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ABSTRACT

Surface meshing plays a fundamental role in CAD and CAE. This work introduces a rigorous and efficient algorithm
for generating high quality triangulations on surfaces with complicated topologies based on conformal geometry. The
key idea is to flatten the input surface onto a planar domain by an angle-preserving (conformal) map, then a high
quality planar mesh is generated and pulled back to the 3D surface. Since the mapping is angle-preserving, the
Delaunay property is preserved to the surface triangulation. Furthermore, the planar sampling density is adaptive to
the surface area element and the curvature, this guarantee the surface meshing quality. By converting the 3D meshing
problem to the 2D problem, this method reduces the algorithmic difficulty and improves the computational efficiency
and mesh quality. Our experimental results demonstrate the efficiency and efficacy of the proposed algorithm.

Keywords: surface mesh generation, conformal mapping, uniformization, Ricci flow, Delaunay re-

finement, adaptive sampling

1. INTRODUCTION

Surface meshing plays a crucial role in CAD/CAE
fields. Although there are many mature planar mesh
generation algorithms, such as the methods based on
Delaunay refinement [1], centroidal voronoi diagram
[2], surface mesh generation remains challenging due
to the topological and geometric complexities.

Given a smooth surface (S,g) embedded in the Eu-
clidean space R

3, a surface meshing algorithm should
generate a sequence of triangulated polyhedral sur-
faces Mk, such that the discrete surface sequence
{Mk} converges to the smooth surface S under dif-
ferent metrics. The most commonly used convergence
is measured by the Gromov-Hausdorff distance, but
this convergence doesn’t guarantee the convergences
of the surface area, the geodesic lengths, the Laplace-
Beltrami spectrum and so on. A more rigorous con-
vergence is measured by the normal cycle convergence
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[3, 4], this guarantees the convergences of the sur-
face area, geodesics, Gaussian curvature, principle cur-
vatures and the Laplace-Beltrami spectrum and the
eigen functions. The sufficient condition for normal-
cycle convergence is that: the surface triangulations
are geodesic Delaunay and the geodesic circum-radii
uniformly converge to zero [4, 5]. Therefore it is cru-
cial to generate geodesic Delaunay triangulations with
the uniform sampling density not only on the surface,
but also on the normal cycle of the surface.

In this work, we propose a novel and rigorous method
to tackle this fundamental challenge. The key idea is
to convert the surface meshing problem to the planar
meshing problem via conformal mapping. According
to the surface uniformization theorem [6, 7], all sur-
faces in reality can be conformally flattended to pla-
nar domains globally, therefore we can compute planar
Delaunay triangulations and pull them back to the sur-
face. Since the conformal mapping is angle preserving,
and transforms infinitesimal circles on the surface to



the planar infinitesimal circles, therefore it maps the
planar Delaunay triangulations to the geodesic Delau-
nay triangulations on the surface. Furthermore, we
can adapt the planar sampling density, such that the
sampling on the surface normal cycle is sufficiently
dense. The geodesic Delaunay property and the sam-
pling density ensure the surface meshing quality.

The conformal flattending can be carried out using
discrete surface Ricci flow theory, which is capalbe
of handling surfaces with complicated topologies and
guarantees the existence and the uniqueness of the so-
lution. The planar meshing is based on Delaunay re-
finement and adaptive sampling, which guarantees the
Delaunay property, the minimal angle and the sam-
pling density.

2. THEORETIC FOUNDATION

This section briefly introduces the theoretic back-
ground for surface conformal geometry and surface
Ricci flow. For more details, we refer readers to
[8, 9, 6, 7] for more thorough treatments.

2.1 Discrete Surface Ricci Flow

Ricci flow deforms the Riemannian metric propor-
tional to the Ricci curvature, such that the curva-
ture evolves according to non-linear heat diffusion pro-
cess and eventually converge to constants. Perelman
used Ricci flow to prove Poincaré’s conjecture [10, 11].
Hamilton [12] and Chow [13] proved the convergence
of surface Ricci flow.

Smooth surface Ricci flow theory can be generalized
to the discrete situation. A smooth surfaces is repre-
sented by a polyhedral surface S with vertex set V .
We call (S, V ) a marked surface. Given a marked sur-
face, we can define different triangulations. A discrete
Riemannian metric for a marked surface (S, V ) with
a triangulation T can be represented as edge lengths
d : E → R

+, satisfying the triangle inequality, namely
on each face [vi, vj , vk], d(vi, vj)+d(vj , vk) > d(vi, vk).
The discrete Riemannian metric determines the corner
angles, by the cosine law

cos θjki =

�

d2(vi, vj) + d2(vk, vi)− d2(vj , vk)
"

2d(vi, vj)d(vk, vi)
. (1)

Fix a discrete Riemannian metric, there are many tri-
angulations, among them, the Delaunay triangulation
is highly preferred.

Definition 2.1 (Delaunay Triangulation). Given a
closed marked surface (S, V ) with a discrete Rieman-
nian metric d, a triangulation T is called Delaunay, if
for any edge [vi, vj ] shared by two faces [vi, vj , vk] and
[vj , vi, vl], the condition θ

ij
k + θ

ji
l f π always holds.

A non-Delaunay triangulation can be modified to be
Delaunay by a sequence of edge flip operators,

Definition 2.2 (Edge Flip Operator). Given a closed
marked surface (S, V ) with a discrete Riemannian
metric d and a triangulation T , an edge [vi, vj ] shared
by two faces [vi, vj , vk] and [vj , vi, vl]. The edge flip op-
erator swaps the edge [vi, vj ] to [vk, vl], and changes
the triangles to [vi, vl, vk] and [vj , vk, vl].

It is well known that we can modify a triangulation to
be Delaunay by a sequence edge flip operators, such
that the longer diagonals are replaced by the shorter
diagonals.

The discrete Gaussian curvature is defined as the angle
deficit,

K(vi) =

�

2π −
�

jk θ
jk
i vi ̸∈ ∂M

π −
�

jk θ
jk
i vi ∈ ∂M

(2)

The total discrete Gaussian curvature also satisfies the
Gauss-Bonnet theorem,

"

vi∈∂M

K(vi) +
"

vi ̸∈∂M

K(vi) = 2πχ(M).

The conformal deformation is defined analogously

Definition 2.3 (Vertex Scaling). Suppose M =
(V,E, F ) is a triangulated polyhedral surface, with a
discrete metric l : E → R

+. λ : V → R is the discrete
conformal factor function defined on the vertex set V ,
the vertex scaling operator is defined as follows:

lij �→ e
ui lije

uj , ∀ [vi, vj ] ∈ E. (3)

The discrete conformal equivalence can be defined as
follows: suppose d and d′ are two polyhedral metrics
of the marked surface (S, V ), if there exists a sequence
of triangulations Ti’s and discrete metrics di’s,

T1, T2, . . . , Tn, d = d1, d2, . . . , dn = d
′
,

such that

1. Ti is Delaunay with respect to di;

2. if Ti ̸= Ti+1 then they differ by an edge flip and
di = di+1;

3. if di ̸= di+1 then they differ by a vertex scaling
and Ti = Ti+1.

Definition 2.4 (Discrete Conformal). Two triangu-
lated polyhedral metrics d and d′ on a closed marked
surface (S, V ) are discrete conformal, if they are re-
lated by a sequence of two types of moves: vertex
scaling and edge flip preserving Delaunay property.



The discrete surface Ricci flow is defined similar to the
smooth one.

Definition 2.5 (Discrete Surface Ricci Flow). Given
a marked surface (S, V ) with a polyhedral metric d

and a triangulation T , suppose the target Gaussian
curvature K̄ : T → R is given, then the Ricci flow is
defined as

dλ(vi, t)

dt
= K̄(vi)−K(vi, t),

during the flow, the triangulation is updated to pre-
serve the Delaunay property.

The discrete surface Ricci flow is gradient flow of the
following convex Ricci energy:

E(λ) :=

� λ n
"

i=1

(K̄(vi)−K(vi))dλi. (4)

The Hessian matrix of the Ricci energy can be rep-
resented by the cotangent edge weight, for all edge
[vi, vj ]. wij = cot θijk + cotjil , and the Hessain matrix
is H = (hij)

hij =

� �

k ̸=i wik i = j

−wij i ̸= j
(5)

The existence and the uniqueness of the solution to the
discrete surface Ricci flow is proved in the following
theorem.

Theorem 2.1 (Discrete Surface Flow [6]). Given a
polyhedral metric d on a closed marked surface (S, V ),
and target curvature K̄ : V → (−∞, 2π), such that
K̄ satisfies the Gauss-Bonnet conditon

�

K(v) =
2πχ(S), there is a d̄ discrete conformal to d, and d̄

realized the curvature k̄. d̄ is unique update to a scal-
ing, and can be obtained by the discrete surface Ricci
flow.

3. COMPUTATIONAL ALGORITHMS

3.1 Discrete Uniformization

First, we compute the discrete conformal metric by
setting the target curvature satisfying the Gauss-
Bonnet condition. The target curvatures for interior
vertices are zeros, and those for the boundary vertices
are constant.

Once the target metric is obtained, we can isometri-
cally embed the whole mesh on the plane face by face.

3.2 Planar Delaunay Refinement

The input object is a two-dimensional polygonal do-
main Ω, possibly with holes and constraining edges
and vertices inside the domain. The boundary ∂Ω is a

Algorithm 1 Discrete Surface Ricci Flow

Require: Triangle mesh M , target curvature K̄

Ensure: Discrete Conformal Factor λ
Initialize λi ← 0, for all vi ∈ V

while true do

Update edge length using vertex scaling Eqn. (3)
Update triangulation to be Delauny by edge flips
Update corner angles using Eqn. (1)
Update vertex curvature using Eqn. (2)
if max |K̄i −Ki| < ε then

Return λ

end if

Compute the gradient ∇E = (K̄i −Ki)
Compute the Hessian matrix H Eqn. (5)
Solve linear system Hµ = ∇E
Update the conformal factor λ← λ− µ

end while

set of vertices and edges which separates the interior
of Ω from its exterior. ∂Ω is a planar straight line
graph (PSLG). We want to generate a mesh T of Ω,
such that T contains good quality triangles. In or-
der to obtain a good quality mesh, it is necessary for
T to include additional points, called Steiner points,
vertices of the mesh that are not vertices of the input
PSLG. We want the total number of Steiner points to
be as small as possible.

Various approaches have been developed for this
purpose, such as advancing-front methods, quadtree
methods, Delaunay-based methods, [14, 15], and the
combinations of them. Most of them work well in prac-
tice but come with no guarantee on the quality and
size of the generated mesh. The algorithm we use is
Delaunay refinement proposed by Chew [14] and Rup-
pert [15]. It is a simple technique to incrementally
placing Steiner points at the circumcenters of bad-
quality Delaunay triangles.

A circumcenter of a triangle may lie outside the do-
main. When it happens, at least a boundary edge
(segment) is very close to some existing vertices. Call
a vertex encroaches upon a segment if it lies inside its
diametrical circumcircle.

The algorithm is given in the Algorithm 2.

4. EXPERIMENTAL RESULTS

The proposed algorithm has been thoroughly tested
on real CAD models, the initial meshes are extracted
from NURBS. The remeshing results guarantees the
minimal angle is greater than 26 degree and preserve
all the sharp features as shown in Fig. 1 and Fig. 2.



Algorithm 2 Delaunay Refinement (Ω, θmin)

Require: A 2d polygonal domain Ω; the desired min-
imal angle of output triangles θmin

Ensure: A mesh T of Ω
Construct an initial Delaunay mesh T of ∂Ω;
while ∃τ ∈ T and MinAngle(τ) > θmin do

let c be the circumcenter of τ ;
if c encroaches upon any segment of T then

split an encroached segment;
else insert c into the Delaunay mesh T ;
end if

end while

Figure 1: Remesh result for the Crank model.
Figure 2: Conformal parameterization and remesh result.
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