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Abstract

Warping large volume meshes has applications in biome-

chanics, aerodynamics, image processing, and cardiology.

However, warping large, real-world meshes is computation-

ally expensive. Existing parallel implementations of mesh

warping algorithms do not take advantage of shared-memory

and one-sided communication features available in the MPI-

3 standard. We describe our parallelization of the fi-

nite element-based mesh warping algorithm for tetrahedral

meshes. Our implementation is portable across shared and

distributed memory architectures, as it takes advantage of

shared memory and one-sided communication to precom-

pute neighbor lists in parallel. We then deform a mesh by

solving a Poisson boundary value problem and the resulting

linear system, which has multiple right-hand sides, in paral-

lel. Our results demonstrate excellent efficiency and strong

scalability on up to 32 cores on a single node. Furthermore,

we show a 33.9% increase in speedup with 256 cores dis-

tributed uniformly across 64 nodes versus our largest single

node speedup while observing sublinear speedups overall.

1 Introduction

Mesh warping is important for modeling dynamic prob-
lems, such as those found in biomechanics, aerodynam-
ics, image processing, and cardiology applications. Spe-
cific use cases include tracking brain movements dur-
ing disease progression and treatment [19], surface de-
flections of an aircraft’s wing [10], image warping [9],
stitching multiple images into one [27], tracking heart
rhythms [18], and deforming reference organs to cre-
ate patient-specific models [14]. Although warping large
meshes which stem from real-world applications is com-
putationally expensive, it can benefit from some form of
parallelization, whether that be multiple cores, nodes,
GPUs, etc. Hence, we propose a parallelization of the
FE-based mesh warping algorithm (FEMWARP) pro-
posed by Shontz and Vavasis in [23, 24]. The method
deforms a volume mesh by first solving a Poisson bound-
ary value problem (BVP) using a finite element method
(FEM) and then solving a linear system with multiple
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right-hand sides based on the initial mesh and boundary
deformation.

Several parallel algorithms related to the FEM and
mesh warping show strong scaling on various archi-
tectures. Sastry et al. developed a shared-memory,
OpenMP parallelization of FEMWARP to warp tetra-
hedral meshes [21]. A distributed-memory, MPI-
based parallelization of an inverse distance (IDWARP)
method to deform structured hexahedral meshes was
developed by Secco et al. in [22]. Additionally, a dis-
tributed memory, MPI parallelization of an unstruc-
tured grid deformation method via domain decomposi-
tion was developed by Gerhold and Neumann [6]. Pan-
itanarak and Shontz developed a distributed-memory,
MPI parallelization of a log-barrier-based warping al-
gorithm to warp tetrahedral meshes, but utilized one
core per node to maximize available memory per rank to
achieve strong scalability [18]. A hybrid, MPI/OpenMP
parallelization for a radial basis function-based mesh de-
formation algorithm was developed by Zhao et al. and
obtained strong scalability [29]. Krysl utilized a shared-
memory, pthreads implementation to construct sparse
FEM matrices [12]. We propose a novel, hybrid, MPI-
only parallelization of FEMWARP (ParFEMWARP)1

via shared-memory (SHM) for shared-memory intra-
node communication and remote memory access (RMA)
for one-sided, inter-node communication [2].

In this paper, we describe ParFEMWARP for tetra-
hedral meshes. Section 2 describes the FEMWARP al-
gorithm. Details regarding hybrid parallel programming
in the MPI-3 standard are provided in Section 3. Sec-
tion 4 describes how we take advantage of shared mem-
ory and one-sided communication features available in
MPI-3 to precompute neighbor lists in parallel, which
is necessary for executing various stages of FEMWARP.
The preconditioned block conjugate gradient method,
which we use to solve the multiple right-hand sides prob-
lem, is outlined in Section 5. A description of how we
parallelize the various stages of FEMWARP is given in
Section 6. We provide a parallel runtime analysis for
our method in Section 7. The results of our numerical
experiments are given in Section 8. Conclusions and

1https://github.com/AbirHaque/ParFEMWARP
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directions for future work are described in Section 9.

2 FEMWARP

FEMWARP [23, 24, 19, 21, 26] is a finite element-based
mesh warping algorithm. FEMWARP follows a 3-step
process to compute the warped mesh.

FEMWARP first quantifies the representation of
the initial mesh. To do so, it uses the standard Galerkin
FEM to solve the following Poisson BVP on the domain
Ω

(2.1) ∆u = 0 on Ω

with u = u0 on ∂Ω. Any u0 can be chosen according to
[23, 24]. Discretization yields the global stiffness matrix
with the following entries

(2.2) A(i, j) =

∫

Ω

∇φi · ∇φj dΩ,

where φi is a piecewise-linear shape function satisfying
φi(vi) = 1 and φi(vj) = 0, ∀j ̸= i. The resulting global
stiffness matrix is of the form

(2.3) A =

(

AI AB

AT
B X

)

,

where vertices map to row and column indices. Inte-
rior and boundary vertices are indexed as [1 : I] and
[I +1 : I +B], respectively. AI and AB store each inte-
rior vertex’s weights between neighboring interior and
boundary vertices, respectively. Note that computingX
is not necessary when executing FEMWARP, as it is not
used. The following multiple right-hand sides problem

(2.4) AI [xI , yI , zI ] = −AB [xB , yB , zB ]

then results from Equation 2.1, where [xI , yI , zI ] and
[xB , yB , zB ] represent the coordinate lists of the interior
and boundary vertices, respectively. Next, we apply a
user-supplied boundary deformation:

(2.5) [xB , yB , zB ] → [x̂B , ŷB , ẑB ].

Note that the boundary deformation can come from
experimental data or from a PDE that prescribes the
motion.

Finally, we solve the updated linear system to
determine final interior vertex positions:

(2.6) AI [x̂I , ŷI , ẑI ] = −AB [x̂B , ŷB , ẑB ].

The connectivity of the vertices in the original mesh is
preserved throughout the warping process. Addition-
ally, the construction of A only needs to happen once,
and the mesh can be updated multiple times based on
each user-supplied boundary deformation.

Computing FEMWARP for large meshes calls for
several optimizations to FEMWARP, because operat-
ing on a large AI matrix in serial is infeasible. Such
optimizations include storing AI in a sparse format, pre-
calculating the sparsity of AI , and developing an itera-
tive solver for sparse linear systems containing multiple
right-hand sides. It is also necessary to parallelize the
previously stated operations across multiple cores on
many distributed machines via MPI to further reduce
the total runtime. Additionally, we wish to use hybrid
parallel programming features available in the MPI-3
standard to reduce intra- and inter-node communication
in the sparsity precomputation. Before introducing our
novel parallel mesh warping method, we provide a brief
overview of advanced features offered by MPI-3 that we
use in ParFEMWARP.

3 Hybrid Parallel Programming with MPI-3

In modern parallel scientific computing, MPI and
OpenMP are commonly paired for inter-node and intra-
node communication, respectively, when parallelizing
software across a cluster. Such a pairing is an example of
hybrid parallel programming, where parallelism at both
the node and core level is achieved. The MPI-3 standard
offers a more uniform alternative to hybrid parallelism
by incorporating SHM as part of the MPI RMA inter-
face, as depicted by Figure 1. Additionally, Hoefler et

al. show that SHM has significantly less overhead than
blocking MPI solutions [8]. Furthermore, Li et al. re-
designed the Graph500 benchmark to make extensive
use of MPI-3 features, such as shared memory and one-
sided communication. This benchmark is relevant to
our neighbor precomputation strategy, as the bench-
mark’s first kernel involves generating a large graph
and compressing edge lists into a sparse format. Li et
al. compared their implementation with non-blocking
MPI, MPI+OpenSHMEM, and MPI+OpenMP imple-
mentations and found that their MPI-3 implementation
achieved better performance in terms of runtime [15].
We briefly describe the RMA interface and capabilities
offered by SHM.

The RMA interface offers a one-sided communica-
tion model, which means that any process may move
data between itself and a remote process without re-
quiring that process to synchronize. A rank may ex-
pose a region of memory for other ranks to interact
with via windows. These windows can be created
via MPI Win create. Other ranks may “put” and
“get” memory from this exposed memory viaMPI Put
and MPI Get operations. RMA offers several op-
tions for achieving synchronization. We specifically use
MPI Win flush local all and MPI Win flush all
to complete all RMA operations across ranks.
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Figure 1: MPI-3 Features Visualized.

While RMA is similar in purpose to non-blocking
MPI, the RMA interface offers shared memory win-
dows as of MPI-3. Before creating such windows,
the programmer had to split their MPI communi-
cator into groups based on which ranks can share
memory with the MPI COMM TYPE SHARED
split type passed into MPI Comm split type. Once
a shared memory communicator is established via
MPI Comm group, shared memory windows that
are only accessible within a node may be created via
MPI Win allocate shared. Any data exchanging
across shared memory and between ranks is now pos-
sible via simple load/store operations.

4 Precomputing Global Stiffness Matrix
Sparsity

The matrix AI is stored in the Compressed Sparse Row
(CSR) format, because AI is a large, sparse matrix. It
is also symmetric positive definite (SPD). Inserting new
non-zero elements into a CSR matrix, thus modifying
its sparsity pattern, is well-known to be extremely
expensive and highly discouraged [4]. Considering there
can be several billion non-zero values within FEM global
stiffness matrices for large tetrahedral meshes, it is

necessary to precalculate the sparsity pattern for AI .
As a result, element-wise updates occur in place of
element-wise insertions during global stiffness matrix
generation. To calculate AI ’s sparsity, we developed a
parallel method of precomputing neighbor lists (see Fig.
2) that is portable to shared and distributed memory
architectures. Figs. 3 - 8 show an example of how
our method would generate neighbor lists for a triangle
mesh with 4 cores equally distributed across 2 nodes.

When ParFEMWARP is initialized, only one rank
contains a full copy of the tetrahedron list T contain-
ing t tetrahedral elements, which is used to generate
our neighbor list. Only one rank contains T , as T
must be extremely large to store duplicates. Instead,
we first partition the tetrahedron list T into p subsets
T1, T2, ..., Tp based on the desired depth of data local-
ity, with each subset Ti being a unique list of tetrahe-
dra ti, ti+1, ..., tj , where j − i is approximately ⌈t/p⌉.
For our implementation, we use MPI Win create on
the buffer representing T . Additionally, we want all
ranks with shared memory to store their neighbor lists
in a single buffer. To achieve this, all ranks with
rshared comm = 0 use MPI Win allocate shared
to create a shared memory buffer neighbor listshared,
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while other ranks use MPI Win shared query to al-
low each rank to know the address of the shared buffer.
Each rank then extracts their subset Ti from T by using
MPI Get accumulate (see Fig. 3).

Then, we construct neighbor lists with distinct
integers in ascending order at the lowest level of the
hierarchy. The implementation of this is straightforward
and does not call for any MPI programming. Each
rank builds their list of lists in an exclusive portion of
neighbor listshared to avoid race conditions (see Fig. 4).

Lastly, we merge neighbor lists up the hierarchy and
across the shared memory (see Fig. 5). If multiple
nodes are utilized, we merge again across nodes via
RMA operations to obtain a global view of the complete
neighbor lists (see Figs. 6 - 8). Once the sparsity
pattern is determined, we initialize the matrix as zero.

5 Preconditioned Block Conjugate Gradient

The preconditioned conjugate gradient (PCG) method
is an iterative method for solving large, sparse SPD lin-
ear systems [20]. However, suppose one were to solve the
multiple right-hand sides problem within FEMWARP
with PCG. Then, one would need to solve the lin-
ear system with each right-hand side separately (i.e.,
AI x̂I = −ABx̂B , AI ŷI = −AB ŷB , and AI ẑI =
−AB ẑB). Whereas, the preconditioned block conjugate
gradient (PBCG) method [17, 3] can be used to solve
the multiple right-hand sides problem AI [x̂I , ŷI , ẑI ] =
−AB [x̂B , ŷB , ẑB ] directly. The pseudocode for the
method is given below in Algorithm 5.1. More infor-
mation regarding PBCG can be found in [17].

Algorithm 5.1. (PBCG) Precondtioned Block Con-
jugate Gradient

Input: A CSR matrix, B multiple right-hand sides
matrix, λmin minimum residual
Output: CSR matrix X such that AX = B
function PBCG(A,B, λmin)

R = B
P = R
Rold = RTR
Rnew = Rold

while trace(Rnew) < λmin do
K = (P−1AP )−1Rold

X = X + PK
R = R−APK
Rnew = RTR
G = R−1

oldRnew

Rnew = Rold

P = R+ PG
end while
return X

end function

6 ParFEMWARP

Our implementation involves the neighbor precomputa-
tion step described in Section 4 followed by the 3-step
algorithm shown in Section 2. Note that we do not use a
mesh partitioner. Computing stiffness matrix contribu-
tions based on rank-local tetrahedra is embarrassingly
parallel, as Figure 9 depicts. Each rank first computes
a local, partial version of AI and AB (see Equations
2.2-2.3). Note that entries corresponding to edges not
owned by a particular rank will remain as zero during
this stage. Next, we sum the local copies of AI across
ranks via MPI Allreduce to account for shared edges
across partitions. Similarly, we sum local copies of AB .
Next, we apply a user-supplied boundary deformation
(see Equation 2.5). For example, this may come from
a PDE describing the motion of the deforming domain
or experimental data. Performing this boundary up-
date is trivial. Finally, we solve the updated multiple
right-hand sides problem (see Equation 2.6) via our par-
allelization of the PBCG method (see Section 5) with
the Jacobi preconditioner. Sparse-dense matrix-matrix
multiplications arise when multiplying sparse AI with
dense matrices and are i× 3 (or similarly b× 3 for AB)
in PBCG, where i and b are the number of interior and
boundary vertices, respectively. Sparse-dense matrix-
matrix multiplications are parallelized, where each rank
out of p total ranks owns approximately ⌈n/p⌉ rows, i.e.,
each rank owns approximately the same number of rows
via a uniform partition. Dense matrix-matrix multipli-
cations, which arise during inner product computations
between two matrices, utilize similar partitioning with
block operations.

Algorithm 6.1. (ParFEMWARP) Parallel
FEMWARP

Input: [x, y, z] node list, T tetrahedron list,
usr def() boundary deformation function
Output: [x̂I , ŷI , ẑI ] updated interior node list
function ParFEMWARP([x, y, z], T,usr def())

// See Section 4
sparsity = parallel precompute(T)
(AI , AB).gen CSR(sparsity)
// See Equations 2.1-2.3
AI , AB = gen stiffness matrix parallel(T,V)
// See Equation 2.5
[x̂B , ŷB , ẑB ] = usr def([xB , yB , zB ])
// See Equation 2.6
[x̂I , ŷI , ẑI ] = PBCG(AI ,−AB [x̂B , ŷB , ẑB ])
return [x̂I , ŷI , ẑI ]

end function
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Figure 2: Merging neighbor lists across a cluster. For simplicity, this figure assumes there are p cores within the
cluster, and that there are

√
p servers each containing

√
p cores per server. Step 1: Input a list of tetrahedra.

Steps 2-3: Partition the list of tetrahedra for each server and/or core. Step 4: Build neighbor lists within each
core. Step 5: Merge neighbor lists between cores in each node. Step 6: Merge neighbor lists between nodes.

Figure 3: Partition T into p subsets T1, T2, ..., Tp, where p = 4, via RMA (4 cores equally distributed across 2
nodes). Note that HPC servers are denoted as “nodes” and that this example uses triangles instead of tetrahedra
for simplicity. Also note that this example only builds neighbor lists for interior vertices (vertex1, ..., vertex4).

7 Parallel Runtime Analysis

In this section, we analyze ParFEMWARP to provide
upper bounds on runtime for various stages of our
parallelization. Let t denote the number of tetrahedral
elements, v the number of vertices, d the maximum
degree of any given vertex, n the number of nodes,
pglobal the number of processes uniformly distributed
across n nodes, pnodal the number of processes within a
node, i.e., pnodal = pglobal/n, and Cx the time taken to
for event x to happen. Assume it takes tt, tv, td, and
tn time to process t, v, d, and n items, respectively.

7.1 Precomputation Assume all loads/stores
across shared memory require negligible time. The first
stage of neighbor list precomputation, which is at the
core-level, involves iterating through approximately
⌈t/pglobal⌉ separate tetrahedra, where each tetrahedron
is visited only once. This means that each core iterates
through ⌈t/pglobal⌉ tetrahedra. Since all 4 vertices of
the tetrahedron are neighbors of one another, we must
insert them into rank-local neighbor lists. Assume each
rank receives ⌈t/pglobal⌉ randomly assigned tetrahedra,
i.e., rank-local tetrahedra may be in several small
patches, rather than one large patch. This is the worst
case scenario, and we will only consider this case for
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Figure 4: Generate rank-local neighbor lists based on local Tp (4 cores equally distributed across 2 nodes)

Figure 5: Merge neighbor lists across shared memory (4 cores equally distributed across 2 nodes)

Figure 6: Exchange neighbor lists between nodes to merge via RMA (4 cores equally distributed across 2 nodes)

Figure 7: Merge neighbor lists across shared memory (4 cores equally distributed across 2 nodes)

the rest of our analysis. As a result, we would need
to insert up to 4⌈t/pglobal⌉ unique vertices into each

rank’s neighbor lists. Searching for the index to insert
a neighbor into a neighbor list, which is an ordered
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Figure 8: Obtain global view of neighbor lists via one final inter-node RMA exchange (4 cores equally distributed
across 2 nodes)

Figure 9: Parallel global stiffness matrix assembly across three ranks (see Section 6)

array of distinct integers, takes log2(td) time. The cost
of insertion is at most td time, with the worst case
situation being that we move all elements ahead of a
new entry by one index. Note that each rank now owns
partially complete neighbor lists each containing v lists.
As a result, the time taken to compute all rank-local
neighbor lists in parallel is bounded above by

(7.7) 4 ⌈tt/pglobal⌉ (log2(td) + td).

Next, we must merge neighbor lists within a

node across shared memory. Each rank is responsi-
ble for updating ⌈v/pnodal⌉ node-local lists by merg-
ing rank-local pnodal⌈v/pnodal⌉ neighbor lists. The
upper bound for merging two arrays of ordered dis-
tinct integers is td (log2(td) + td), meaning the up-
per bound for node-local merging of lists in parallel is
(pnodal ⌈tv/pnodal⌉) td (log2(td) + td). The upper bound
for merging neighbor lists in parallel using only shared
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memory is

(7.8) pnodal ⌈tv/pnodal⌉ td (log2(td) + td).

Finally, we must merge neighbor lists across nodes.
Each node is responsible for updating ⌈v/n⌉ neighbor
lists by merging node-local n⌈v/n⌉ neighbor lists. Since
(n − 1)⌈v/n⌉ of the n⌈v/n⌉ neighbor lists are on n − 1
different nodes, each rank is responsible for merging
n − 1 lists that are located on distributed memory,
which we exchange via the MPI Put RMA operation.
Assume the time for this initial, one-time, inter-node
data exchange takes at most Cexchange seconds. Each
node at most takes tn⌈tv/tn⌉ td (log2(td) + td) time to
perform the actual merging across shared memory (see
Eq. 7.8). To complete the global view of the neighbor
lists, we conduct one last exchange across nodes, again
via MPI Put. Again, we assume this also requires
Cexchange time. As a result, this inter-node merging
step of neighbor lists takes at most

(7.9) tn ⌈tv/tn⌉ td (log2(td) + td) + 2Cexchange

time.
The upper bound for merging neighbor lists in

parallel across multiple nodes is essentially the sum of
all the steps described in Equations 7.7-7.9, which is

(7.10)

4 ⌈tt/pglobal⌉ (log2(td) + td)

+ pnodal ⌈tv/pnodal⌉ td (log2(td) + td)

+ tn ⌈tv/tn⌉ td (log2(td) + td) + 2Cexchange.

We further simplify Equation 7.10 to the following
final expression:

(7.11)

(log2(td) + td) (4 ⌈tt/pglobal⌉
+ pnodal ⌈tv/pnodal⌉ d
+ tn ⌈tv/tn⌉ td ) + 2Cexchange.

7.2 Weight generation Global stiffness matrix as-
sembly involves computing the local element stiffness
matrices of ⌈t/pglobal⌉ elements per rank in an embar-
rassingly parallel manner. We assume that the com-
putation of each element’s contributions to AI and AB

requires Cweight time. We also assume the one-time
MPI Allreduce to account for shared edges across
partitions takes Callreduce time. As a result, the upper
bound for this step is ⌈tt/pglobal⌉Cweight + Callreduce.

7.3 Linear Solution The linear solution step, which
utilizes the preconditioned block conjugate gradient
method, will be solved in at most ⌈dim(AI)/s⌉ itera-
tions, where s is the number of systems to be solved

[17]. As a result, O’Leary notes in [17] that this method
may require less work than using CG s times. Since
we solve for the x, y, z coordinates, we require at most
⌈dim(AI)/3⌉ iterations. We assume that each iteration
takes Citeration. Then the upper bound for runtime will
be ⌈dim(AI)/3⌉Citeration.

7.4 Overall Runtime The upper bound for the
runtime of the algorithm for the single node case is the
sum of the expressions determined in all of the previous
subsections excluding Equation 7.9:

(7.12)

(log2(td) + td) (4 ⌈tt/pnodal⌉
+ pnodal ⌈tv/pnodal⌉ td)
+ ⌈tt/pnodal⌉Cweight + Callreduce

+ ⌈dim(AI)/3⌉Citeration.

The upper bound for the runtime of the algorithm for
the multiple node case (i.e., pglobal = pnodal) is the
sum of the expressions determined in all of the previous
subsections:

(7.13)

(log2(td) + td) (4 ⌈tt/pglobal⌉
+ pnodal ⌈tv/pnodal⌉ td
+ tn ⌈tv/tn⌉ td ) + 2Cexchange

+ ⌈tt/pnodal⌉Cweight + Callreduce

+ ⌈dim(AI)/3⌉Citeration.

For the single node case, we conclude that speedup
for precomputing neighbor lists should increase by a
factor of pnodal if t is significantly larger than v, i.e.
a linear speedup, which is the case seen in the meshes
used for our experiments in Table 1. For the multiple
node case, we conclude that the speedup precomputing
neighbor lists should increase by a factor of n. Although
the speedups should be linear with respect to n, we
note that n will almost always be less that p unless
pnodal = 1. This means that the speedups for the multi-
node case will be less than the single-node case when
comparing with the same values for p, but will remain
linear as n increases.

8 Numerical Experiments

We evaluate the performance of ParFEMWARP by run-
ning a series of numerical experiments. ParFEMWARP
was developed using C++, OpenMPI 4.0.7, and Eigen
3.4.0 [7]. Experiments utilized up to 256 cores on the
KU Community Cluster Bigjay partition which contains
Intel Xeon Gold 6349 CPUs running at 2.60GHz with
FDR Infiniband. The nodes contain a mix of 256GB or
1024GB of RAM per node.

We utilize two meshes for our experiments: 1) hand
(Fig. 10) containing approximately 102 million tetrahe-
dra [28], and 2) NASA’s High-Lift Common Research
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Model (HL-CRM) (Fig. 11) containing approximately
48 million tetrahedra [13]. The hand model was tetra-
hedrized via Tetgen 1.6.0 [25] and the HL-CRM was un-
modified. Further details regarding the meshes utilized
for our experiments are provided in Table 1.

Mesh Hand HL-CRM
Tetrahedra 102,363,432 47,791,227

Interior Vertices 15,548,805 7,807,613
Boundary Vertices 1,894,189 281,184
Total Vertices 17,442,994 8,088,797
AI Non-zeros 233,467,643 116,215,667
AB Non-zeros 7,003,946 1,111,065

Total Non-zeros 206,870,949 117,326,742

Table 1: Mesh Information

Figure 10: Hand mesh

Figure 11: Surface of NASA Common Research Model
Mesh

8.1 Scaling Experiments To test the scalability
and portability of ParFEMWARP across shared and
distributed architectures, we ran scaling experiments
up to 32 cores on a single node and up to 256 cores
across 64 nodes, as Fig. 14 shows. Figs. 16 and 17
show the scaling for different steps of the algorithm,
and Tables 2a and 2b report average run-times. Note
that our experiments were limited to 4 cores per node
in the multi-node experiments, as we were limited by
our accessibility to the cluster.

Figure 12: Surface deformation of CRM with the
initial mesh (green) and the deformed mesh (orange)
overlaid.

ParFEMWARP Average Single Node Runtime Breakdown (Seconds)

Cores
Neighbor

Computation
Global Stiffness

Generation
PBCG Overall

1 252.80 15,640.25 86,561.65 102,464.15
2 83.42 7,552.07 43,328.45 51,132.65
4 49.74 3,829.19 32,151.30 26,561.45
8 32.54 1,845.51 14,312.55 16,422.95
16 21.27 927.88 9,737.79 10,921.80
32 15.60 468.23 7,533.33 8,275.55

(a) FEMWARP single node runtimes

ParFEMWARP Average Multi-Node Runtime Breakdown (Seconds)

Cores
Neighbor

Computation
Global Stiffness

Generation
PBCG Overall

1 252.80 15,640.25 86,561.65 102,464.15
2 83.42 7,552.07 43,328.45 51,132.65
4 49.74 3,829.19 32,151.30 26,561.45
8 61.46 1,888.53 16,330.35 18,510.15
16 50.49 1,004.39 16,050.25 17,333.05
32 49.22 521.89 14,089.15 14,882.90
64 35.86 262.09 9,288.29 9,835.51
128 28.33 127.88 7,371.07 7,788.25
256 25.74 67.97 5,828.62 6,181.26

(b) FEMWARP multi-node runtimes

Table 2: FEMWARP runtimes

According to Fig. 17 (a), the performance of the
precomputation stage degrades slightly when introduc-
ing more than one node. However, performance con-
tinues to improve with larger node counts due to inter-
node and intra-node merging via RMA and SHM, re-
spectively. Tables 2a and 2b show that the linear solver
dominates the runtime.

8.2 Application We use ParFEMWARP to warp
the HL-CRM mesh upon surface deflections of the wing.
Such deflections of the wing and how they relate to
the rest of the volume has been studied in previous
literature [10] [11]. For our user-defined boundary
deformation, we calculate deformations of the wing
based on formulas for calculating the deflection of an
end-loaded cantilevered beam [5]. Since we assess this
problem completely geometrically, we set elasticity and
inertia to 1 and discard them. Equation 8.14 shows the
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(a) Cross section with inset regions marked in blue

(b) Left inset region

(c) Right inset region

Figure 13: Cross sections of the HL-CRM mesh before
and after deformation via ParFEMWARP. Black is the
initial mesh and red is the deformed mesh.

resulting equations used to calculate the deformation
for use in Equation 2.5. We perform this deformation
in an embarrassingly parallel manner. For deforming
the HL-CRM model, we utilize

(8.14)

ẑB = zB + P
y2B(3l − yB)

6
ŷB = yB cos(θ)

x̂B = xB

θ =
Pl2

2
,

where l is the length of the beam, θ is the angle of
deflection, and P is force, which we set to 0.02 for our
experiments.

Fig. 12 shows our boundary deformation on a
surface mesh, and Fig. 13 shows the cross sections
of the original mesh and the mesh deformed via Par-
FEMWARP, respectively. The cross sections are both

(a) Single-node speedup

(b) Multi-node speedup

Figure 14: ParFEMWARP speedups (blue) for versus
ideal speedup (red) for single and multiple node exper-
iments.

Mean Ratio Mesh Quality
State Maximum Average Minimum
Initial 0.9996000 0.2748491 0.0002246

Deformed 0.9995954 0.2748399 0.0002246

Table 3: Mesh quality comparison before and after
deformation of HL-CRM

located 4.1% into the the y-axis.
We also provide mesh quality statistics in Table 3

and Figure 15 using the mean ratio metric [16]. This
metric ranges from 0 to 1, with 0 representing a de-
generate element and 1 representing an ideal element.
Also, note that the x-axis in Figure 15 is on a log scale.
We see very little change in the mesh quality after the
deformation. This is due to our experiment involving a
small deformation to avoid tangling the mesh, which is
highly anisotropic before and after applying the defor-
mation as indicated by Table 3 and Figure 15. Note that
larger deformations that yield valid meshes are possible
with ParFEMWARP for isotropic tetrahedral meshes
[24]. Regardless, the average mean ratio before and
after the deformation remained nearly the same. Ad-
ditionally, according to Figure 15, a slight degradation
in mesh quality was observed. This is typical for mesh
warping algorithms for a deformation of this size.
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Figure 15: Mesh quality histograms for before and after
deformation of HL-CRM in log-scale

9 Conclusions and Future Work

We proposed ParFEMWARP, a parallel version of the
FEMWARP algorithm [23, 24], for warping tetrahedral
meshes. Our method utilizes shared-memory and one-
sided communication features available in MPI-3, and
hence the implementation is portable across shared
and distributed memory architectures. We utilized
hybrid parallelism to precompute global stiffness matrix
sparsity. Specifically, we use shared memory and one-
sided communication to achieve good performance when
calculating neighbor lists. The authors are not aware
of any other work that achieves this across a cluster
of multi-core systems. We believe the approach we
described can benefit other FEM-based applications,
such as the one described by Krysl [12]. In that paper,
Krysl showed that their sparsity computation method
achieves better speedups when solving nonlinear FEM
problems, since the global stiffness matrix needs to be
reassembled multiple times. Since Krysl’s method has
only been scaled to a single node, it would be interesting
to modify our multi-node strategy to support larger
nonlinear problems. Furthermore, the precomputation
method may serve useful for simulations that require
regenerating global stiffness matrices sporadically. In
the context of mesh warping via FEMWARP, one may

perform several deformations with a fixed AI and AB ,
then remesh when the quality eventually degrades too
much, and then perform several more deformations. In
addition, we utilized the preconditioned block conjugate
gradient method to efficiently solve a linear system with
multiple right-hand sides.

ParFEMWARP exhibits excellent near-linear
speedup in the single node experiments and sublinear
speedups in the multi-node experiments. Our largest
multi-node experiment shows a 16.6x speedup, while
our largest single node speedup is 12.1x, thus achieving
a 33.9% increase between multi-node and single node
speedups. Utilizing a multi-node configuration for Par-
FEMWARP may achieve better scaling when solving
larger problems, whereas a single node configuration
is suitable for relatively small problems. Furthermore,
the cluster resources available to the authors provided
medium-scale parallelism, which dictated the number
of cores and nodes and the problem size utilized in our
experiments.

Future work revolves around improving the perfor-
mance of the linear solution step, as this dominates
the runtime. This includes exploring various precondi-
tioners that may yield improved results. Furthermore,
carefully utilizing mixed-precision operations may in-
crease the number of flops per iteration while main-
taining reasonable accuracy. This has already been ob-
served in mixed-precision PCG [1], so it would be in-
teresting to study how mixed-precision PBCG would
perform. Additionally, collective operations in PBCG
can be replaced with shared memory and RMA op-
erations to overlap communication with computation.
Furthermore, it would be interesting to see whether
non-blocking MPI can achieve better speed-ups in place
of one-sided communication for inter-node merging of
neighbor lists. Finally, developing a multi-GPU par-
allelization in the weight generation and linear solving
steps may further improve the performance.
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Figure 16: ParFEMWARP speedup (blue) breakdown
for single node versus ideal speedup (red).

(a)

(b)

(c)

Figure 17: ParFEMWARP speedup (blue) breakdown
for multiple nodes versus ideal speedup (red).
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