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Abstract

Decomposition of CAD models into shapes amenable for

automatic meshing such as blocks is a crucial step in

hexahedral mesh generation. In this paper, we propose

a Monte Carlo Tree Search (MCTS) based approach to

obtain possible decomposition solutions for a given CAD

model which can be subsequently used for mesh generation.

This prototype study shows promises in automating the

decomposition of complex shapes into blocks and could be

combined in the future with machine learning methods to

enhance the method.

1 Introduction

Many numerical methods compute approximate solu-
tions over a mesh of topologically simpler elements
(tetrahedra, hexahedra) representing the computational
domain. In highly non-linear problems, hexahedra are
preferred, or even required, over tetrahedra because of
their superior accuracy and directional control of the so-
lution [21]. However, in spite of 30+ years of research,
there are no reliable algorithms that can automatically
generate hexahedral meshes for general CAD models
[14, 15]).

The process of generating high-quality hexahedral
meshes for complex shapes is at best a semi-automatic
process. Analysts spend hours to weeks segmenting or
decomposing complex CAD models into simpler shapes,
like six-sided 3D blocks, that can be meshed using
automatic algorithms. This process is a combination
of experience and intuition, and automating it has been
the holy grail of hexahedral mesh generation.

With the impressive success of machine learning in a
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wide variety of fields, it is worth investigating whether
some learning-based techniques can be applied to the
problem of block decomposition. Recently, DiPrete et
al. [7] have explored the use of reinforcement learning
to learn the sequence of steps to subdivide 2D shapes
into general rectangles. The paper describes using a
powerful Soft-Actor-Critic type Reinforcement Learning
(RL) method to decompose polygonal shapes with all
axis-aligned edges into rectangles. The decomposition
is performed by cutting the model recursively along the
model edges. The justification for using a powerful RL
method to solve this simple problem is the promise of
using continuous actions to decompose more complex
shapes.

Some early papers have explored the use of
knowledge-based tree search methods to decompose ge-
ometric models [13, 19]. Of particular note is the pa-
per by Phillips et al. [13] in which they proposed a
semantic-based intelligent tree search that is closely re-
lated to more modern methods explored here. In their
work they avoid exploring the all the numerous possible
paths by pruning those that produce undesirable inter-
mediate stages. The work of Takata et al. [19] is similar
but less general.

In this paper, we revisit the spirit of earlier
knowledge-based attempts by applying newer intelligent
search techniques to decompose a model into meshable
blocks. In particular, we explore if the Monte Carlo Tree
Search (MCTS) method [5] can be applied to the prob-
lem of creating a block decomposition of the shape by
recursive cuts. The MCTS method has been used suc-
cessfully in recent years in playing games such as Go [18]
and chess. We show that the very simple MCTS-based
method implemented here can generate viable decompo-
sitions for many of the 2D planar shapes tested in the
study. This holds the promise that an improved algo-
rithm combining MCTS with neural networks [18], uti-
lizing more sophisticated rewards and a wider range of
actions can be used effectively to decompose new shapes
into meshable subdomains without human intervention.

We start by providing a brief background on the
MCTS method in Section 2. In section 3, we describe
the MCTS algorithm modified for constructing search

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



Figure 1: Example game tree of Tic Tac Toe game [8].

Figure 2: The basic MCTS process [1]

trees over CAD models. Finally, results and conclusions
are presented in Sections 4 and 5.

2 Background

In this section, we describe the basic Monte Carlo Tree
Search method and its key components.

2.1 Monte Carlo Tree Search Monte Carlo Tree
Search (MCTS) is a widely used approach for solving
finite size and finite horizon Markov Decision Process
(MDP) based decision problems. It is a heuristic search
algorithm that is used to obtain optimal or quasi-
optimal solutions in a search space. MCTS achieves
this by randomly sampling the decision space and by
constructing a search tree based on the outcomes. In
recent years, it has significantly influenced the field
of artificial intelligence (AI) problems which can be
described using a sequential decision tree, such as
various games and planning scenarios.

MCTS method was first introduced by Coulom ([5])
and improved by Kocsis and Szepesvári ([9]). The
algorithm is easier to understand by using the example
of a combinatorial game. A game can be represented
as a game tree (see Fig.1), where each tree node
corresponds to a state of the game. The child nodes
represent the possible next states for all possible actions

that the player can take. Based on the number of states
and the number of actions, the combinatorial space of
possible states can be gigantic. For example, Phillips
et al.[13] state that for a model with N vertices and
m possible actions at each vertex, the total number
of paths in the tree is equal to N !mN . For N = 6
and m = 3, this means 524,880 possible paths resulting
in 729 unique end states. In such scenarios, the goal
is to conduct a more intelligent search by performing
random sampling (called simulations) instead of brute
force search, and capturing the effect of actions to make
better choices in subsequent iterations.

The basic process is conceptually straightforward
and is illustrated in Figure 2 (from [1]). It involves in-
crementally constructing the game tree in an asymmet-
ric manner. During each iteration, a tree policy iden-
tifies the most critical node in the current tree. This
policy aims to balance between exploration (venturing
into less explored areas) and exploitation (focusing on
promising areas). From this node, a simulation is exe-
cuted, updating the search tree based on the outcome.
A simulation is defined as a sequence of actions, either
randomly selected or statistically biased, that is con-
tinuously applied to the current state until a terminal
condition is met. The update process includes adding a
child node corresponding to the action taken and adjust-
ing the statistics of its ancestors. During the simulation
stage, moves are determined by a default policy, often
using uniformly random choices as a simple example.
The algorithm progressively constructs a search tree un-
til a predefined computational limit, usually defined by
a bound on time execution, on memory footprint, or a
number of iterations, is reached. Once this predefined
limit is reached, the search concludes, and the optimal
root action is returned.

The MCTS algorithm performs series of four steps
[3] to iteratively construct the search tree as shown in
Figure 3:

1. Selection: Beginning from the root node, a policy
for selecting child nodes is applied recursively to
traverse down the current tree until the most
critical expandable node is reached. A node is
considered expandable if it represents a state that
is not terminal and has children that have not yet
been visited or expanded;

2. Expansion: Involves adding one or more child
nodes to grow the tree based on available actions,

3. Simulation: Entails simulating the newly added
node(s) according to a default policy to determine
an outcome;

4. Backpropagation: Refers to updating the statistics
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Figure 3: One iteration of the general MCTS approach [10]

of selected nodes by propagating the result of the
simulation backward through the tree.

In contrast to depth-limited minimax search [17],
MCTS does not require evaluating intermediate state
values, and thus significantly reducing the needed do-
main knowledge. Only the final state’s value at the end
of each simulation is essential for decision-making.

Tree Policy The tree policy is used during the selec-
tion and expansion steps. The policy is essentially a
strategy to reach a next new state by selecting or cre-
ating a new leaf node from an existing node within the
search tree.

For example, Kocsis and Szepesvár[9], recommend
the use of the following formula in order to choose the
most promising node:

(2.1)
wi

ni

+ c

√

lnNi

ni

.

In this formula:

• wi represents the number of wins for the node under
consideration following the i-th move;

• ni represents the number of simulations conducted
for the node under consideration after the i-th
move;

• Ni represents the total number of simulations con-
ducted up to the i-th move by the parent node of
the node under consideration;

• c is the exploration parameter, ideally set to
√
2 in

theory, but typically chosen empirically in practice.

The first part of this equation is used like the
exploitation parameter, the fraction is large for the
successors which have been so successful up to now.
The second part corresponds to exploration; it plays
a big part in choosing successors who have only been
involved in a few simulations. This tree policy is chosen
at the beginning of the search and remains fixed during
the process. During the backpropagation phase, the
values wi and ni of the formula 2.1 are updated for
each selected node. We will use a modified version of
this selection formula described in Section 3.2.1

Default Policy The default policy is used during the
simulation step and dictates how the game is played
when starting from a non-terminal state. As a result of
the policy, the simulation step performs a sequence of
actions that are either randomly selected or statistically
biased according to some distribution is applied until a
terminal state is reached. The end goal of a simulation
step is generating an estimate of the value of a non-
terminal state. A high-value state indicates that the
chances of reaching a winning state are high.

During the backpropagation step, no policy is applied
directly. Instead, node statistics are updated to guide
future decisions made by the tree policy during selec-
tion. As mentioned above, the information carried by
the nodes is updated. Algorithm 1 provides the pseudo-
code of the above steps.
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Algorithm 1 Monte Carlo Tree Search (MCTS)

1: Function MCTS(state)
2: Create root node v0 with state s0
3: while within computational budget do
4: vl ← TREEPOLICY(v0)
5: reward← DEFAULTPOLICY(vl)
6: BACKUP(vl, reward)
7: end whilereturn BESTCHILD(children of v0)
8: End Function

1: Function TREEPOLICY(v)
2: while v is non-terminal and unexplored do

3: if not all children of v are expanded thenchoisir
return EXPAND(v) //Create a new child node

4: else

5: v ← BESTCHILD(v) //Using the selection
policy to choose

6: end if

7: end whilereturn v
8: End Function

1: Function DEFAULTPOLICY(v)
2: Randomly simulate to terminal state from v return

reward from terminal state
3: End Function

1: Function BACKUP(v, reward)
2: while v is not null do
3: Update v’s visit count and total value with

reward
4: v ← parent of v
5: end while

6: End Function

3 MCTS for CAD Decomposition

The block decomposition of a planar two-dimensional
CAD model can be viewed as a single-player game
where the game play involves applying a discrete set of
actions that modify the geometry sequentially to reach
a terminal state where either the model is decomposed
or not resulting in a winning or a losing game state.
We first begin by describing the representation of the
decomposition game.

3.1 Game Representation

State Our approach considers the entire CAD model,
incorporating all the entities that make up the model
in the state evaluation. This means that every aspect
of the model, from geometric shapes to intricate de-
tails, is taken into account during the decomposition
and optimization process. By adopting this compre-
hensive approach, we capture the interactions between
different parts of the model and ensure that each en-
tity is properly addressed in the decomposition process.
Taking the whole CAD model into account allows us to
achieve a more accurate and consistent decomposition
that faithfully reflects the model’s overall structure and
constraints.

The CAD model is represented using a full-featured
3D geometric modeler called OpenCascade [11] and is
queried and modified through an in-house simplified
Python [20] API based on PythonOCC [12].

Actions Our action set contains three different actions
that can be applied at a model vertex to realize the
CAD decomposition (illustrated in Figure 4). The three
actions correspond to cutting along model edges at a
model vertex and a bisector.
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(a) Cut along red edge 1.

(b) Cut along red edge 2.

(c) Cut along angle bisector.

Figure 4: Possible actions from a model vertex.

In our approach, the action list provided by a state
is derived by exploring all the boundary vertices of the
model. For each boundary vertex, we consider the pos-
sibility of executing one of three available actions. This
method ensures that all potential actions are evaluated
and included in the action list, allowing for a compre-
hensive exploration of the possible transitions and ma-
nipulations of the model. By examining each boundary
vertex and permitting any of the three actions, we en-
sure that the action list reflects a diverse set of options,
thereby enhancing the flexibility and effectiveness of the
decomposition process.

Root and Child Nodes We start from the CAD
model as the root node. A child node is a modified
model after an action has been applied. Figures 5a and
5b illustrate the root and child nodes for an example
CAD model.

Terminal state A terminal state is reached when all
the model faces are quadrilateral shapes (see Figure 7)
or when we generate a triangular face (see Figure 6). We
consider shapes that logically represent a quadrilateral

(a) Root CAD Model

(b) State obtained after a cut
dissecting the model

Figure 5: Example of a CAD Model as a root and a
child node after an action is applied.

such as shown in Figure 8 as quadrilaterals as well. We
name it a general quadrilateral. The detection of such
faces relies on a tolerance parameter on the incident
angle at a vertex.

At the end of the algorithm, after n iterations, we
obtain a partially constructed tree, which may include
one or more final states that are a solution to the given
problem. This may be due to the fact that it is possible
to take several paths (sequence of actions) leading to the
same state, but on different leaves. At the same time,
several different states meeting the termination criteria
can be considered as victory since the solution is not
necessarily unique.

Quality function For evaluating the effect of actions,
we use the state of the CAD model after a simulation
to build the following quality function:

(3.2) R = γNQ + βNGQ − αNT − θNP ,

where NQ, NGQ, NT , NP are respectively the number
of pure quadrilaterals, general quadrilaterals, triangles,
and polygons, and γ, β, α, θ their respective weights.
As mentioned above, the quality function allows us
to evaluate a state obtained during the simulation
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Figure 6: Terminal state where a triangle is generated.

Figure 7: A terminal state where the initial CAD shape
is fully decomposed into a set of quadrilateral faces.

Figure 8: General Quadrilateral with five edges. The
black node denotes the corners, and the red node
denotes a side vertex.

phase. Note that we have not chosen to incorporate
quadrilateral quality into the quality function in this
initial study.

3.2 MCTS Decomposition Algorithm We now
explain the four key components of the MCTS algorithm
when applied to the decomposition game.

3.2.1 Selection As mentioned in the background
section, the selection step of the MCTS algorithm is a
strategic process aimed at choosing one of the children
of a given node while managing the trade-off between
exploitation and exploration.

Exploitation focuses on actions that have previously
yielded the best results, while exploration involves
considering less promising moves that might still offer
potential, given their uncertain evaluations.

Various algorithms [2] have been developed to han-
dle this selection process. One such tree policy for a
single-player game is an alternative version of the Upper
Confidence Bound for Trees (UCT) described in Schadd
et all [16] :

(3.3)
wi

ni

+ C.

√

lnNi

ni

+

√

√

√

√

√

ni
∑

k=0

(wk)2 − ni.(
wi

ni

)2 +D

ni

.

The first two terms in the original formula 2.1 use the
number of times a node n has been visited, denoted
ni, and the number of times a parent node N has been
visited, denoted Ni, to compute an upper confidence
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bound for the average game value wi

ni

. The term wi is
the sum of all previously obtained results. We use the
formula 3.2 to evaluate at the end of a simulation (see
Section 3.2.3).

For a single-player game, Schadd et al. [16] modified
this formula by adding a third term that accounts for the
deviation of the child node’s results from the expected
value (original formula 2.1). This term incorporates
the sum of the squared outcomes obtained thus far

(
ni
∑

k=0

(wk)
2) in the child node, adjusted by the expected

results ni(
wi

ni

)2.
In single-player games, unlike in two-player games

where outcomes are generally constrained to win, draw,
or lose (corresponding to values in [−1, 1]), scores can
significantly exceed these bounds. To address this
issue, the constants C and D in the UCT formula
need to be adjusted to fit the score range of the
game. Alternatively, scores can be scaled to fit within
a normalized range, such as [−1, 1], using theoretical
upper bounds. For our approach, we set C to

√
2, as it

is the theoretically proven value, and D to 10, 000. This
choice is motivated by the significant variation in the
value of our score depending on the geometries, so using
a high value minimizes potential risks. According to the
literature [16], it is recommended to set the parameterD
equal to the maximum value of the evaluation criterion.
Since the value of our score changes for each new CAD
provided, it is challenging to determine a consistent
value or predict the expected outcome when obtaining a
valid result. Based on this, we chose to set D to 10, 000
to ensure it would not negatively affect our selection
process during the selection phase.

Another important difference is that single-player
games do not involve an opponent whose moves intro-
duce uncertainty. Thus, the optimization focuses solely
on improving the game score without considering adver-
sarial actions.

3.2.2 Expansion When a leaf node is reached, the
expansion strategy determines which nodes are added to
the tree under the selected node. We use the approach
proposed in Coulom [5] for expanding one child node
per simulation, where the expanded node is the first
encountered new position that is not already in the tree.

3.2.3 Simulation For the simulation step, we start
from a leaf node and make random moves until reaching
the end of the game (win or lose). The game ends
if we generate a terminal state, that is, a solution
with only quadrilaterals or at least one triangle. We
can, therefore, say that our default policy consists of
a random choice of available actions for a given state.

This allows for a faster simulation phase than would be
the case if we were to choose actions using heuristics.
We perform 1000 simulations before selecting a new root
node. With this process, we reduce the complexity of
the tree because we cut a part of the tree with each new
root selection. We repeat this process until we obtain a
solution with a terminal state (cf. Section 3.1). After
the end of the simulation, we go to the back-propagation
phase.

3.2.4 Back-Propagation During the back-
propagation phase, the simulation result at the leaf
node is transmitted backward up to the root. Various
back-propagation strategies have been explored in
the literature [4][2][5]. Our approach uses the simple
average of the simulations by updating wi and ni.
To do this, we increment by 1 all the values ni for
each node leading to the node where the simulation
occurs. For wi, we add the quality of the state (using
formula 3.2) obtained at the end of the simulation.
Consequently, we update (1) the average score of a
node ( wi

ni

), (2) the sum of the squared results ((wi)
2),

which is necessary for the third term in the selection
strategy (see Formula 3.3), and (3) the UCT value.

The four phases are repeated until the game time
expires. When time runs out, a final move selection
determines which move should be played.

4 Results

For our experiments, we generated a set of general
planar polygonal shapes by merging a small number
(2-10) of randomly rotated planar rectangles. We
used the CUBIT package [6] for creating such shapes.
Figure 9 shows some of the generated shapes based
on this strategy. The MCTS algorithm is then tested
on this set of shapes. The algorithm constructs a
search tree for each individual shape, and at the end
of the search provides either a search tree with leaf
nodes corresponding to a success state, with a full
quadrilateral decomposition, or a failure state, where
at least one single triangle occurs.

Figure 10 showcases successful outcomes of the al-
gorithm on a set of shapes where a full quadrilateral de-
composition was obtained. For the shapes shown in each
subfigure in Figure 10, the algorithm terminated after
finding a search path to a full quadrilateral decomposi-
tion. In particular, the algorithm for the shape in subfig-
ure 10b correctly found that an edge-aligned cut rather
than a bisection cut would lead to a quadrilateral de-
composition when the shape is axis-aligned. We should
reiterate that since the reward function did not include
any measure of quality of the blocks, this is a success in
a purely topological sense. Overall, these results demon-
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Figure 9: Planar polygonal shapes generated from
rotated rectangles.

strate the effectiveness of our approach in managing and
optimizing the decomposition of CAD models. They il-
lustrate how even a simple MCTS framework can lead
to appropriate and suitable solutions.

However, it is possible that the MCTS algorithm
does not achieve a terminal state with only quadrilat-
erals. For example, Figure 11 illustrates the partial de-
compositions due to presence of triangles at leaf nodes.
These results highlight that, in some cases, the decom-
position process is incomplete, leaving residual polygons
in the model. This issue arises because the algorithm
terminates when all children of the selected root node
are triangles, which may prevent the discovery of a final,
fully optimized solution.

Despite incomplete decompositions, the algorithm
can be made useful by utilizing intermediate child nodes
as a starting guess to complete the decomposition pro-
cess. This property can be of significant help for com-
plex shapes, particularly in 3D where such guesses can
be reasonably useful guide for further decomposition.

On Figures 10 and 11, we provide the computation
time of our MCTS approach for each illustrated model.
This computation time can be explained by the fact
that, during the construction of the tree, each decom-
posed model is saved for every node in our search tree.
This decision was made due to technical constraints, as
the code did not ensure consistent naming of decompo-
sition elements based on their IDs. As a result, applying
an action to a node with ID i does not guarantee the
same outcome across different runs. Therefore, we were
forced to proceed as described, which led to an increase
in the complexity of our code.

5 Conclusions

In this paper, we have demonstrated the application of
the MCTS algorithm for the problem of CAD decompo-
sition in 2D. The results show that such an algorithm
can be effective in producing a fully quadrilateral de-
composition for two-dimensional planar polygons.

On the other hand, due to the inherent stochastic
nature of the algorithm, the search tree can result in
partial decompositions. The current approach is limited
by several factors that affect its overall performance and
versatility. One notable constraint is the action list’s
restriction to only cutting type operations faces, which
hampers the method’s ability to handle more complex
geometries.

6 Future Work

This initial approach has already shown promising and
encouraging results, which bodes well for the future.
The first 2D results demonstrate that the Monte Carlo
Tree Search (MCTS) algorithm is a promising method
for exploring the solution space in 2D mesh problems.
However, expanding to 3D will require the integration
of additional actions. In the future, we plan to add
more types of action, such as one-sided cuts instead of
through cuts, and cuts along more directions than just
the bisector, to increase the probability of finding a good
decomposition. We will also explore the opportunity to
incorporate geometric terms into the reward function to
generate decompositions with better aspect ratios and
angles. Furthermore, we aim to couple the MCTS algo-
rithm with a neural network that can predict the best
action to take in each state. Performance improvements
can be achieved by parallelizing the implementation and
removing redundant or unnecessary actions.

Finally, we plan to expand our test bench to include
a wider variety of shapes and extend the method to
handle simple three-dimensional models. The promis-
ing results from our 2D approach show that MCTS is a
valuable tool for exploring solution spaces, but moving
to 3D will require adapting the approach and introduc-
ing new actions to account for the added complexity.
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