

Block structured mesh using a system of coordinated reflex agents

Valentin POSTAT¹, Franck LEDOUX², Guillaume HUTZLER³

¹LIHPC, CEA, Université Paris-Saclay, France ²CEA, DAM, DIF, F-91297, Arpajon ³Equipe COSMO, Laboratoire IBISC, Université Evry-Val d'Essonne

Summary

Today, there is no algorithm to generate a hexahedral block structure for any 3D Ω geometric domain. Engineers building such meshes can spend several days creating the desired structures using interactive software.

In this work, we propose to follow a different approach than the state of the art. Considering that an engineer knows what the block structure should be locally at a part of the Ω domain, we implement a system of reflexive agents mimicking this knowledge and coordinating to provide a globally valid block structure. In this poster, we illustrate our approach in 2D dimension.

Goal: Block structure improvement

Example of execution

We consider that we have as input a non-optimal block structure, derived from a Polycube algorithm [1]. The goal is to improve this structure in order to satisfy **align**ment constraints at the edge. We will take into account the **valence** of the vertices and their **criticality**.

Figure 1

- Valence d'un sommet v(s)nombre de blocs incident de s• Positive criticality c^+ • Valence increase required
- Negative criticality c^- Valence decrease required

projected to Ω structure

Modeling by a system of coordinated reflex agents

We model our problem by a multi-agent system (E, AL_i, AC) where: E is the environment made of B_H and of ΩAL_i , with 0 < i < N, is a set of reflex agents each assigned to a block of the structure. N varies at each iteration. AC is a coordinating agent responsible for the coordination of agents AL_i . Each reflex agent AL_i calculates the transformation priority of its assigned block. Observation here is a function of criticality (4a) and conformity (4b). The coordinator AC selects the reflex agent with the highest priority.

The a_i actions modify the topology of the block structure in order to satisfy the vertices

Figure 3. General scheme of the agent system

Proof of termination of the algorithm

by bringing out non-conformities .

Figure 4. Dangling vertices introduced by criticality actions. The observation is all the information useful to the agent in order to make a decision.

- Modification of the coordinating agent so that its observation depends on the gains obtained
- Addition of a learning algorithm for the coordinating agent that observes the gains made by each agent
- Adapting a subset selection problem on faces and solve it with a Ant Colony Optimization Meta-Heuristic [2] [3]

References

[1] J. Gregson and A. Sheffer and E. Zhang. All-Hex Mesh Generation via Volumetric PolyCube Deformation. Computer Graphics Forum (Special Issue of Symposium on Geometry Processing 2011. [2] Christine Solnon, Derek Bridge. An Ant Colony Optimization Meta-Heuristic for Subset Selection Problems. Nadia Nedjah; Luiza de Macedo Mourelle. System Engineering using Particle Swarm Optimization, Nova Science publishers, pp.3-25, 2006, 1-60021-119-4. hal-01541555 [3] Gianmarco Cherchi, Pierre Alliez, Riccardo Scateni, Max Lyon, David Bommes. Selective Padding for Polycube-Based Hexahedral Meshing. Computer Graphics Forum, Wiley, 2019,10.1111/cgf.13593.hal-01970790

