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Abstract

The paper addresses the problem of finding an orthogonal

mesh on a meander-like region, examples of these regions

are riverbeds, coastal regions and in medical imaging, pla-

nar cross sections of bones (femur, humerus) or flattened

curvilinear slices of veins and arteries described by devel-

opable surfaces. Essentially, it depends on two conformal

maps f(z) = 1

2
(z + 1/z) and f(z) = (z + 1)(z − 1) that

allow to transfer orthogonally gridded regions in an annu-

lus to tiles that populate the meander-like region. The tiles

are built using confocal lemniscates, ellipses and hyperbo-

las, which are stitched together to create an approximately

orthogonal grid on the whole meander-like region which is

adapted to both boundaries. The quality of the grid is as-

sessed using standard criteria that involve angles and ar-

eas. As opposed to previous work we do not use sequen-

tial non linear optimization, instead we compare normalized

segments of boundary with elements in a database. The

database consists of approximately 50 thousand discretized

arcs of lemniscates, ellipses, and hyperbolas. The compu-

tational efficiency of the comparison process is improved by

clustering the database; this reduces the comparison to the

fitting of normalized segments of the meander-like region

with cluster representatives.

1 Introduction

This work presents a novel approach to constructing
approximately orthogonal grids on 2D meander-like
regions by combining conformal geometry and database
search. A meander-like region is given by two sequences
of points, or equivalently by two discretized curves
that bound the region. In the case of a riverbed
they are the two shores of the watercourse, other
examples are isometrically unfolded curvilinear section
of medical volumes. Rosenfeld, [10] gives the theoretical
bases of the automation process of construction of such
sequences of points.

Meander-like regions are an important area of inves-
tigation because they appear naturally in many fields:
rivers in geography [13], regions along marine coasts
[14], elongated organs in X-ray images or flattenings of

curved slices in 3D medical data1. Our method is based
on a multi-block technique, but introduces key innova-
tions tailored to the unique characteristics of meander-
like regions. Unlike traditional multi-block methods
that often require interactive domain partitioning, our
approach automatically divides the region, guided by
its geometry. This automation significantly reduces pre-
processing efforts and ensures that the blocks naturally
conform to the irregular contours of the domain. It
maintains grid continuity and orthogonality across block
boundaries, avoiding misalignments or distortions that
could otherwise compromise grid quality and simulation
accuracy.

By incorporating these features, the proposed
method combines the robustness of multi-block tech-
niques with the flexibility required for meander-like ge-
ometries, making it particularly suited for such do-
mains. Our algorithm is specifically designed to achieve
orthogonality through the use of simple conformal maps.
This technique involves mapping families of lemnis-
cates and ellipses onto annuli of concentric circles. Ad-
ditionally, the conformal technique used to build the
grid simplifies any subsequent refinement or coarsening,
which is particularly useful when dealing with exten-
sive meander-like regions. Public domain general algo-
rithms, such as Gmsh, do not prioritize grid orthogo-
nality as the main objective.

Given the importance of good quality grids in
the numerical solution of partial differential equations
(PDEs), this topic has been explored systematically; [8]
is an excellent reference. For this task, structured grids
are preferred 2. The classical reference for grids is [11].
See also [15] and [4]. In particular, orthogonal grids
simplify the numerical solution of PDEs 3. In other
applications that involve measuring, they are useful for

1These might be extracted from medical volumes ([3]).
2Structured grids are those usually given by a repeating

pattern such as a quadrilateral or a hexagon, guaranteeing the
same number of edges meeting at every node.

3For example arising in modeling of contaminant dispersion in
riverways.
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building approximately orthogonal coordinate systems
adapted to the region’s boundary which are useful for
length measurements and volume estimation. The main
limitation of the method (which is tied up to its main
advantage: use of conformality as a unifying principle
to create the grid) is that the sizes of cells may vary.
Fortunately, the cell areas can be estimated using the
conformality factor.; see [1].

Orthogonal or approximately orthogonal grids
on meander-like regions provide coordinate systems
adapted to the boundaries. The method to generate
the grid is based on decomposing the meander-like re-
gion into subregions, which will be chosen to be con-
formally equivalent to tiles, carrying orthogonal grids.
By stitching the gridded subregions together the whole
meander-like region the full grid is built. The process is
further optimized by clustering the database and refin-
ing the procedure by not comparing tiles given by seg-
ments between lemniscates, ellipses or hyperbolas but
rather their one sided boundaries, with sides of subre-
gions.

The paper is organized as follows: Section 2 intro-
duces the problem and discusses previous work, Section
3 provides a short review of lemniscates, hyperbolas and
ellipses as employed in the construction of orthogonal
grids on meander-like regions, sections 4 and 5 look at
the database, Section 6 considers implementation steps,
Section 7 discusses the clustering of the database, Sec-
tion 8 deals with postprocessing and Section 9 presents
examples and discusses grid quality.

2 Previous work on meander-like region grids

Building orthogonal grids with lemniscates has been
considered in [6], [7], [2] and [5]. The main idea is to fit
segments of a meander-like region with segments of the
area between two confocal lemniscates, ellipses or hy-
perbolas, Figure 1 shows an example using lemniscates
with two foci. In particular [7] considers grids built
with lemniscates of three foci, [6] looks at grid quality,
[5] considers simplifying the problem by limiting the ap-
proximating lemniscates to two foci. This process relies
on a sequence of non linear optimizations to determine
the foci and radii of the lemniscates. In [2] the authors
improve on the distance measurement between lemnis-
cates of two foci and the points of the boundary of the
meander-like region.

The improvements on previous work are:

• The need to fit pairs of boundaries of a meander-
like region with pairs of confocal lemniscates re-
gions using via nonlinear optimization is replaced
by comparing normalized sequences of points.

• We further develop the technique of transferring

Figure 1: Confocal lemniscates fitting a meander-like
region.

the “polar coordinates” grid in an annulus without
the need for lemniscates of more than two foci.

• Besides lemniscates, we now also use orthogonal
families of ellipses and hyperbolas.

3 Lemniscates, ellipses, hyperbolas and grids

The region between two confocal lemniscates or two con-
focal ellipses carries an orthogonal grid, which is given
by a sequence of intermediate corresponding curves and
transversal hyperbolas, see Figure 2.

Figure 3 illustrates segments of the region between
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Figure 2: Families of lemniscates and ellipses.
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Figure 3: An orthogonal grid on a lemniscatic tile.

two confocal lemniscates, i.e. lemniscatic tiles. The
orthogonal grid on a tile can be easily refined in the
longitudinal and transversal directions. Our task is
to fit subregions of the meander-like region with such
orthogonally gridded tiles, as shown in red in Figure 3
(first quadrant).

An option is to choose subregions of the meander-
like regions and fit them with orthogonally gridded seg-
ments ”sandwiched” between ellipses, lemniscates or hy-
perbolas as shown in the previous Figure 1. Although
this comparison process may be carried out, it is in-
efficient, because requires the simultaneous fitting of
two confocal curves. A better alternative is to consider
downward - upward concave sequences of consecutive
points (as discussed in Section 4) of the boundaries and
fit them with segments of lemniscates, hyperbolas or el-
lipses within a prescribed tolerance and - after this ini-
tial fit, proceed to choose the best tiles. The latter de-
pends on the facing curves, i.e. for example if a segment
of meander-like region is fitted with a segment of lem-
niscate then the orthogonally gridded tile is built with
the corresponding segment of lemniscate, which fits best
the opposite boundary of the meander-like region. This
will allow for the construction of orthogonally gridded
subregions on the meander-like region.

4 Concave segments

We consider discretized concave segments of lemnis-
cates, ellipses, hyperbolas and also of boundaries of a
meander-like regions. A segment that tends to bend in
the same direction as we advance along it, will be re-
ferred to as a concave segment. The automatic division
of a boundary of a long meander-like region into this
kind of segments will be a step in the construction of
the whole orthogonal grid.

For the sake of completeness we make this concept
explicit: a sequence of points zj = xj + iyj , j = 1, . . . , n
is (upward or downward) concave if for any triplet of
indices j < k < l the points xk + iyk lie on the same
side of the straight line joining zj and zl within a given
tolerance ϵ. More precisely, for example, the polyline
with vertices z1, z2, · · · , zn ∈ C is downward concave
within ϵ tolerance if

(4.1) im
(

(zk − zj) · e
−iArg(zl−zj)

)

> −ϵ,

for any l = 3, 4, · · · , n, j = 1, 2, · · · , l − 2, k =
j + 1, · · · , l − 1.

Hence to verify that a segment of boundary of a
meander-like region given by z1, z2, · · · , zr is downward
concave, it is enough to check for each pair j < l and zk
such that j < k < l that equation (4.1) is satisfied.

Concave segments of boundary of meander-like re-
gions will be fitted with segments of lemniscates, hy-
perbolas and ellipses. For this we use a database and a
normalization process. As suggested in Figure 2 we con-
sider a full set of segments of lemniscates, ellipses and
hyperbolas4 We employ segments of these three types
of curves because they cover most shapes that have to
be approximated in order to tile a meander-like region.
The elements of this database will be used to build
the aforementioned tiles which will fit subregions of the
meander-like region. Section 5 discusses in more detail
the main features of the database. The tiles used to
approximate segments of the meander-like region arise
naturally from the elements of the database. Although
most tiles will be bounded by segments of lemniscates
and ellipses, the hyperbolas5 will be useful in the ap-
proximation of ”waist-like” subregions. In particular
a discretized segment, as shown in Figure 2, together
with any opposing segment6 generate automatically an
orthogonal grid on the tile determined by them. Hence

4The set of all the lemniscates of foci −1 and 1 and radii ρ > 0
will be referred to as a full set of lemniscates. The choice of
maximum value of ρ guarantees that the corresponding lemniscate
is essentially a circle, see ([9]). Similarly, for the full set of ellipses.

5We choose the segments of hyperbolas which are orthogonal
to our family of ellipses.

6The opposing segment of any given segment lies on another
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Figure 4: The normalized segments corresponding to
the segments of Figure 2.

a given discretized segment yields a continuum of tiles:
in the case of a segment of lemniscate, the opposing
segment might correspond to any value of the radius ρ.

5 Database of segments

As mentioned above the database consists of discretized
segments. They arise from continuous segments of
lemniscates, ellipses and hyperbolas. In the case of
lemniscates we consider the family of curves with foci in
−1 and 1 (as described in Section 1), for ρ2 discretized
from 0.05 to 105, so that the density of ρ near 1 is higher
than for values away of 1. The reason for the restriction
of ρ to [

√
0.05,

√
105] is that the lemniscate is essentially

a circle for ρ >
√
105 and a pair of circles for ρ <

√
0.05.

Indeed, as ρ → ∞ the lemniscate tends to a circle, and
in fact if ρ =

√
105 the lemniscate coincides with a circle

of radius
√
105 within a 5% deviation in the curvature,

see [12].
A lemniscate segment is a connected component of

the inverse image of an arc of circle of the map, given in
terms of complex numbers, by f(z) = z2 − 1. We con-
sider approximately 750 segments per lemniscate, each
segment is normalized (see [4] ) to join 0 and 1, to in-
clude in the database. Further, each normalized seg-
ment is discretized, trying to achieve a balance between
the cost of computing distances between normalized seg-

curve of the same family (namely, lemniscate, ellipse or hyperbola)

which is bounded by the same orthogonal curves to this family,
as the given segment.

ments of the meander-like region and normalized lemnis-
cate segments, within a fitting accuracy. For, extensive
experimentation shows that the uniform discretization
of the corresponding arc of circle into 15 points is a
reasonable choice7

Similarly, a convenient number of ellipses is 15
and on each half ellipse we consider the images of 30
uniformly distributed points on a half circle under the
map8

(5.2) f(z) =
1

2
(z + 1/z)

As for lemniscates the segments of ellipse have end-
points at these image points, they are normalized and
discretized similarly.

The segments of hyperbolas are the images of
segments of rays of circles under the map (5.2). We use
the 15 hyperbolas (two branches each) resulting from
the 30 point partition of the ellipses. Each segment of
hyperbola is normalized and is described by a sequence
of 15 points.

Summarizing, the database consists of sequences
of 15 points in 2D which arise from the discretization
of normalized segments of lemniscates, ellipses and
hyperbolas.

As built, the database contains discretized segments
which may be similar. This fact is advantageous because
the database is used to find tiles which fit subregions
of the meander-like region and, similar or even equal
segments may be associated to very different tiles.
Figure 5 illustrates two examples of similar segments
of lemniscates that produce very different tiles.

We chose these families of curves: lemniscates,
ellipses and hyperbolas, because the region between any
pair of lemniscates or any pair of ellipses is conformally
equivalent to an annulus i.e., the region bounded by two
concentric circles which carries naturally an orthogonal
grid.

To build the orthogonal grid, the fitting process is
actually a comparison procedure of normalized segments
of boundary with elements of the database. The
detailed description is given in Section 8. In Section
7 we show how this comparison process actually does
not require to look at all the elements of the database.

7Besides keeping low the cost of distance computation, the
chosen discretization is also adequate for k-means calculations
and storage.

8The map f , for convenience, is expressed in terms of complex

numbers. It takes points in 2D into points in 2D, it takes circles
centered at the origin into ellipses.
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Figure 5: Equal segments that produce different tiles,
because they lie in different zones of the same lemniscate
or lie on different lemniscates.

Figure 6: Light green and orange sequences of points
are discretizations of consecutive concave segments of
a boundary. The lower red square is the point corre-
sponding to the middle index. The perpendicular foot
to the regression line at this point determines the near-
est point of the opposite boundary discretization.

6 Implementation

Our methodology proposes comparing elements in the
database with segments of boundary of the meander-
like region. Hence, attention needs to be paid to
the choice of these boundary segments: if the given
segment is concave the opposite segment should also be
concave. This imposes restrictions on the choice of the
segments of boundary, facilitating the construction of
the grid. As shown in Figure 6 for each concave segment
of boundary, we compute the regression line at the
midpoint of its discretization and find the nearest point
on its perpendicular foot to the opposite boundary.
From the latter we grow a maximal sequence of points
on the opposite boundary (the same number in each
direction) which satisfies the concavity condition. For
downward concavity the condition is given explicitly by
4.1 of Section 4.

The goal is to fit a gridded tile that fills maximally
the area between these two segments. The detailed pro-
cess is as follows. For each such segment which has been
approximated with an element of the database and its
facing segment of the opposite boundary, we find the
arc of the family of curves of the fitting element that
best approximates the latter. For example, for a seg-
ment of the meander-like region whose approximating
arc is a segment of lemniscate, its opposing boundary is
fitted with a confocal lemniscate. This is illustrated in
Figures 7, 8, 9 and 10.

• Figure 7 shows a subregion consisting of a concave
segment (green) and an opposing segment of the
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meander-like region (red) as they lie in the physical
meander-like region.

• Figure 8 shows both segments after the normal-
ization of the concave green segment (which now
starts at 0 and ends at 1) and the correspond-
ing transformation of the red segment. Note the
need for trimming, in order to choose the tile. It
also highlights the best approximating element in
the database (black dotted) of the green segment
and the lemniscate (adjusted by normalization) on
which it lies is drawn for context.

• Figure 9 displays both normalized segments of
boundary (green and red) in lemniscate space,
i.e. the green segment is shown to lie on a
lemniscate (dotted black) on which it chooses a
segment. The red segment lies on a confocal
lemniscate. The black dotted, vertically pointing
segments at the extremes of the green segment,
are arcs of hyperbolas orthogonal to the family of
lemniscates9, see [6].

• Figure 10 exhibits the circle corresponding to the
lemniscate in Figure 9 and a circle whose corre-
sponding lemniscate approximates the red segment
of Figure 9. The vertical leaning hyperbolas in
this figure are mapped to the radii under the map
f(z) = z2 − 1.

• Figure 11 illustrates the trimming of both segments
(in circumference space) bounding them with two
rays.

• In Figure 12 the trimmed region in circumference
space is taken back to a region in lemniscate space
which inherits the orthogonal grid from the annular
region in Figure 11 by conformality.

• In Figure 13 a normalized segment of boundary of
the meander-like region (i.e. the green curve seg-
ment joining 0 and 1) is fitted with a lemniscate
element of the database together with the trans-
formed red segment of the meander corresponding
to a confocal lemniscate. Both lemniscates in light
blue are drawn for context.

• Figure 14 displays the tile resulting from the start-
ing concave segment (green) and an opposing seg-
ment of the meander-like region (red). The lemnis-
cates, under the transformations to physical space,
are drawn for context. It also shows the need of

9The family of confocal lemniscates with foci −1 and 1 are

conformally equivalent (2 : 1) to the family of circles centered at
the origin, under the map f(z) = z2 − 1.

further cropping of the lower boundary of the sub-
region in order to fit a tile, as suggested in Figure
11. Figure 15 illustrates the need of trimming of
both segments of the boundary of the meander like
region to be fitted by a lemniscate depicted in solid
green. The cropping introduces gaps that are dealt
with in Section 8. An alternative, to minimize the
number of gaps is to allow boundaries to have in-
tersections.

The concave segments of the meander-like region
can be chosen without any prescribed order10. The al-
gorithm may also be applied to more complex meander-
like regions, by splitting the region into simpler ones.

Figure 7: Physical region.

-1 1

Figure 8: Normalization.

-1 1

-1

1

Figure 9: Lemniscate space

-1 1

-1

1

Figure 10: Circle space.

7 Metrics and clusterization

After normalization, the fitting of the boundary of a
subregion of a meander-like region involves the distance
to the discretized segments of the database. We use the
standard Euclidean metric between sequences of points

10Simultaneous fitting of various segments allows for faster
processing, which is especially useful in the case of very long rivers.
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Figure 11: Trimmed circle
region.
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Figure 12: Back to lemnis-
cate space.
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Figure 13: Back to normal-
ization space.

Figure 14: The fitting tile
in physical space.

11. Since the database contains 53179 elements and for

11A more precise distance measurement is the Hausdorff dis-
crete distance but the k-means, but the clustering process for our
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Figure 15: Trimming with two orthogonal hyperbolas.

each boundary segment we need to find the best fit,
a computationally expensive process, we introduce a
strategy to lower this cost. Namely, we organize the
database in clusters of similar elements and compare
each normalized boundary segment with a representa-
tive of each cluster and then choose the nearest element
of the cluster.

We clusterize the database using k-means with Eu-
clidean distance. To determine the number of clusters
we employ the ”elbow method” which consists in look-
ing at the graph of the number of clusters vs a cost
function that involves the distance of each point to the
centroid of its cluster, for an intuitive presentation of
the method). In our case the resulting number of clus-
ters for the database of 53179 elements is 510.

Given a segment of boundary of the meander-like
region, the above clusterization allows for a more effi-
cient choice process of fitting element in the database:
compare the boundary segment with each cluster cen-
troid and choose the best fit among the elements of the
cluster. Since the normalized segments of boundary be-
longing to a cluster might not have the same number of
points we use the Hausdorff distance for within compar-
ison in each cluster. In Section 9 we compare CPU times
for the building of the grid with and without clustering,
for specific examples.

8 Postprocessing: gaps and intersections

As presented in Figure 6, once the opposing boundaries
have been chosen they are fitted with two curves of the
same family, namely two confocal lemniscates, ellipses
or two hyperbolas. In order to find a tile we need to trim
them with orthogonal curves. The latter are chosen to

database of discretized segments (i.e. polylines consisting of 15
points joining (0, 0) and (1, 0)) is computationally too expensive.
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Figure 16: Blue and red point sequences of the meander-
like region are fitted by ellipses and trimmed by magenta
hyperbolas.

be those that connect best the boundaries.
An example of this process is illustrated in Figure

16 where the upper red points and the lower blue starred
points are fitted with two confocal ellipses and are cut by
four orthogonal hyperbolas determined by the endpoints
of the red and blue starred points. The two hyperbolas
that will bound the leftmost tile are shown in magenta.

In Figure 17 we overlay three consecutive tiles with
their orthogonal grids as generated by the trimming
curves. This figure also shows gaps between consecutive
tiles introduced by the trimming. The gaps, as well as
intersections between tiles, are allowed to occur in order
to increase the odds of finding segments of boundaries
coupled with opposing segments of the meander-like
region, as shown in the construction illustrated in Figure
6. Later, these may be fitted with curves of the same
family, and hence may be gridded.

Figure 18 shows gaps and intersections between
consecutive fitting tiles along a larger portion of a
meander-like region.

In order to extend the grid to cover all the gaps,
which are depicted in Figure 18, we proceed as follows.
In case of a gap between two neighboring tiles we remove
some grid points on both of its sides. In Figure 19 they
are given by orthogonal hyperbolas and are identified
by red squares. This expands the gridded gap to a

Figure 17: Orthogonal grids on three consecutive tiles
as exemplified in Figure 16. Each tile is bounded
by two curves of the same family and two orthogonal
trimming curves. For example the middle tile is given
by two confocal lemniscates (green dashed lines) and
the construction of its orthogonal grid is illustrated in
Figure 3.
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Figure 18: Detecting segments of the meander-like re-
gion that correspond to tiles. The sector near (200,400)
shows an intersection, and near (800,500) and (600,500)
we have gaps.

trapezoid-like subregion containing the gap. To build
a grid on that trapezoid we proceed as before searching
the database to match one of its boundaries and finding
a curve of the same family that approximates the other
boundary. If the trapezoid does not have enough
points on each boundary side, namely at least 4 sample
points, the grid is built using Bézier curves that are
approximately orthogonal to both boundaries.

When neighboring tiles intersect then by construc-
tion this intersection involves only one bounding curve
of each tile. So we force a gap by removing the offending
curves and proceed as above.

9 Example and grid quality

Our first example is an orthogonal grid along the coastal
ribbon of San Andres Island, extending approximately
13 km. The discretizations of the inner and outer
boundaries of this meander-like region consist of 1102
and 1346 points, respectively.

The grid quality parameters are as follows: aver-
age aspect ratio (AAR): 1.33, maximum aspect ratio
(MAR): 3.37, percentage of tiles with aspect greater
than 1.3: 2.75, average deviation of ortogonality (ADO):
0.11, maximum deviation of orthognality (MDO): 1.49
and percentage of tiles with deviation of orthogonality
(PDO) greater than 1: 0.18.

The second example is the extension of the Apaporis
river that joins Pacoa (Vaupés, Colombia) and Vila
Bittencourt (Amazonas, Brasil), its length is 396 km,
the numbers of sample points on each boundary are
approximately 11.500 and 13.000. It was run on a
Windows machine, Dell Latitude 5480, 16 Gb RAM,
Intel Core i7, 2.80 GHz CPU. In this example the fitting

Figure 19: The triangle-like region between the tiles is
a gap in the grid. The grids of both tiles are given by
green points. In order to extend the grid to the missing
gap the grids of the consecutive tiles are trimmed by
removing the grid points that bound the triangle, so
the old tiles are replaced by two new tiles and the red
boxed points are the new bounding hyperbolas. The
larger empty region is gridded by applying again the
algorithm presented in Section 6. The magenta circles
are the new grid points of the gap.

process takes 61 minutes without clustering and under
20 minutes with clustering. In gap filling there is no
difference.

Figure 20 illustrates some representative pieces of
the full 396 km Apaporis grid.

It is well known that the automatic generation
of high-quality orthogonal grids is costly. However,
the clustering feature significantly improves the overall
process. In the Apaporis example, it is over 29% faster
compared to when no clustering is used and the grid
quality parameters are as follows: without clustering
AAR is 1.22, MAR is 24.67, percentage of tiles with
aspect greater than 2: 1.70, ADO is 0.04, MDO is 1.55
and PDO greater than 1: 0.12. With clustering these
numbers are slightly better.

10 Conclusions

We presented an algorithm to build orthogonal grids
on meander-like regions. It is based on the comparison
of normalized boundaries of subregions with a database
of segments of lemniscates of two foci and families of
ellipses and hyperbolas. The process consists of the
following steps:

• Determine subregions of the meander-like region
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Figure 20: Segments of Apaporis river grid.

of similar or opposite concavity (within the given
concavity-tolerance), which face each other.

• Normalize one of the boundaries of the subregion,
so that its endpoints coincide with 0 and 1 and
find the fitting segments within the approximation
tolerance. The fitting tolerance is derived from the
mean distance between consecutive points of the
boundaries.

• Each fitting segment points to one curve of our
curve families: lemniscates, ellipses or hyperbolas;
they define tiles, i.e. regions bounded by two
curves of the same family and pairs of transversal
orthogonal curves. This allows for the immediate
building of orthogonal grids on such subregions.

• The procedure generates gaps which are gridded
after taking into account all the regions approxi-
mated by lemniscatic and elliptic sectors.

Future work with the techniques developed in
this paper includes enhancing the methods to iden-
tify predominantly concave segments of the boundaries
of meander-like regions, potentially utilizing AI tech-
niques. Additionally, for our easily refinable and adapt-
able orthogonal grids, it seems reasonable to consider
the conformality factor as a means to estimate size,
which will enhance their usefulness as coordinate sys-
tems.

In the additional materials the interested reader will
find all the Matlab scripts, the database of segments of
lemniscates, ellipses and hyperbolas, the full Apaporis
example as well as other examples together with their
underlying images.
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