gorithms, the computational topological algorithms,
such as fundamental group generator, harmonic coho-
mology group basis can be found in [11, 12]. The al-
gorithmic details for Ricci flow can be found in [9, 10].

Algorithm 1 Cross Field Construction

Require: Closed Triangle mesh M , singularities θ =
�

i λipi
Ensure: Cross field σ with prescribed singularities θ

1. Set target curvature K̄i = λiπ/2
2. Compute a flat metric ḡ with target curvature
3. Choose a base point q ∈ S \ {pi}, compute the
generators of fundamental group {γ1, γ2, . . . , γ2g}
4. Parallel transport a fixed cross c at the base point
q along γi’s to compute the holonomy βk

5. Compute harmonic 1-form basis of H1
dR(M,R)

{ω1, ω2, . . . , ω2g−1, ω2g}, such that
�

γi

ωj = δji
6. Construct a harmonic 1-form ω =

�

i βiωi

for each vertex vi ∈ M do

a. Find a path γ ¢ S \ {qi} from q to vi
b. Parallel transport c along γ to obtain c′

c. Rotate c′ by angle
�

γ
ω clockwisely

end for

4. EXPERIMENTAL RESULTS

We have tested the proposed algorithm on various 3D
models with complicated topologies as shown in Fig. 1.
The singularities are marked with different colors, the
red, blue and green circles represent the indices of +1,
−1 and −2 respectively. It is easy to see that the cross
field is globally smooth. The second row first frame
shows a cross field on a torus with two singularities,
one is of index of +1 and the other is of index −1 as
shown in Fig. 1. The algorithm is efficient enough.
For the genus 3 Buddha model with 118.7k faces, the
cross field construction only takes 42.351 seconds.

Figure 1: Cross fields construction on surfaces with com-
plicated topologies.
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