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Abstract

The aim of this article is to couple the ideas proposed
by [8, 6] and [4] to unfold/untangle high-order meshes.
What is proposed here is to systematically reduce the
untangling of any high-order elements to the problem of
untangling simplices (triangles in 2D and tetrahedra in
3D). First, we present a general way of expressing the
validity of a high-order element by calculating linear
combinations of areas of well-chosen simplices. We then
show how to adapt[4] to these linear combinations of
simplices. Examples of 2D boundary layer untangling
are presented with P2 and P3 elements. The algorithm
is then adapted to P2 tetrahedra.

1 Introduction

A decade ago, robust estimators for validating high-
order meshes were proposed [8]. The idea is that the
space-varying determinant of the Jacobian matrix |J| of
an element can be expressed in bases of positive Bézier-
type functions. If the coefficients of |J| are all positive as
well, then this is a sufficient condition to demonstrate
that the mapping is injective and that the high-order
element is therefore valid. In fact, it is possible to
interpret these Bézier coefficients geometrically as areas
of triangles or linear combinations of areas of triangles
whose vertices are the corners of the Bézier polygon of
the element [6]. Our idea is to use what is proposed in
[4] to ensure the positivity of these Bézier coefficients.
This makes for an optimization algorithm that is easy to
implement and parallelize at the expense of slightly less
deformation freedom. We present three case studies: P2
and P3 triangles and P2 tetrahedra. General formulas
are given for simplices of arbitrary order, and the
method can be generalized to quads and hexes of any
order in a straightforward way.

2 Related work

The problem of ensuring the validity of a high-order
mesh has been well studied in the last decade. A com-
mon approach consists of first generating a straight first-
order mesh, before adding degrees of freedom and de-
forming the mesh into a high-order one. Quality metrics
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for deformation include signed corner angles [10], the
Winslow functional [3], elasticity-based energies [2, 1]
or various quantities built from an element’s Jacobian
determinant, like its L2-norm [5] or a bound on its min-
imum computed recursively [11]. But to our knowledge,
no method combine the three following properties: opti-
mizing for a necessary and sufficient validity condition,
being computable without quadrature, subdivision or
approximation, and requiring a single continuous opti-
mization pass. In our case, we relax the first property
and only consider a subset of all valid elements that
satisfy simple sufficient, but not necessary conditions.

3 Bézier triangles
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Figure 1: A straight-sided triangle and its edge normals.

3.1 Barycentric coordinates. Consider the linear
triangle T012 = {x0,x1,x2} (see Figure 1). Any point
x of T012 corresponds to one given triplet of barycentric
coordinates λi

(3.1) x = λ0x0 + λ1x1 + λ2x2,

with λ0+λ1+λ2 = 1. The (signed) area of T012 is found
computing the box product:

A =
1

2

[
(x1 − x0)× (x2 − x0)

]
· ez.

The Jacobian determinant, J = |J| can be obtained
from the barycentric expression of x (Eq. (3.1)) pro-
vided that we express λ0 as a function of the two others
coordinates such that λ1 and λ2 become two indepen-
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Figure 2: A straight-sided triangle (left) that is the
ideal triangle for a second order triangle (right). Red
triangles are Bézier triangles.

dent variables.

(3.2) J =

(
∂x

∂λ1
×

∂x

∂λ2

)

· ez, λ0 = 1− λ1 − λ2.

Computing the partial derivatives leads to the well-
known result that the Jacobian determinant of a linear
triangle is simply two times its area.

In what follows, it will be useful to calculate the
derivative of this area with respect to the motion of,
say, point x1 of T012. We have

∂A

∂x1
=

1

2
(x2 − x0)× ez = n1.(3.3)

Here, n1 is a vector orthogonal to x2−x0 and of half the
size. Using finite element vocabulary, n1 is the gradient
of Lagrange shape function associated to x1.

The barycentric mapping of Eq. (3.1) can be gener-
alized to order p with the Bézier triangular polynomi-
als [8]:

T
(p)
i,j,k(λ0, λ1, λ2) =

p!

i!j!k!
λi
0 λ

j
1 λ

k
2 , i+ j + k = p.

To each T
(p)
i,j,k is associated a point xijk such that

the mapping of the element is given by

(3.4) x(λ0, λ1, λ2) =

p
∑

i,j,k

T
(p)
i,j,k xijk,

with the convention that
∑p

i,j,k =
∑

i,j,k≥0, i+j+k=p.
There is a relation between the barycentric indices and
the index convention that we use in this paper. For
example, point xp00 is point x1 and x0p0 is point x2.

3.2 Quadratic Bézier triangles. Let us first con-
sider the case of the quadratic triangle. Using notations

of Figure 2, the general interpolation formula of Equa-
tion (3.4) can be instantiated as:

x(λ0, λ1, λ2) = λ 2
0 x0 + 2λ0λ1 x3 +

λ 2
1 x1 + 2λ1λ2 x4 +

λ 2
2 x2 + 2λ2λ0 x5.

(3.5)

By setting λ0 = 1 − λ1 + λ2, we can compute the
partial derivatives of Equation (3.2):

∂x

∂λ1
= 2 (y1 − y0)

∂x

∂λ2
= 2 (y2 − y0)

where we have introduced three new points y0, y1, y2

that are located inside triangles T035, T314 and T542

respectively:

y0 = λ0x0 + λ1x3 + λ2x5

y1 = λ0x3 + λ1x1 + λ2x4

y2 = λ0x5 + λ1x4 + λ2x2.

The Jacobian determinant of the P2 triangle at any
point x(λ0, λ1, λ2) is thus equal to

(3.6) J(λ0, λ1, λ2) = 8Ay0 y1 y2

where Ay0 y1 y2
is the area of triangle formed by points

y0,y1 and y2. On the other hand, the Jacobian
determinant of a P2 triangle is a P2 function [8], and
thus, similarly to Equation 3.5, we can write:

J(λ0, λ1, λ2) = λ 2
0 J0 + 2λ0λ1 J3 +

λ 2
1 J1 + 2λ1λ2 J4 +

λ 2
2 J2 + 2λ2λ0 J5.

(3.7)

Those two last equations allow to establish the relation
between the coefficients of the Jacobian determinant
Ji and triangles areas. Now, a sufficient condition for
J > 0 is that all Bézier coefficients Ji > 0 , i = 0, . . . , 5
in Equation (3.7) are positive.

For coefficients corresponding to triangle corners
(i = 0, 1, 2), we have

J(1, 0, 0) = J0 = 8A035 > 0,

J(0, 1, 0) = J1 = 8A143 > 0,

J(0, 0, 1) = J2 = 8A254 > 0.

meaning that all three corner jacobians should be
strictly positive.

For coefficient at the middle of edges (i = 3, 4, 5),
the computation is slightly more complicated. Taking
the case of i = 3, Equation 3.7 allows us to write:
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J3 = 2 J

(
1

2
,
1

2
, 0

)

−
1

2
(J0 + J1) ,

while substituting λ0 = λ1 = 1
2 in Equation 3.6

yields:

1

2
J

(
1

2
,
1

2
, 0

)

= 4

[
x1 − x0

2
×

(
x5 + x4

2
−

x3 + x0

2

)]

= (x1 − x0)× (x5 − x0)+

(x1 − x0)× (x4 − x3)

= A015 +A014 −A013.

Combining the two, we obtain

1

4
J3 = A015 +A014 −A013 −A035 −A143

= A034 +A153 +A013

A similar computation gives expressions for J4 and J5.
To summarize, there exist six sufficient conditions

for the P2 element to be valid [8] and those conditions
can be interpreted geometrically using area of triangles

whose corners are Bézier points:

(3.8)

J0 > 0 → A035 > 0,

J1 > 0 → A143 > 0,

J2 > 0 → A254 > 0,

J3 > 0 → A034 +A153 +A013 > 0,

J4 > 0 → A145 +A234 +A124 > 0,

J5 > 0 → A253 +A045 +A205 > 0.

Furthermore, if we consider the Jacobian matrix
itself and not only its determinant, we have

1

4
J = (y2 − y0,y3 − y0) .

For example,

1

4
J(1, 0, 0) = (x3 − x0,x5 − x0)

which means that the Jacobian of the three corners
is equal to that of the corner Bézier triangle. On
top of guaranteeing validity of the element, we can
therefore also control its corner angles by controlling
the P1 corner triangles of the Bézier expansion. In
our experiments, we only use these corner Jacobians to
control the shape/angles of the P2 triangle, but it is of
course possible to add the other Jacobians.

3.3 Generalization to PN Bézier triangles. To
obtain an expression of the Bézier coefficients of the
Jacobian determinant as triangle areas, we have to input
the interpolation of the triangle given at Equation (3.4)
into Formula (3.2) and rearrange the equation as a sum
of Bézier functions.

Let us first use a symbol for the coefficients that lie

in the Bézier basis functions: Cijk = (i+j+k))!
i!j!k! and let

us highlight the following relation:

(3.9) i Cijk =
(i+ j + k)!

(i− 1)!j!k!
= (i+ j + k) C(i−1)jk.

Now, the derivative of the interpolation with respect
to λ1 reads

∂x

∂λ1
=

p
∑

i,j,k

j≥1

Cijk

[
j λi

0λ
j−1
1 λk

2 xijk

]

−

p
∑

i,j,k

i≥1

Cijk

[
i λi−1

0 λj
1λ

k
2 xijk

]
.

Note that if j ≥ 1, then i, k ≤ p − 1. By transforming
j → j′+1 for the first term and i → i′+1 for the second
and using the the relation (3.9), we obtain

∂x

∂λ1
=

p−1
∑

i,j′,k

(j′ + 1) Ci(j′+1)k

[
λi
0λ

j′

1 λ
k
2 xi(j′+1)k

]

−

p−1
∑

i′,j,k

(i′ + 1) C(i′+1)jk

[
λi′

0 λ
j
1λ

k
2 x(i′+1)jk

]

= p

p−1
∑

i,j,k

T
(p−1)
i,j,k

[
xi(j+1)k − x(i+1)jk

]
.

We see that the partial derivative of the interpolation
with respect to λ1 is a sum of order p−1 Bézier functions.
By symmetry, we obtain the same result for λ2. For the
sake of simplicity, let us introduce a notation for the
vectors that have been obtained: vlmn

ijk = xlmn − xijk.
The cross product of the partial derivative gives

∂x

∂λ1
×

∂x

∂λ2
=

p2
p−1
∑

i,j,k

p−1
∑

l,m,n

T
(p−1)
i,j,k T

(p−1)
l,m,n

[
v
i(j+1)k
(i+1)jk × v

lm(n+1)
(l+1)mn

]
.

Now, two steps remains before achieving the desired
expression. The first step consists in writing the two
vectors as a sum of triangle areas. For instance, we can
write the first of the two vectors as in Figure 3:

v
i(j+1)k
(i+1)jk = v

(l+1)mn

(i+1)jk + v
i(j+1)k
(l+1)mn

.
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xlm(n+1)

A1

A2

Figure 3: The bottom vector is decomposed in order
to express the cross product as a difference of triangles
area.

The cross product then becomes

v
i(j+1)k
(i+1)jk × v

lm(n+1)
(l+1)mn

= A
(
x(l+1)mn,xlm(n+1),x(i+1)jk

)

+A
(
x(l+1)mn,xi(j+1)k,xlm(n+1)

)

= A2 −A1

The second step consists in transforming the rest of
the expression :

T
(p−1)
i,j,k T

(p−1)
l,m,n = CijkClmn λi+l

0 λj+m
1 λk+n

2

=
CijkClmn

C(i+l)(j+m)(l+n)
T

(2p−2)
i+l,j+m,k+n.

A coefficient Jα,β,γ of the Jacobian determinant is thus
given by the sum of all the terms for which i + l = α,
j +m = β and k + n = γ. Writing the final expression
for the PN triangle by combining the two steps is
straightforward but would be too tedious and not useful
for the comprehension of this article. We thus let the
interested reader derive it on their own.

Note that this computation leads to a number of
triangle areas that is not optimal. Some simplifications
are possible to reduce this number, for instance by
splitting big triangles into smaller ones.

3.4 Cubic Bézier triangles. Let us apply the gen-
eralization described in the previous section to the cubic
triangle. Given notations of Figure 4, the interpolation
of a P3 triangle in terms of Bézier polynomials is

x(λ0, λ1, λ2) = λ3
0x0 + 3λ2

0λ1x3 + 3λ0λ
2
1x4+

λ3
1x1 + 3λ2

1λ2x5 + 3λ1λ
2
2x6+

λ3
2x2 + 3λ2

2λ0x7 + 3λ2λ
2
0x8+(3.10)

6λ0λ1λ2x9.

Similarly to the P2 case (Equation 3.6), it is possible
to show, and this is a general statement that applies to

X0

X1

X2

X3
X4

X5

X6X7

X8
X9

x0

x1

x2

x3

x4

x5

x6

x7

x8

x9

Figure 4: A straight-sided triangle (left) that is the ideal
triangle for a third order Bezier triangle (right).

any high-order triangle, that the Jacobian of P3 triangle
can also be expressed as the area of one P1 triangle :

(3.11) J(λ0, λ1, λ2) = 8Ay0 y1 y2

where the three corners y0 , y1 and y2 are located in
three P2 (in general, P(N-1)) triangles whose Bézier
control points are three subsets of the Bézier points of
the P3 triangle:

y0 = 3(λ2
0x1 + λ2

1x4 + λ2
2x7 +

2λ0λ1x3 + 2λ0λ2x8 + 2λ1λ2x9)

y1 = 3(λ2
0x3 + λ2

1x1 + λ2
2x6 +

2λ0λ1x4 + 2λ0λ2x9 + 2λ1λ2x5)

y2 = 3(λ2
0x8 + λ2

1x5 + λ2
2x2 +

2λ0λ1x9 + 2λ0λ2x7 + 2λ1λ2x6).

From Equation (3.10), computing the partial
derivatives is straightforward if we keep in mind that
λ0 = 1−λ1−λ2. They are vector valued functions that
appear to be expressed as the interpolation of 6 “con-
trol vectors” v

ij = xj − xi (as defined in the previous
Section) with quadratic Bézier triangular polynomials:

∂x

∂λ1
= 3

[
λ2
0v03 + λ2

1v41 + λ2
2v76

+ 2λ0λ1v34 + 2λ1λ2v95 + 2λ0λ2v89

]

= 2(y1 − y0)

∂x

∂λ2
= 3

[
λ2
0v08 + λ2

1v45 + λ2
2v72

+ 2λ0λ1v39 + 2λ1λ2v96 ++2λ0λ2v87

]

= 2(y2 − y0)
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As the Jacobian determinant is the product of
those two partial derivatives (Eq. 3.2), it is thus a
quartic polynomial and possesses 15 coefficients. Those
coefficients are to be expressed as linear combination of
triangle areas whose corners are the 10 Bézier points
of the P3 triangle. The final steps to obtain this, as
described in the previous section, is to gather the terms
in identical polynomial, transform each cross product of
vectors as triangle areas and simplify when possible.

As we explained above, it’s not easy to find the
smallest possible number of triangles to express the
validity conditions of a PN triangle. We know here that
15 conditions are needed to express the validity of the
P3 triangle, and we think we have found the optimal
expression for these 15 conditions, though we do not
provide a proof. We believe it is useful to give the 15
P3 conditions in extenso:

J0 = 18A038

J1 = 18A415

J2 = 18A762

J3 = 9
(
A039 +A348 +A043

)

J5 = 9
(
A419 +A345 +A143

)

J6 = 9
(
A159 +A564 +A165

)

J8 = 9
(
A629 +A567 +A265

)

J9 = 9
(
A279 +A786 +A287

)

J11 = 9
(
A809 +A783 +A087

)

J4 = 3
(
4A349 +A035 +A418 +A043 +A014

)

J7 = 3
(
4A569 +A157 +A624 +A165 +A126

)

J10 = 3
(
4A789 +A273 +A806 +A287 +A208

)

J12 = 3
(
2A478 − 2A378 + 2A398

+A036 +A058 −A038

)

J13 = 3
(
2A634 − 2A534 + 2A594

+A158 +A174 −A154

)

J14 = 3
(
2A856 − 2A756 + 2A796

+A274 +A236 −A276

)

If all 15 coefficients Ji are positive, then the P3 triangle
is provably valid. Let us point out that the number
triangle areas given here is optimal. Indeed, the Bézier
points on which depends each coefficient cannot be
changed, and the number of triangle cannot be less than
the number of point minus 2.

3.5 The quadratic tetrahedron. The analysis we
propose remains very similar when we go up in dimen-

sion and consider the case of tetrahedra instead of tri-
angles. For a quadratic tetrahedron, the interpolation
is written

x(λ0, λ1, λ2, λ3) =

2∑

i,j,k,l

T
(2)
i,j,k,l xijkl,

where the corresponding Bézier functions are

T
(2)
i,j,k,l =

p!

i!j!k!l!
λi
0 λ

j
1 λ

k
2 λ

l
3, i+ j + k + l = 2.

We order the point as in Figure 5, so that only one index
is necessary.

x0 x1

x2

x3

X0 X1

X3

X2

X7

X6 X5

X9

X4

X8

Figure 5: An ideal tetrahedra (left) and an order 2
tetrahedral element (right). For clarity, Bézier points
that do not correspond to a vertex (i.e. points x3 to
x9) are not shown.

Computing the the Jacobian determinant is done
by the box product of the three partial derivatives

J =

(
∂x

∂λ1
×

∂x

∂λ2

)

·
∂x

∂λ3
, λ0 = 1− λ1 − λ2 − λ3,

which are given by

∂x

∂λ1
= 2

[
λ0v04 + λ1v41 + λ2v65 + λ3v79

]
= 2(y1 − y0)

∂x

∂λ2
= 2

[
λ0v06 + λ1v45 + λ2v62 + λ3v78

]
= 2(y2 − y0)

∂x

∂λ3
= 2

[
λ0v07 + λ1v49 + λ2v68 + λ3v73

]
= 2(y3 − y0),

where vij = xj − xi.
The Jacobian determinant is thus in this case a

cubic polynomial in dimension 3 and the number of
coefficients is 20. Each coefficient is associated to a
Bézier function in λi

0 λ
j
1 λ

k
2 λ

l
3 for a given quadruplet

(i, j, k, l), i+ j + k + l = 3. To obtain an expression of
those coefficients as volumes of tetrahedra, one has to
develop the box product of the three partial derivative
and gather the terms in identical λi

0 λ
j
1 λ

k
2 λ

l
3. As an

example, the coefficient J0 which is associated to λ3
0 is

given by

J0 = 8 (v04 × v06) · v07 = 48V0467
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Listing all 20 coefficients would take too much place in
this article. Here, we give the expression for one of each
type which correspond to the position of the point in
the P3 tetrahedron: on a corner, on an edge or on a
face. The corner coefficient is J0 and the two other are
respectively

J4 = 16
(
V0469 + V0457 + V0167 − V0467

)

J16 = 8
(
V0458 − V0456 + V0429 − V0469

+ V0467 − V0468 + V0127 − V0427

+ V0168 − V0167 + V0569 + V4567

)
.

It can be proved that the edge coefficient cannot be
computed with less than 4 volumes. On the other
hand, the 12 volumes of face coefficients obtained here
is suboptimal. One simplification that we have found is

V0465 + V0458 + V0486 = V0658 + V4658

but others may exist.

4 Untangling PN elements

Let us now turn our attention to the practical untan-
gling of high-order triangles and tetrahedra. In the pre-
vious section, we have established a list of sufficient con-
ditions for a PN element to be valid. These conditions
take the form of either P1 determinants (for corners),
or linear combinations of P1 determinants, that need to
stay positive. To achieve these conditions in practice,
we propose to use the method of Garanzha et al.[4]. In
this work, author indeed propose a methodology for un-
tangling simplicial meshes in a very robust fashion. As
our formulation for a PN element is formulated only as
conditions on P1 simplices, the adaptation of the un-
tangling method to our case will be straightforward.

4.1 Untangling simplices. Let us first recall the
principles of the approach proposed in [4]. Consider the
task of untangling a mesh of triangles composed of n
nodes. The goal is to optimize the position of the nodes
so that each triangle is correctly oriented and exhibits
low distortion with relation to an ideal triangular shape.
However, distortion cannot be completely eliminated
in practice. One can only hope for a mapping that
preserves angles (conformal) or areas (authalic), but not
both at the same time. What is proposed in [4] is to
achieve a compromise between the two.

Let T be a triangulation of a domain Ω of the plane
(the principle trivially extends to tetrahedrizations in
space). Each triangle t = (xa,xb,xc) of T is associated
with a triangle (Xc,Xb,Xc) of ideal shape. This idea is
quite similar to that used in anisotropic mesh adapta-
tion, where a metric field is used to define angles and

areas and where the ideal element is an equilateral or
unit triangle with respect to the given metric.

The jacobian matrix J = dx
dX

can easily be com-
puted as

J = (Xb −Xa,Xc −Xa)
−1

(xb − xa,xc − xa) .

The determinant of J plays of course an important role
in this work. We write

det(J) = J =
(xb − xa)× (xc − xa) · ez

(Xb −Xa)× (Xc −Xa) · ez
.

In [4], authors propose to minimize

(4.12) lim
ε→0

∑

t∈T
fε(Jt, ε) + λgε(Jt, ε)

where

fε(J) =
tr(JTJ)

χ(J, ε)
and gε(J) =

J2 + 1

χ(J, ε)
.

Here, χ(x, ε) = x+
√
ε2+x2

2 is a regularization function
that tends to the ramp function when ε → 0.

The term fε is minimal when the mapping preserve
the angles of the triangles while minimizing gε amounts
at preserving their area. Parameter λ > 0 controls the
balance between the two and thus controls the tradeoff.
To minimize Eq. (4.12), we rely on the same quasi-
Newton scheme proposed in [4]. In particular, we do
not need to compute the Hessian of the function but
only the derivatives of J with respect to coordinates
xa,b,c. The formula is the same as Eq.(3.3):

∂J

∂xa,b,c

=
(xc,a,b − xb,c,a)× ez

(Xb −Xa)× (Xc −Xa) · ez
.(4.13)

One of the advantages of this approach over [11], for
example, is the ease with which the gradient of fε can be
calculated. Another advantage to use the regularization
proposed in [4] is that fε is convex so the solution that is
found is unique and a simple LBFGS allows to converge
in every case.

4.2 Adapting the untangler for P2 triangles.

In the case of a P2 mesh, we will first assume that
it is made from a valid, good-quality P1 mesh. As
already proposed in the litterature (see e.g. [5]), we
choose this straight-sided P1 element as the ideal shape
of the P2 triangle. This has two advantages. Firstly,
it allows the algorithm to favor an unchanged mesh
because unchanged triangles will have a unit Jacobian.
Secondly, it enables the untangling of highly anisotropic
meshes such as boundary layer meshes while preserving
the anisotropy.
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Figure 6: Top Figure shows an example of an invalid P2
triangle with positive Jacobian on all of its boundary.
(In orange are the edges and in blue is the Bézier control
polygon.) Bottom Figure shows the Jacobian value in
the reference triangle.

The Jacobian matrix is this time varying over the
element and the straightforward generalization of the
minimization problem (4.12) would necessitate to eval-
uate fε and gε everywhere inside the element. In
practice, this is of course unfeasible, which is why we
use conditions (3.8) which we established to be suf-
ficient for the P2 elements to be valid. The first
three conditions are simple P1 triangles between Bezier
control points whose Jacobian should remain positive.
These correspond to the three corner Jacobian of the
P2 triangle, that is to say the mappings between tri-
angles (X0,X3,X5) → (x0,x3,x5), (X1,X4,X3) →
(x1,x4,x3) and (X2,X5,X4) → (x2,x5,x4).

Untangling these three triangles for each P2 element
is necessary for global validity but is unfortunately not
a sufficient solution, as there exist invalid P2 triangles
whose Jacobian is positive at all three corners. Figure
6 shows an example of such a configuration.

The most intuitive idea for improving the procedure
would be to add the central triangle (x3,x4,x5). On
the example of Figure 6, it is indeed invalid. This idea
have been proposed in previous works [1] and effectively
makes the process more robust. It is indeed quite
complicated to find an invalid P2 triangle whose four
Bézier triangles are valid, though such configurations
exist (see Figure 7,top). On the other hand, it’s very
easy to find a perfectly valid and very well conditioned

Figure 7: Top Figure shows an example of an invalid
P2 triangle for which all its Bézier triangles are valid.
Bottom Figure shows an example of a P2 triangle that
is valid even though it has an invalid central Bézier
triangle.

P2 triangle where the central Bézier triangle is invalid
(see Figure 7,bottom). Thus, the positivity of this
fourth triangle is neither necessary nor sufficient for
the validity in the P2 case and should not be used for
untangling P2 meshes.

Instead, we adapt the untangling method to the last
three conditions of (3.8), which are sufficient for validity.
In the fε term of Eq. (4.12), we only consider the
three corner Jacobians as before. The other term gε is
modified to take into account the three other conditions:
as the function acts as a barrier for negative values for
any ε, we add to the energy the linear combination of
determinants that needs to stay positive.

More precisely, let us consider a combination of N
triangle areas whose corners are the xj of a given PN
element. Assume that the indices of the triangle vertices
are encoded in a N × 3 matrix Cij . Then the condition
boils down to:

N∑

i=1

det
(
xCi,2

− xCi,1
,xCi,3

− xCi,1

)
> 0.

In the case of the P2 triangle, N = 3 (see Equation
(3.8)) and there are three 3× 3 matrices

C(3) =
(

0 3 4
1 5 3
0 1 3

)

, C(4) =
(

1 4 5
2 3 4
1 2 4

)

, C(5) =
(

2 5 3
0 4 5
2 0 5

)

.

In order for the condition to be invariant by scaling,

Copyright c© 2025 by SIAM
Unauthorized reproduction of this article is prohibited



we normalize it by its initial value and write

S(x,C) =

∑N
i=1 det

(
xCi,2

− xCi,1
,xCi,3

− xCi,1

)

∑N
i=1 det

(
XCi,2

−XCi,1
,XCi,3

−XCi,1

) > 0.

Overall, the final problem we minimize is the fol-
lowing expression:

2∑

i=0

(fε(Ji) + λgε(Ji))

︸ ︷︷ ︸

Jacobians at corners

+ λ
∑

j

gε(S(x,C
(j)))

︸ ︷︷ ︸

Barriers on linear combinations

summed over all elements in the mesh. As computing
the gradient of gε is no more complicated for a linear
combination of triangles than for a single triangle,
evaluating and differentiating this expression is not
harder than for the original untangler of [4].

Generalizing this approach for PN triangles and
tetrahedra is also straightforward, as we only need to
build the matrices C. However, their size and number
grows quickly with the order of the element, which
increases the cost of the optimization. For a P3 triangle
for instance, there are 12 of them that link 3 to 6
triangles together (see Eqs. (3.12)).

5 Application: P2 and P3 untangling of

boundary layers.

Let’s now try to apply the methodology proposed above
to a few boundary layer meshes.

5.1 Ellipsis. The first example is a simple elliptical
body (excentricity being equal to 4) around which we
have generated (using Gmsh [7]) a boundary layer mesh
of thickness 0.1, a first element of size h0 = 0.001 and a
geometric progression of reason r = 1.3. The ith point
of the boundary layer is therefore positioned at a dis-
tance hi = h0(1+ r)i−1 to the wall. Figure 8 shows not
only the ellipse that describes the geometry, but also
the other ellipse that forms the outer boundary of the
boundary layer. The interest of our proposed methodol-
ogy is twofold. Firstly, we have transformed the problem
of untangling P2 elements into a simpler problem: un-
tangling P1 elements. Secondly, the tradeoff parameter
λ allows us to balance control over the area of the ele-
ments (and the thickness of the curved boundary layer)
and over the orthogonality of the elements in the bound-
ary layer. As both quantities are impossible to preserve
perfectly simultaneously, the value of λ in our method
specifies which one to favor.

Figure 9 shows untangled P2 boundary layer meshes
around the ellipse for three values of λ. Note that the
outer ellipse drawn in the various Figures of 9 is not part
of the CAD, but represents the outer boundary of the

Figure 8: A straight-sided boundary layer O-mesh

around an ellipsis.

boundary layer as prescribed in the Gmsh file. Another
important note: the positioning of the P2 nodes on the
ellipse is not equidistant. It has been optimized to make
the 1D quadratic mesh as C1 as possible [11].

With a parameter of λ = 1/100, the mesh is
untangled, but at the cost of a mild extension of the
boundary layer’s thickness. If we choose λ = 1, the
thickness of the boundary layer is this time relatively
spared, while maintaining good mesh orthogonality.
Finally, if we use λ = 100, i.e. if we resolutely prefer
to keep the size of the elements identical, orthogonality
is lost and the algorithm introduces curvature in the
direction orthogonal to the wall. We believe that
choosing λ = 1 is a good compromise, and this is the
value we set for all the following experiments.

5.2 Compressor blade. A second example is briefly
presented here on Figure 10, a compressor blade that
is part of a cascade (vertical periodic domain). The
geometry contains both concave and convex boundaries.
Here, optimizing the mesh to conform to both an ideal
size and an ideal shape allows to generated meshes that
are elegantly curved all along the boundary.

5.3 Three component wing This third example is
a classical: the three component wing. (see Figure
11). Again, our method enables the generation of a
boundary layer that gracefully follows the boundary on
all components.

5.4 P3 boundary layers We used the same 3 test
cases (ellipse, blade and wing, see Figure 12), with
the same number of elements, but using P3 triangles
instead of P2. The number of simplexes needed to
apply the sufficient positivity condition rises from 12
in P2 to 54 in P3. The time for untangling the
three component wing (§5.3) is increased from a few
seconds to just under a minute. It is clearly possible to

Copyright c© 2025 by SIAM
Unauthorized reproduction of this article is prohibited



λ = 1/100

λ = 1

λ = 100

Figure 9: Valid P2 boundary layer mesh around an
ellipsis with various values of λ. The case λ = 1 seems
to be the best compromise, with orthogonal meshes and
a boundary layer thickness that is not very affected by
the curving process The case λ = 1/100 shows some
mild thickening of the boundary layer while the case
λ = 100, we find major disturbances in the regularity of
the elements.

Figure 10: Valid P2 boundary layer mesh around an
compressor blade (λ = 1).
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Figure 11: Valid P2 boundary layer mesh of the three
component wing (λ = 1).

Figure 12: Valid P3 boundary layer meshes.

improve the performance of our algorithm, for example,
by parallelizing the calculation of fε and its gradient,
but for us, P3 will remain on the order of 5 times
more expensive than P2, and using higher orders will
drastically increase the computational cost. For P4, for
example, the Jacobian is of order 6 and we will need
28 conditions and 154 triangle areas to compute. For
a given order p, we found that the maximum number
of triangle needed to compute a single coefficient is
bounded by

p2

3
+ 5

p

3
−

7

9
,

which means that the total number of triangles increases
at worst as p4.

5.5 Tetrahedral sphere Finally, we consider the 3D
case of untangling P2 tetrahedra. On Figure 13, we test
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Figure 13: Stress test of the untangler on a P2 sphere.
Left: initial sphere where all P1 and P2 interior nodes
have been assigned a random position. Right: untan-
gled result.

our approach on the simple case of a sphere where all
interior points have been assigned a random position.
Taking as an ideal shape the P1 untangled sphere,
optimizing for our conditions is sufficient to recover a
good quality P2 mesh.

6 Initialization and Convergence

In our first experiments, the optimization algorithm – L-
BFGS [9] in this case – was initialized using the straight-
sided mesh data as an initial condition, except on the
boundary where the high-order points are moved on the
CAD with the aim of minimizing the geometric error
(see Figure 14). The optimization still converged in
all the cases we tested, but this convergence was very
slow. Indeed, at the start of the optimization process,
only triangles with an edge on the domain boundary
are tangled, all others matching their ideal shape. The
algorithm propagates information layer by layer, and
the number of layers of elements in a boundary layer is
potentially high (> 20).

It is actually quite simple to speed up the optimiza-
tion process by propagating the movement of bound-
ary nodes throughout their respective columns in the
boundary layer. This mesh is potentially invalid (see
Figure 14), but L-BFGS can now act locally.

With this good initialization, it takes 2 seconds on a
standard laptop to untangle the three component wing
of Figure 11 (13,068 triangles, most of them in the
boundary layer). Figure 15 shows the state of the mesh
after 2 seconds of optimization in the case of the simple
initial condition. Obtaining the convergence takes more
than 30 seconds in this case.

Figure 14: Initial conditions for the optimization prob-
lem: only boundary nodes are initially positioned on the
CAD (top) and displacement of the boundary node is
propagated on the whole boundary layer column (bot-
tom). Both setups may present invalid elements, though
their untangling is faster in the latter.
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Figure 15: Resulting meshes after 2 seconds of opti-
mization for different initial conditions. When bound-
ary nodes only are initially positioned on the CAD (top
Figure), the mesh is still tangled while when bound-
ary nodes are initially propagated on the whole bound-
ary layer (bottom Figure), the optimization procedure
is converged.

Figure 16: A valid element that violates sufficient
conditions (3.8).

7 Conclusions and Future Works

We have introduced an optimization method for fast
untangling of order 2 and 3 meshes, that rely on a simple
set of sufficient validity conditions. The conditions given
in Eq.(3.8) are reasonably sharp[8] yet they sometimes
provide false negative results. Figure 16 shows an
example of a valid P2 triangle that violates one of
the 6 conditions (3.8). Although these configurations
were not needed in practice to achieve valid meshes,
relaxing our constraints to include these false negatives
is a path for future work. An idea would be to utilize
the methodology proposed in [8], which is based on a
recursive division of the Bézier triangulation using De
Casteljau’s algorithm. The sharp bound it provides
could be used in our setup along a subdivision scheme
for a progressively stiffening scheme.

While we showed that the same methodology could
be applied to any order, computation costs quickly grow.
More research is needed to determine a more efficient
approach for orders higher than 3.
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