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ABSTRACT

This research note presents an algorithm that takes an input mesh and constructs a finite element function, on an
automatically defined background mesh, whose zero level set agrees with the boundary of the input mesh. The input
does not include any additional geometric information except the mesh itself. A critical requirement for this algorithm
is to define gradients of the constructed level set function both inside and outside of the input domain. The main
challenges for this construction is to produce a smooth field, on both sides of the boundary, and to obtain a zero level
set that agrees with the input domain. This algorithm is a first step in developing an automated mesh smoother that
takes an input mesh, without any extra geometric information, and optimizes its quality by node movement of all
internal and boundary nodes.
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1. INTRODUCTION

The capability to improve the quality of an input
mesh, without any additional geometric information
except the mesh itself, is of practical importance be-
cause often times the geometric information of a mesh
(STL files, analytic descriptions, etc) is not available,
especially for researchers and practitioners who are not
involved in mesh generation work. Our goal is to de-
velop a mesh optimization tool that has the above ca-
pability and requires minimal user input. The first
step in this direction is to represent the boundary of
the domain in a form that can be used for mesh opti-
mization calculations. Because we are targeting high-
order finite element (FE) discretizations [1], we choose
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to represent the boundary by the zero level set of a
FE function. This research note goes over the tech-
nical details of the construction of this FE function.
The main challenges for this procedure is to produce
a smooth field, on both sides of the boundary, and to
obtain a zero level set that agrees with the boundary
of the input domain.

2. CONSTRUCTION OF THE LEVEL
SET FUNCTION

Let M0 be an input mesh of order k in 2D or 3D with
any standard type of elements (triangles / quadrilater-
als / tetrahedra / hexahedra). By x0 we denote phys-
ical positions on M0. We also construct a background
mesh MB , details are given later, and denote phys-
ical positions on MB by xB . The background mesh



MB completely covers M0, i.e., for every x0 there’s
a corresponding xB , but not the other way around.
Our goal is to represent the boundary of M0 as the
zero level set of a finite element function σB(xB), on
the background mesh MB . Using MB is necessary
because it would allow to compute gradients of σB on
both sides of the original boundary, which is essential
for optimization methods. Furthermore, as the goal is
to compute gradients, σB must be a smooth function.
This motivates our choice to compute σB , on MB , as
the FE distance function to the boundary of the input
domain M0.

The computation of σB consists of several steps which
are discussed in the following paragraphs:

1. Computation of a FE distance function σ0, on
M0, to the boundary of the input mesh M0.

2. Construction of adaptively refined background
mesh MB and transfer of σ0(x0) to σ0B(xB) on
MB .

3. Computation of σB using the one-sided distance
to the boundary σ0B(xB).

The description of each step also includes a visual il-
lustration on a sample 2D input turbine blade mesh
shown in the left panel of Figure 1.

The computation of the FE distance function σ0 uti-
lizes the p-Laplacian distance computation, see Sec-
tion 7 in [2]:

∇ ·
(

|∇σ0|
p−2∇σ0

)

= −1 in M0,

σ0 = 0 on ∂M0, 2 ≤ p < ∞.
(1)

This formulation computes distance with respect to
the boundary of the domain, but the same approach
can be customized for arbitrary level sets of discrete
functions by choosing appropriate finite element basis
functions, see Section 3 in [3]. We use (1) in both
boundary and LS regimes. Other distance solvers
could also be used, but in our experience (1) reli-
ably produces smooth behavior around the zero level
set, which is our most major requirement. Although
higher values of p increase the distance accuracy, we
use p = 5 as the distance property is not critical for
our purposes. The computed distances are chosen to
have positive sign. The obtained σ0 with respect to
the boundary of the sample mesh is shown in the right
panel of Figure 1.

Once σ0 is calculated, we proceed by constructing the
adaptively refined background mesh MB . The pur-
pose of MB is to provide (i) a smooth function σB

on both sides of the boundary of M0, with the zero
level set being at the boundary, and (ii) high reso-
lution around the zero level set, so that values and

Figure 1: Input mesh M0 (left) and the resulting dis-
tance function σ0 (right).

gradients of σB are computed accurately. The domain
of MB is a box of size 20% more than the bounding
box of M0, so that the boundaries of M0 are inside.
The construction starts with creating M0

B that has 4
elements in each direction, quads in 2D or hexes in
3D, and then repeats the following iteration a fixed
number of times:

1. Interpolate σ0 from M0 to Mi
B , obtaining σi

B on
Mi

B . This operation is a mesh-to-mesh tranfer
in physical space of a finite element function. It
is performed through the gslib library, see [4, 5].
For points that are outside the domain of M0, we
set σi

B = −0.1, an arbitrary negative value.

2. If i > imax, then stop and take MB = Mi
B and

σB = σi
B . Otherwise refine those elements ofMi

B

that contain both positive and negative values of
σi
B . Refine their face-neighbors as well, to im-

prove the resolution around the zero level set.
The resulting mesh is Mi+1

B , which is then used
in step 1.

Figure 2: Background mesh MB with 9 refinement lev-
els around the boundary of M0.

Each iteration adds another level of refinement. The
result of the above procedure on the sample mesh is
shown in Figure 2, with imax = 9. The corresponding
one-sided distance function σ0B is shown in Figure 3.
In the elements of MB that cover the boundary of



M0, i.e., those elements that are cut by the zero level
set of σ0, σ0B always exhibits a non-smooth transi-
tion to −0.1. These oscillations are evident in Figure
4 that zooms around the left tip of the blade. More
specifically, the zero LS of σ0B does not coincide with
the zero LS of σ0, because these non-smooth transi-
tions introduce numerical errors in the cut elements;
resolving this will be the focus of the final step below.

Figure 3: One-sided distance function σ0B on MB

.

Figure 4: Zoom at the left tip of the blade showing the
oscillating cut elements around the zero level set of σ0B .

The last ingredient to represent the boundary is the
computation of the two-sided distance function σB .
Since the zero LS of σ0B is not correct due to the nu-
merical oscillations in the cut elements (Figure 4), di-
rect distance computation (1) from the zero LS of σ0B

is not feasible. But one can observe that the distances
are correct and smooth in the next layer of elements,
as these elements are fully contained inside M0. Thus
we can consider a shifted level set σ0B(x) = ∆x, which
agrees with σ0(x) = ∆x without numerical oscilla-
tions, where ∆x is the minimum edge length of MB .
We use (1) to compute the distance DB to the zero
level set of the function σ0B(x)−∆x. Finally, we set

σB(x) = DB(x) + ∆x.

This produces a smooth zero LS for the reasons ex-
plained above, and it is a good approximation since
the zero level sets of σ0 and DB are parallel (up to the
numerical error of solving (1)) and very close to each
other, as ∆x is the minimum size of the adaptively

refined mesh. The computed σB for our sample mesh
is shown in Figure 5. Its zero LS is shown next to the
starting mesh in Figure 6. Zoomed views of the zero
level set and isolines of σB at different parts of the
domain are shown in Figures 7, 8, and 9.

Figure 5: Two-sided distance function σB on MB

.

Figure 6: Input mesh and its finite element representa-
tion by the zero level set of σB .

Figure 7: Zoom of the zero isolines (red) of σB at the
bottom-left and top-right of the blade (green - M0 ele-
ments, black - MB elements).

3. CONCLUSION

This research note presents an algorithm that con-
structs a finite element level set function, on a back-
ground mesh, that represents the boundary of a given
input mesh. The method is demonstrated on a curved
mesh with nontrivial boundary that has both smooth
and sharp localized features. The results in Figures
7 and 8 show promise that the obtained zero level set



Figure 8: Zoom of the zero isolines (red) of σB at the left
tip and the right tip of the blade (green - M0 elements,
black - MB elements).

Figure 9: Zoom of the isolines (red) of σB at the left
side and the right side of the blade (green -M0 elements,
black - MB elements).

can agree with the input boundary up to any accuracy
(by performing more adaptive refinements on the back-
ground mesh), and the obtained function is smooth
and well-behaved around the zero level set (Figure 9).
Further testing will be performed on more 2D and 3D
geometries. In the future we plan to combine this algo-
rithm with volumetric mesh optimization [6] and tan-
gential relaxation that moves boundary nodes along
the zero level set of the constructed function [7].

Disclaimer This document was prepared as an ac-
count of work sponsored by an agency of the United
States government. Neither the United States gov-
ernment nor Lawrence Livermore National Security,
LLC, nor any of their employees makes any warranty,
expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or use-
fulness of any information, apparatus, product, or pro-
cess disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to
any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise
does not necessarily constitute or imply its endorse-
ment, recommendation, or favoring by the United
States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors ex-
pressed herein do not necessarily state or reflect those
of the United States government or Lawrence Liver-
more National Security, LLC, and shall not be used
for advertising or product endorsement purposes.

References

[1] Anderson R., Andrej J., Barker A., Bramwell J.,
Camier J.S., Cerveny J., Dobrev V.A., Dudouit
Y., Fisher A., Kolev T.V., Pazner W., Stowell M.,
Tomov V.Z., Akkerman I., Dahm J., Medina D.,
Zampini S. “MFEM: a modular finite elements
methods library.” Comput. Math. Appl., vol. 81,
42–74, 2021

[2] Belyaev A.G., Fayolle P.A. “On Variational and
PDE-Based Distance Function Approximations.”
Comput. Graphics Forum, vol. 34, no. 8, 104–118,
2015

[3] Rvachev V.L. Theory of R-functions and Some
Applications (In Russian). Nauk Dumka, 1982

[4] Fischer P. “GSLIB: sparse communication library
[Software].” https://github.com/gslib/gslib,
2017

[5] Mittal K., Dutta S., Fischer P. “Nonconforming
Schwarz-spectral element methods for incompress-
ible flow.” Computers & Fluids, vol. 191, 104237,
2019

[6] Dobrev V.A., Knupp P., Kolev T.V., Mittal K.,
Tomov V.Z. “The Target-Matrix Optimization
Paradigm for high-order meshes.” SIAM Journal
on Scientific Computing, vol. 41, no. 1, B50–B68,
2019

[7] Knupp P., Kolev T.V., Mittal K., Tomov V.Z.
“Adaptive surface fitting and tangential relaxation
for high-order mesh optimization.” 29th Interna-
tional Meshing Roundtable, 2021

https://github.com/gslib/gslib

