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Abstract

We present a new software package, “HexOpt,” for improv-

ing the quality of all-hexahedral (all-hex) meshes by max-

imizing the minimum mixed scaled Jacobian-Jacobian en-

ergy functional, and projecting the surface points of the

all-hex meshes onto the input triangular mesh. The pro-

posed HexOpt method takes as input a surface triangular

mesh and a volumetric all-hex mesh. A constrained op-

timization problem is formulated to improve mesh quality

using a novel function that combines Jacobian and scaled

Jacobian metrics which are rectified and scaled to quadratic

measures, while preserving the surface geometry. This opti-

mization problem is solved using the augmented Lagrangian

(AL) method, where the Lagrangian terms enforce the con-

straint that surface points must remain on the triangular

mesh. Specifically, corner points stay exactly at the corner,

edge points are confined to the edges, and face points are

free to move across the surface. To take the advantage of the

Quasi-Newton method while tackling the high-dimensional

variable problem, the Limited-Broyden-Fletcher-Goldfarb-

Shanno (L-BFGS) algorithm is employed. The step size for

each iteration is determined by the Armijo line search. Cou-

pled with smart Laplacian smoothing, HexOpt has demon-

strated robustness and efficiency, successfully applying to

3D models and hex meshes generated by different methods

without requiring any manual intervention or parameter ad-

justment.

1 Introduction

Hexahedral (hex) mesh generation plays an important
role in solving partial differential equations in multiple
fields such as computer graphics, medical modeling, and
engineering simulations [36]. Compared to tetrahedral
meshes, hex meshes are generally preferred due to their
higher accuracy, fewer element counts, and greater re-
liability [1, 28]. Despite these recognized benefits, au-
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tomatic generation of high-quality and conforming hex
meshes remains a significant challenge [20, 35, 40]. The
generation of high-quality hexahedral meshes typically
involves (1) initial mesh generation with connectivity
designed to fit the input geometry; (2) vertex position
modification to optimize the mesh quality and geome-
try fitting [20]. The initial meshes that serve as input
to step 2 often contain poorly shaped and even inverted
elements. On one hand, eventually all the inverted ele-
ments need to be eliminated, because even a single in-
verted, or non-convex element, makes a mesh unusable
for simulation. On the other hand, the rigid structure
of hex elements complicates local adjustment strate-
gies, unlike the more flexible quadrilateral or tetrahedral
meshes [26].

Due to the aforementioned reason, hex mesh op-
timization remains an active and challenging research
area [9, 27, 21]. It involves improving the quality of
the worst elements and aligning the quadrilateral sur-
face with the input triangular boundary. Many algo-
rithms have emerged to improve mesh quality. One such
method, Laplacian smoothing, is both straightforward
and effective, repositioning vertices to the centroid of
their adjacent vertices [4]. While cost-efficient and easy
to implement, this technique risks inverting neighbor-
ing elements. To mitigate this problem, optimization-
based strategies are proposed to evaluate and improve
the quality of elements neighboring a node [37, 39, 38].
A hybrid approach combining Laplacian smoothing with
optimization, can balance between efficiency and ro-
bustness [5, 4]. For non-manifold hex meshes in micro-
structured materials, a specialized method utilizing a
vertex categorization system integrated with pillowing,
geometric flow, and optimization is proposed, address-
ing previous research limitations [23].

An untangling scheme performs single and fast local
linear programming and traverses through each vertex
until the quality cannot be improved any more [6]. Such
method has local convergence proof, whereas it gets
trapped in local minimum when the local solution space
is empty, and better local solution can only be achieved
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by simultaneously moving multiple vertices. Therefore,
an edge-cone rectification method that combines local
quadratic programming with global reconciliation is
employed to achieve good practical performance [18]. A
similar Newton-Raphson-based method that maximizes
the average scaled Jacobian is proposed [25], whereas
this method does not consider fitting the geometry
surface.

Several other iterative techniques have been pro-
posed to gradually shift vertices towards boundaries
while avoiding local adjustments that might result in
hex flipping [19, 16, 22]. These methods are straight-
forward but may sometimes struggle to maintain pre-
cise geometry. A global deformation method has been
shown to exhibit robust alignment of the resultant mesh
with the input surface through surface mapping. The
fitting process is controlled using a Hausdorff distance
threshold [33]. However, this method sometimes fails to
preserve exact geometry in their experimental results. A
structure-aware geometric optimization method for hex
meshes is proposed [32], aiming to improve mesh quality
by optimizing the positions of singular lines and param-
eterization in the base complex structure. However, it
cannot optimize hex meshes with tangled meshes and
struggles with meshes featuring high-valence edges. Re-
cent work introduces a three-stage optimization pipeline
capable of generating high-quality, inversion-free hexa-
hedral meshes [8]. However, this approach does not ad-
dress the critical requirement of conforming hexahedral
mesh surfaces to pre-defined triangular surface meshes.

In this paper, starting with a 3D closed mani-
fold surface including any annotated sharp features,
our method focuses on minimizing an objective func-
tion combining two widely recognized algebraic metrics,
Jacobian and scaled Jacobian, which are rectified and
scaled to quadratic measures. We conduct analysis of
the scaled Jacobian function and effectively address its
undesirable behavior in degenerate regions. To evaluate
optimization performance, we compare two methods:
the steepest descent with a fixed learning rate (adopted
in the previous software package “HybridOctree Hex”
[30]) and L-BFGS with Armijo line search. For surface
points, we compute their projection points on the tri-
angle surface, which is the equality constraint. These
equality constraints are handled using the AL method.
Ultimately, we incorporate Laplacian smoothing to ac-
celerate convergence and tackle situations where surface
points get trapped in local minima. In the experiments,
we eliminate self-intersections and obtain good mini-
mum scaled Jacobians across all tested models, surpass-
ing the current state-of-the-art results [18]. Addition-
ally, our innovative approach excels in accurately pre-
serving intricate curved and sharp features. To foster

additional research and collaboration, we make avail-
able HexOpt source code, as well as a collection of gen-
erated meshes and their input-output data, accessible
at https://github.com/CMU-CBML/HexOpt.

The paper is organized as follows: Section 2
presents the algebraic shape quality metric, focusing on
the (scaled) Jacobian for hex elements. It also explores
the detailed algorithms of the AL objective function,
the L-BFGS, and the Armijo line search, as well as the
pipeline pseudo-code. Section 3 exhibits meshing exam-
ples, demonstrating that our proposed method creates
valid meshes composed of high-quality hexes. Lastly,
Section 4 concludes the paper and provides insight into
potential future research directions.

2 Hex Mesh Optimization

The input is a watertight triangular mesh T annotated
with sharp features and its corresponding hex mesh H.
The word “watertight” means that each edge is shared
by exactly two faces. The surface of H is denoted as
SH. Although SH approximates the triangular mesh
surface, it lacks accurate fitting. To address this issue,
we adjust H to H′ to ensure that SH′ fits T while
maintaining a high minimum scaled Jacobian. Figure
1 illustrates our mesh optimization process. The top
left showcases the sphere-shaped surface geometry T .
The bottom left shows the initial core mesh H in yellow
and its surface SH in blue. When the optimization
begins, the gradient of the objective function measuring
mesh quality and geometry fitting is calculated for each
vertex in H′, and the vertices are warped based on the
approximated Hessian matrix. After some iterations,
the vertices on SH′ (the surface of H′) first fit T ,
and the minimum scaled Jacobian increases; see the
middle picture. Subsequently, we continue to optimize
both geometry fitting and mesh quality until we can no
longer improve the minimum scaled Jacobian without
deviating vertices on SH′ from T . The final optimized
mesh is shown in the bottom right.

2.1 Algebraic Quality Measures for Hex Ele-

ments We adopt the scaled Jacobian to measure mesh
quality [10]. Within each hex h, for every corner node x,
three edge vectors are defined as ei = xi−x (i = 0, 1, 2).
The Jacobian matrix at x is constructed as [e0, e1, e2],
and its Jacobian, J(x), is the determinant of this ma-
trix. We obtain the Scaled Jacobian, SJ(x), when e0,
e1, and e2 are normalized to ei

∥ei∥2

. For the scaled Ja-

cobian SJ(h), we compute at the eight corners and the
body center, and the hex scaled Jacobian is the min-
imum of these nine values. For the body center, ei
(i = 0, 1, 2) is calculated using three vectors formed by
pairs of opposite face centers. The scaled Jacobian value
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Figure 1: Hex mesh optimization process. The triangle surface T is shown in white. The quadrilateral surface
SH is shown in blue. The hex core mesh H \ SH is shown in yellow. The vertices are warped to minimize the
objective function in Equation (2.8). The middle stage mesh H′ with SH′ exactly fits to T with the minimum
scaled Jacobian of 0.01. The minimum scaled Jacobian is increased by 0.01 every time with SH′ exactly fitting
to T
until we cannot improve anymore, and we export the final mesh at the bottom right.

range is [−1, 1].

2.2 Mixed Scaled Jacobian and Jacobian Since
we want to maximize the minimum scaled Jacobian of
H, the straightforward idea is to use the so-called Rec-
tified Scaled Jacobian (ReSJ ) as the objective function:

(2.1) max
∑

h∈H

ReSJ(h,Θ),

where Θ > 0 is the threshold for the minimum scaled
Jacobian value,

(2.2) ReSJ(h,Θ) =

{

SJ(h), if SJ(h) ≤ Θ

Θ. if SJ(h) > Θ

With this setting, it is expected that all hexes with
a scaled Jacobian lower than Θ will be optimized, and
the optimization will finish when the objective reaches
NhΘ, where Nh represents the number of hexes in
H. However, relying solely on the scaled Jacobian in
optimization presents two issues: 1) the scaled Jacobian
is non-differentiable at certain points and is non-convex
even when only one corner point moves. This problem
is illustrated in 2D in Figure 2. In Figure 2(a), the
points encircled by green circles are non-differentiable,

and the regions marked by green squares represent local
minima. 2) The scaled Jacobian is non-dimensional, and
its derivative has an inverse proportional relationship
with the hex edge length. Ideally, the derivative should
be proportional (i.e., the objective function should be
quadratic) to the element size so that the optimization
remains invariant to scaling. Otherwise, if the mesh
is highly adaptive, elements with a fine scale will have
much larger gradients than elements with a coarse scale,
as observed in [30].

To address the first issue, we propose the improved
Rectified Hybrid Jacobian (ReHJ ). As shown in the
Jacobian plot in Figure 2(b), the negative Jacobian
region displays a much more convex and everywhere-
differentiable landscape, and both the Jacobian and the
scaled Jacobian are always either positive or negative.
When the Jacobian is non-positive, ReHJ is the Jaco-
bian value; when the Jacobian is positive, ReHJ is the
scaled Jacobian value. We obtain
(2.3)

ReHJ(h,Θ) =











J(h), if J(h) ≤ 0

SJ(h), if J(h) > 0, SJ(h) ≤ Θ

Θ. if SJ(h) > Θ

To address the second issue, recall that given three
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Figure 2: ReSJ, ReHJ, and ReHQJ plots of a quadrilateral element with three points (in black) fixed at (0, 0),
(1, 0), and (0, 1), and one point (in green) free to move within the plane. Θ = 0.6 is set. (a) The contour plot of
function ReSJ. Singular points are encircled with green circles, and local minimum regions are marked with green
squares. (b) The contour plot of function ReHJ on the same element. The functional landscape is piecewise linear
in the negative Jacobian region. (c) The contour plot of function ReHQJ (the final adopted objective function)
on the same element.

edge vectors e0, e1, e2 at hex element h’s corner/center
x, we have

(2.4)

J(x) = det (e0, e1, e2),

SJ(x) = det

(

e0

∥e0∥2
,

e1

∥e1∥2
,

e2

∥e2∥2

)

,

where h’s average edge length is denoted as ē. We scale
J and SJ to quadratic measures, namely QJ and QSJ ,
as follows:

(2.5)
QJ(x) =

J(x)

ē
,

QSJ(x) = SJ(x)ē2.

The updated objective function, called Rectified Hybrid
Quadratic Jacobian (ReHQJ ), is written as
(2.6)

ReHQJ(h, θ) =











QJ(h), if J(h) ≤ 0

QSJ(h), if J(h) > 0, SJ(h) ≤ Θ

Θ, if SJ(h) > Θ

where it should be noted that since the function of ē
is to normalize the average edge length of h and we do
not want to change the landscape of J and SJ , ē is
considered as a constant in Equation (2.5) and does not
participate in the gradient calculation. Its plot is shown
in Figure 2(c).

2.3 Constraint Setting and Augmented La-

grangian As discussed in Section 1, the optimization
of mesh quality is subject to the constraint that the

xt

xt

xt

x

x

x

Figure 3: Three types of optimization constraints: (1)
the sharp corner point x and its target position xt in red;
(2) the sharp edge point x and its target position xt in
green; and (3) the face point x and its target position
xt in blue.
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boundary surface SH must be fitted to the input trian-
gular mesh T . Specifically in Figure 3, for each point
xi ∈ SH, we compute its target point xt

i ∈ T to which
xi should project. The determination of xt

i depends on
the type of features: If xi is a sharp corner (red), then
xt
i is projected to the corresponding corner point. If xi

is on a sharp edge (green), we compute its projection
onto each candidate sharp edge and select the closest
projection point as xt

i. If xi is a face point (blue), we
compute its projection onto each triangle and select the
closest projection point as xt

i. Once the target points
{xt

i}
Ns

i=1 are determined, where Ns denotes the number
of vertices in SH, these constraints can be formulated
as Ns equality conditions. The optimization problem is
then formulated as:

max
∑

h∈H

ReHQJ(h,Θ)

subject to Zk = Zt
k,

(2.7)

where xi ∈ SH, Zk = (x0, x1, · · · , xNs−1) in optimiza-
tion iteration k. Zt

k ∈ T denotes the target points to
which Zk should project. Θ = 0 is set initially, repre-
senting the desire for at least an all-positive-Jacobian
mesh. Similar to Equation (2.1), the optimization ter-
minates when

∑

h∈H ReSJ(h,Θ) = NhΘ and all con-
straints are met. Subsequently, Θ is incremented by
0.01, the optimization of H is repeated with the new
configuration, and the previous solution H′ is used as
the “warm start”. This iterative process continues until
the optimization problem becomes infeasible.

The constrained optimization problem (2.7) can be
reformulated as an unconstrained minimization problem
through the AL method:

minL(H,Θ, T ) = min−
∑

h∈H

ReHQJ(h,Θ)+

∑

Zk

[

λi(Zk − Zt
k) +

ρ

2
(Zk − Zt

k)
2
]

.
(2.8)

Following each iteration, the Lagrange multipliers λi are
updated:

(2.9) λi = λi + ρ(Zk − Zt
k).

Each time the minimum scaled Jacobian reaches Θ (i.e.,
∑

h∈H ReSJ(h,Θ) = NhΘ), the barrier coefficient ρ is
doubled to strengthen the boundary constraints.

2.4 L-BFGS and Line Search An optimizer is
essential for determining both the search direction and
the step size for H to minimize L. While a simple
approach would be to use Gradient Descent, given
the assumption that SH closely approximates T , a

quasi-Newton method with quadratic convergence [2] is
employed to compute the search direction. In contrast,
gradient descent employs the negative gradient pk =
−∇x∈HL directly to compute the search direction.
Consequently, the computational time per iteration
for gradient descent is notably shorter compared to
quasi-Newton methods. However, due to its first-
order convergence, gradient descent needs significantly
more iterations than quasi-Newton methods to achieve
convergence.

Other quasi-Newton methods, including the
Levenberg-Marquardt method [24], face a challenge:
the calculation of the Hessian and the inversion of
sparse matrices are computationally intensive, leading
to a considerable rise in computational time. This
level of computational demand is not acceptable for
mesh optimization tasks involving millions or more
variables. A more advantageous equilibrium between
the convergence rate and computational complexity
is attained through the L-BFGS algorithm. L-BFGS
implicitly approximates the inverse Hessian H−1

k for
the k-th iteration of the function pk = −H−1

k ∇x∈HL by
utilizing information from the preceding m optimiza-
tion iterations. For estimating the Hessian, it retains
data from prior iterations, specifically sk = Zk+1 − Zk

in optimization iteration k and yk = ∇k+1L − ∇kL.
Although the determination of the search direction
using L-BFGS is approximately twice as slow as
gradient descent in experimental settings, it requires
about an order of magnitude fewer iterations to reach
convergence.

After determining the search direction pk, we need
to select a proper step size ak. Consider the Taylor
expansion of L at Zk:

(2.10) L(Zk + akpk) = L(Zk) + akp
T
k∇L(Zk + takpk).

The exact value of t remains unknown, thus we adopt
the Armijo line search to numerically determine t. We
introduce a small parameter c1 = 10−4 ∈ (0, 1) along-
side ∇L(Zk) to relax the constraint on L(Zk + akpk)−
L(Zk). Initially, we set ak = 1 and accept this value
if L(Zk + akpk)−L(Zk) ≤ c1akp

T
k∇L(Zk). Should this

condition not be met, ak is adjusted through backtrack-
ing by multiplying it by η = 0.5. It is important to note
that, theoretically, an arbitrarily small step size could
satisfy the aforementioned condition; however, adopting
excessively small steps markedly increases the computa-
tional time. Consequently, we terminate the backtrack-
ing process once ak drops below 10−8.

2.5 Complete Pipeline Pseudo-Code The
pseudo-code in Algorithm 2.1 summarizes our proposed
pipeline. The process of searching for xt

i for each xi
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involves iterating over all corner points, edges, and
faces, which introduces a significant computational
overhead. Although confining the search to objects
within a predefined searching box centered at xi

typically yields similar H′ outcomes, global traversals
are necessary to ensure the highest possible success of
the optimization. The constants used in the pipeline
are experimentally determined, and variables with sub-
scripts less than zero are disregarded as they represent
invalid or initialization states.

Algorithm 2.1. (HexOpt) All-Hexahedral Mesh
Quality Improvement

Input: Manifold, watertight triangular mesh T with
annotated sharp features, an all-hex mesh H, mini-
mum scaled Jacobian threshold Θ

Output: Warped all-hex mesh H′ with good mesh
quality and its boundary SH fitted to T

1: Initialize Nh ← #elem ∈ H, Ns ← #vert ∈ SH,

iteration number k ← 0, history length m ← 15,
Lagrangian multiplier λ ← 0, penalty coefficient
ρ← 10−8, Armijo constant c1 ← 10−4

2: while ∃xi ∈ SH, ∥xi − xt
i∥ > 10−8 do

3: Calculate xt
i, ∀xi ∈ SH ▷ Update equality

constraints
4: Call L-BFGS to update variables ▷ See

Algorithm 2.2
5: if k%100 == 0 then

6: smartLaplacianSmoothing(H) ▷ Smooth the
mesh

7: end if

8: k ← k + 1
9: end while

10: return H′

Algorithm 2.2. (HexOpt) L-BFGS Update

Input: Current vertices xi, target vertices
xt
i, ρ, λ,Nh, Ns, k,m, c1, history vectors

ρi, si, yi, i = k −m, k −m+ 1, · · · , k − 1, i ≥ 0
Output: Updated variables Zk+1

1: Calculate gradient q ← ∇Lk ▷ See Equation (2.8)
2: for i = k − 1, k − 2, · · · , k −m do ▷ First loop
3: αi ← ρis

T
i q

4: q ← q − αiyi
5: end for

6: r ← H0
kq =

sT
k−1

yk−1

yT

k−1
yk−1

q

7: for i = k −m, k −m+ 1, · · · , k − 1 do ▷ Second
loop

8: β ← ρiy
T
i r

9: r ← r + si(αi − β)
10: end for

11: Zk ← (x0, x1, · · · , xNs−1)
12: Zt

k ← (xt
0, x

t
1, · · · , x

t
Ns−1)
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Figure 4: Convergence plot on the exhibited eight
models.

13: sk ← Zk − Zk−1

14: yk ← ∇Lk −∇Lk−1

15: if yTk sk == 0 then

16: ρk ← 108

17: else

18: ρk ←
1

yT

k
sk

19: end if

20: λi ← λi+ ρ(Zk−Zt
k) ▷ Update Lagrange multiplier

21: if
∑

h∈H ReSJ(h,Θ) = NhΘ then

22: ρ← 2ρ ▷ Update penalty term
23: end if

24: // Armijo Line Search
25: ak ← 1
26: while ak > 10−8 and L(Zk + akr) − L(Zk) >

c1akr
T∇L(Zk) do

27: ak ← 0.9ak
28: end while

29: (x0, x1, · · · , xNs−1)← Zk + akr ▷ Update variables

3 Results and Discussion

We evaluate our method on a range of input hexahe-
dral meshes generated using various state-of-the-art al-
gorithms archived in HexaLab [3] and from our group’s
previous work [34, 30] on a PC equipped with a 3.6
GHz Intel i7-12700 CPU and 64GB of memory. These
methods include PolyCube-based approaches [7, 34]
(rkm012 1, mount2), cross-field-based techniques [11,
17] (impeller, mid2Fem), interactive methods [29, 41]
(bunny, CAD4), and octree-based methods [19, 30]
(anc101, isidore horse). Some of these meshes contain
inverted elements, while others have all positive Jaco-
bians but deviated surfaces. We intentionally tangle in-
terior vertices of all meshes (boundary vertices remain
unmoved) to increase the difficulty of quality improve-
ment.

As shown in Figure 5 and Table 1, HexOpt con-
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Table 1: Hex mesh statistics for models optimized with HexOpt.

Model #Vert #Elem OriSJ PreSJ PostSJ PreMaxDist
L-BFGS/GD
Time (s)

rkm012 1 21,312 18,751 [0.47, 1.0][7] [-1.0, 0.83] [0.60, 1.0] 0.002072 25/42
mount2 7,945 6,208 [0.14, 1.0][34] [-1.0, 0.62] [0.37, 1.0] 0.005451 10/36
impeller 15,248 11,174 [0.18, 1.0][11] [-1.0, 0.96] [0.43, 1.0] 0.0009514 20/48
mid2Fem 1,590 908 [-0.15, 1.0][17] [-1.0, 0.41] [0.48, 1.0] 0.0002551 5/10
bunny 3,724 2,832 [-0.77, 0.98][29] [-1.0, 0.77] [0.12, 0.98] 0.0 8/18
CAD4 3,721 2,704 [0.069, 1.0][41] [-1.0, 1.0] [0.12, 1.0] 0.0 9/20
anc101 154,675 135,982 [0.017, 1.0][19] [-1.0, 0.87] [0.33, 1.0] 0.003714 69/198

isidore horse 209,974 182,124 [N/A, 1.0][30] [-1.0, 1.0] [0.54, 1.0] 0.02702 54/171

From left to right: model name, number of vertices, number of hex elements, scaled Jacobian range of original models, scaled
Jacobian range before optimization, scaled Jacobian range after optimization, maximum relative deviation from T before optimization
(maximum relative deviation from T after optimization, PostMaxDist, are all 0), L-BFGS/gradient descent running time in seconds.

sistently produces inversion-free hexahedral meshes H′

and significantly improves the worst-scaled Jacobian.
We optimize using the perturbed initial mesh, and the
minimum scaled Jacobian after optimization always ex-
ceeds that of the original initial mesh. The “maxDist”
value in the figure represents the maximum relative dis-
tance. This is calculated by traversing through the ver-
tices in SH, finding the vertex with the longest distance
to T , and dividing this distance by the diagonal length
of T ’s bounding box. All the PostMaxDist are 0, repre-
senting that the optimized mesh boundary SH remains
exactly on the input surface T . Our findings indicate
that L-BFGS achieves PostSJ comparable to that of gra-
dient descent while reducing computation time by ap-
proximately 50%.

Additionally, we observe that the method per-
forms particularly well with meshes that have an as-
pect ratio close to 1 (rkm012 1, mid2Fem, anc101, and
isidore horse). A plausible explanation for this phe-
nomenon is that the scaled Jacobian of elements with
large aspect ratios is highly sensitive to vertex move-
ments along the shorter edges, making it considerably
more challenging to achieve an optimal solution. From
this perspective, the most suitable application for Hex-
Opt may be as a post-optimization technique for octree-
based meshes. Finally, the convergence plots of the
minimum scaled Jacobian for these models are shown
in Figure 4. At each save node, SH is exactly fitted to
T . From the plots, we observe that it typically takes
some time to reach convergence. However, the mini-
mum scaled Jacobian is rapidly improved to 60%–70%
of its final value, taking only around 10% of the to-
tal time. Subsequently, the rate of improvement slows
down. Therefore, in practice, one can stop the optimiza-
tion process once the slope of the convergence curve be-
comes sufficiently shallow, without necessarily waiting

for complete convergence.
We evaluate the necessity of the objective function

configuration by substituting Equation (2.6) in Equa-
tion (2.8) with Equation (2.3). The optimization failed
to converge for the models anc101 and isidore horse due
to their surface mesh adaptivity. Furthermore, when
Equation (2.2) was used instead, the optimization failed
to converge for all models.

One limitation of HexOpt is its lack of a theoreti-
cal lower bound on the minimum scaled Jacobian. We
believe that establishing such a bound is a challenging
problem, particularly when the shape of T is also con-
sidered. Another limitation arises from our initial ap-
proach of employing path-finding algorithms to detect
sharp features, which exhibited unreliability in models
with large-aspect-ratio elements proximal to sharp fea-
tures, such as mount2 and CAD4. This unreliability
is caused by boundary quadrilaterals with two adjacent
edges lying on a straight path, resulting in a zero scaled
Jacobian for the element. Improvement of the Jaco-
bian bound necessitates local padding [19] or pillowing
[20, 22], which introduces singularity vertices and is un-
wanted in some applications. Consequently, users need
to specify the one-to-one relationship between sharp cor-
ners/edges on T and SH.

4 Conclusion and Future Work

In this paper, we introduce HexOpt, a software package
for improving the quality of all-hex meshes. Given a
poor-quality or inexact surface-fitting hex mesh and a
triangular surface onto which the hex mesh must be pro-
jected, HexOpt formulates a constrained optimization
problem that includes both mesh quality and geometry
fitting terms. The algorithm then employs the AL, L-
BFGS and Armijo line search methods to minimize the
objective function. This approach is robust, efficient,
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Figure 5: Optimization results for eight models. The target surface is displayed translucently. For each model,
the left/right figure shows the mesh before/after optimization. Inverted elements are highlighted in red, and
non-inverted elements are shown in blue. The mesh interior is shown in yellow with some elements removed. The
maximum relative distance and the scaled Jacobian histogram before and after optimization are provided. In the
histograms, purple bars are intersected for better visualization due to their high frequency.

and fully automated, making it particularly suitable for
improving mesh quality for complex 3D models. Across
all tested models, selected from our group’s previous
work and other researchers’ archives, our algorithm con-
sistently generates meshes of superior quality. To sup-
port further research and advancements in the field, we
have made the code and meshing results publicly avail-
able at https://github.com/CMU-CBML/HexOpt.

While HexOpt has demonstrated promising results
in rapid, robust, and high-quality all-hex mesh opti-
mization for industrial applications, there is still room

for future research. Specifically, establishing theoretical
proofs to guarantee optimization performance remains
an open challenge. Although some previous methods
have proven convergence by optimizing only one vertex
at a time to decompose the global optimization problem
into local sub-problems [6], or by iteratively moving sur-
face points closer to target points while maintaining pos-
itive Jacobians after each step [16], these methods only
guarantee that mesh quality improves monotonically.
These methods do not provide a lower bound on mesh
quality. In practice, they often perform poorly because
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they impose excessive constraints on the optimization
process. Additional mesh generation algorithms that
guarantee mesh quality have been developed for quadri-
lateral meshes [12, 13, 14] and tetrahedral meshes [15].
These methods leverage the advantageous topological
and geometric properties of 2D Euclidean spaces and 3D
simplex. However, adapting these approaches to all-hex
meshes presents significant difficulties. Our future ef-
forts will focus on formulating theoretical proofs for the
lower bound of mesh quality from a surface mapping
perspective and developing more pre-processing func-
tionalities such as local/global pillowing, automatic fea-
ture line path finding, and CAD-aware exact geometry
fine tuning. In addition, machine learning approaches
[31] could help reduce heuristic steps in mesh genera-
tion which is another promising research direction for
the future.
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