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Abstract

This study introduces a quadrilateral mesh generation

method tailored for surfaces with multiple boundaries and

negative Euler characteristic numbers, utilizing symmetric

Abel differentials. Grounded in robust theoretical princi-

ples, this method generates high-quality quad-meshes char-

acterized by exceptional orthogonality and minimal singu-

larity presence. Additionally, the grid lines are strategically

aligned with the boundaries, enhancing the mesh’s structural

integrity and applicability in complex modeling scenarios.

1 Introduction

1.1 Motivation A quadrilateral mesh on a surface
refers to a type of polygonal mesh where the surface is
discretized into a network of quadrilaterals (four-sided
polygons). Each element of the mesh, or ”quad,” ap-
proximates a small portion of the surface, and the col-
lection of all quads provides a comprehensive covering
of the entire surface. In a well-constructed quadrilat-
eral mesh, the vertices, edges, and faces are arranged in
a manner that respects the geometric and topological
properties of the surface.

Quadrilateral elements can more naturally align
with directional features of a surface, such as curva-
ture and anisotropy, which is advantageous in com-
plex geometries seen in engineering and biomedical con-
texts. Quadrilateral meshes are conducive to subdivi-
sion schemes used in graphics and geometric modeling
[6]. These schemes, which iteratively refine and smooth
the mesh, often work better with quads, allowing for the
generation of smooth surfaces from coarse base meshes.
In computational engineering, such as finite element
analysis (FEA) [48], quadrilateral meshes are favored
because they tend to have favorable numerical proper-
ties. Quads can provide more uniform element quality
and better convergence properties compared to triangu-
lar meshes in certain simulation contexts.

In general, a good quality quad-mesh should satisfy
the following criteria:

• orthogonality: the adjacent edges of each quad-face
should be orthogonal to each other;

• boundary alignment: the quad-faces should be

aligned with the boundaries, namely the grid lines
are either parallel or orthogonal to the boundary
curves;

• uniformity: the sizes of the quads should be locally
uniform, and globally varies smoothly;

• singularity: the number of singularities should be
small and their positions should be controllable;

Because quad-mesh generation plays a fundamental
role in CAE fields, researchers have developed many
algorithms [34, 3]. However, for surfaces with negative
Euler characteristic numbers and multiple boundaries,
high-quality quad-mesh generation remains challenging
to meet the above requirements.

In this work, we focus on tackling the central
problem:

Generating quad-meshes for surfaces with negative
Euler characteristic numbers and multiple boundaries
that satisfy the criteria of orthogonality, boundary
alignment, uniformity, and singularity.

Our method is based on Abel differential theories
on Riemann surfaces [9, 30]

1.2 Abel Differential Recently, Lei et al. [7, 24, 47]
introduced a novel theoretic framework for surface
quad-mesh generation, which bridges the quad-meshes
with meromorphic quartic differentials on the Riemann
surface, namely a meromorphic section of a special holo-
morphic line bundle, such that the singularities of the
quad-mesh are governed by the Abel-Jacobi theorem.
The method introduced in [46] uses a special type of
meromorphic quartic differential, the holomorphic dif-
ferential, to generate high-quality quad meshes on a
polyannulus as uniform as possible. But the method
can not handle the surface with negative Euler charac-
teristic numbers directly.

This work generalizes the works in [7] and [46]
to generate quad-meshes on the surface with multiple
boundaries and negative Euler characteristic numbers
using Abel differential. A holomorphic differential can
only have zero singularities, but an Abel differential may
have zeros and poles. Therefore Abel differentials are
more flexible, and capable of modeling boundary holes
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(or cusps) as poles to ensure the boundary alignment
property.

1.3 Contributions This work proposes a novel
method for generating quadrilateral meshes on the sur-
faces with boundaries and negative Euler characteris-
tic numbers, which have merits of high orthogonality,
boundary alignment, minimal number of singularities
and good uniformity. In detail:

• Propose a framework to compute the first and third
types Abel differentials on Riemann surfaces with
boundaries;

• Propose a practical algorithm to generate quad-
meshes on surfaces with negative Euler character-
istic numbers and multiple boundaries.

The proposed work is a natural extension of the
method introduced by Gu and Yau [11], which general-
ized the Finite Element Method to exterior calculus and
computed holomorphic 1-forms on closed surfaces based
on the Hodge decomposition. This approach was later
extended to surfaces with boundaries using the double-
covering technique in [42, 12].

Similar to these previous works, the proposed
method relies on Hodge decomposition and the double-
covering technique. However, the key innovation lies in
addressing the symmetry of the holomorphic differential
basis. In [42, 12], the holomorphic 1-form basis is com-
puted on the double-covered surface without enforcing
symmetry. As a result, the holomorphic 1-forms derived
from linear combinations of this basis often lack sym-
metry. When these asymmetric 1-forms are projected
back onto the original input mesh, the boundaries in
the parameter domain fail to align with horizontal or
vertical directions. While this limitation is acceptable
for general texture mapping, as demonstrated in [42], it
poses a significant challenge for quad-mesh generation.

To overcome this issue, the current work employs
the symmetrization method detailed in subsection 4.5
to ensure the holomorphic 1-form basis is symmet-
ric. This adjustment guarantees proper boundary align-
ment, which is critical for generating high-quality quad
meshes.

2 Previous Work

Quadrilateral mesh generation is a cornerstone tech-
nique in science and engineering, prized for its tensor-
product structure and its ability to approximate smooth
surfaces accurately. The topic is well-documented
across extensive literature. For detailed literature re-
views, we suggest consulting references such as [4, 34, 3].
Below, we focus on discussing the principal methods of
quadrilateral mesh generation.

Converting Triangulation Approach One
prevalent technique involves transforming a triangular
mesh into a quadrilateral mesh. This transformation
typically encompasses steps such as edge matching, ver-
tex insertion, and optimization to refine the properties
of the quad mesh. The most straightforward approach
combines two adjacent triangles to form a single quadri-
lateral, thereby creating a quad mesh [14, 35, 38, 40].
However, this method generally yields unstructured
quad meshes and is fraught with challenges such as
increased complexity, potential degradation in mesh
quality, loss of geometric detail, boundary issues, and
irregular shapes.

Paving Method Approach The paving method,
based on the Advancing Front Technique (AFT) [28],
is a key algorithm for quadrilateral mesh generation,
known for its adaptability to complex boundaries and
high-quality meshes. Starting from boundaries, it pro-
gresses inward layer by layer. A direct advancing front
method [1] enhances edge alignment and reduces irreg-
ular nodes. However, the approach lacks robust theo-
retical guarantees and is computationally intensive. Im-
provements include single-element insertion with colli-
sion detection for robustness [43] and element size con-
trol for smooth transitions [45]. Region decomposition
into subdomains [29] enables automatic meshing of com-
plex geometries with constraints, improving efficiency
and adaptability.

Patch-based Approach An alternative strategy
is the patch-based method, which segments data or
regions into smaller patches for streamlined analysis
and processing. This approach is frequently adopted
in fields such as image processing, computer graphics,
and machine learning to efficiently handle complex
datasets. In this method, adjacent triangular faces are
merged into patches using clustering techniques that
may include normal-based and center-based methods [2,
5]. The generation of these patches is often supported
by the implementation of poly-cube maps [44, 41, 27,
15].

Parameterization Based Approach Another
widely used technique in quad-meshing employs
parameterization-based algorithms. This approach in-
volves creating parameterizations or mappings of geo-
metric data, which are crucial for various applications in
computer graphics, computer-aided design, and similar
areas. Among these, the spectral surface quadrangula-
tion method [10, 16] is implemented on the input mesh.
Various techniques such as global conformal parameteri-
zation [13], discrete harmonic forms [39], periodic global
parameterization [32], branched covering methods [19],
and discrete surface Ricci flow [18, 36, 37] all depend on
parameterization to effectively generate quad meshes.
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Frame Field Approach Among the prominent
methods, cross-field guided quad-mesh generation
stands out for its application in structuring quad meshes
on complex surfaces. This technique utilizes cross fields
to dictate the orientation of quads, enhancing the struc-
ture necessary for applications like finite element anal-
ysis and 3D modeling. Common representations for
crosses include N-RoSy [31, 21], period jump [26], and
complex value [20]. These methods typically employ en-
ergy minimization to achieve smooth cross fields, often
measured by discrete Dirichlet energy [17], and generate
quad meshes using techniques such as streamline trac-
ing [33] or parameterization [3]. While offering struc-
tured meshing and precise alignment, cross-field meth-
ods can be computationally intensive and sensitive to
algorithms, sometimes requiring manual adjustments.
Lei et al. [25] established essential conditions for cross
field existence and differentiated cross fields from quad
meshes using fiber bundle theory.

Method Based On Abel-Jacobi Approach

Chen et al. [7] established the necessary and suffi-
cient conditions for a Riemannian metric induced by
a quad-mesh, including the Gauss-Bonnet condition for
curvatures, holonomy, boundary alignment, and finite
streamline conditions. Lei et al. [24] demonstrated that
the holonomy condition is expressible through the Abel-
Jacobi equation in algebraic geometry. Subsequently,
Zheng et al. [47] developed a practical algorithm to
optimize singularity configurations to meet the Abel-
Jacobi condition. Their findings suggest that surface
quad-meshes correspond to meromorphic quartic differ-
entials and act as meromorphic global sections of a spe-
cial holomorphic line bundle on Riemann surfaces, with
mesh singularities forming the characteristic class of the
line bundle. Thus, singularity indices are dictated by
the Abel-Jacobi equations, providing a theoretical foun-
dation for structured mesh generation. Additionally, Lei
et al. [22, 23] extended these principles to hexahedral
mesh generation through surface foliations, a subset of
meromorphic quartic differentials.

Our current work is mainly based on this frame-
work, a special type of meromorphic quartic differential
is constructed, the symmetric Abel differential, termed
for surfaces with boundaries and negative Euler charac-
teristic numbers.

3 Theoretic Background

This section briefly introduces the theoretic foundation
for the currently. We refer readers to [9, 30] for thorough
treatments.

3.1 Abel Differentials on Riemann Surfaces

Suppose Ω is domain on the complex plane Ω ⊂ C,

a complex function is f : Ω → C is holomorphic , if it
satisfies Cauchy-Riemann equation,

∂z̄f(z) = 0, ∀z ∈ Ω,

where the differential operator ∂z̄ = 1/2(∂x +
√
−1∂y).

f is biholomorphic, if it is invertible and f−1 is also
holomorphic.

A surface S is a two dimensional manifold with an
open covering S ⊂ ⋃

α Uα, each open set Uα is associ-
ated with a homeomorphism φα : Uα → C, (Uα, φα)
forms a local chart. For the intersection between two
local charts (Uα, φα), (Uβ , φβ) the transition function

is defined as

φαβ : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ), φαβ := φβ ◦ φ−1
α .

If all the transition functions are biholomorphic, then
S is called a Riemann surface and the collection of
local charts {(Uα, φα)} is called a conformal atlas or
a conformal structure.

Suppose S is an oriented surface with a Riemannian
metric g. For each point p ∈ S, there is a neighborhood
Uα, on which we can define the so-called isothermal

coordinates (xα, yα), such that the metric has a special
form

g = e2λ(xα,yα)(dx2α + dy2α),

where the scalar function λα : Uα → R is called the
conformal factor function. The union of all isothermal
coordinates charts form the conformal atlas of the
surface, therefore the oriented metric surface (S,g) is
a Riemann surface.

A complex function defined on a Riemann surface
is called a holomorphic or meromorphic function, if on
each local chart (Uα, zα), the local representation of f is
fα(zα), which is holomorphic or meromorphic. Further-
more, in the intersection of two charts, fα(zα) = fβ(zβ).
Namely, the function is globally consistently defined. A
meromorphic function defined on the complex plane is
called symmetric, if it satisfies

f(z) = f(z̄).

Suppose p ∈ S is a point on the Riemann surface S,
choose a local coordinates z of the neighborhood of p,
such that zα(p) = 0, if in the neighborhood fα is

fα(zα) = zναhα(zα),

where hα is a holomorphic function, hα(0) ̸= 0, ν ∈ Z.
ν is called the order of f at p, denoted as νp(f). When
νp(f) > 0, p is called a zero of f , and νp(f) is called the
order of the zero; when νp(f) < 0, p is called a pole of
f , |νp(f)| is called the order of the pole p.
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Figure 1: Abel differential (left), holomorphic differen-
tial (right) with poles (red circles) and zeros (blue cir-
cles).

A complex complex differential 1-form ω is called
a Abel differential, if on each local chart zα, its local
representation is

ω = fα(zα)dzα,

where fα is a meromorphic function, and on the other
chart ω = fβ(zβ)dzβ , where

fα(zα) = fβ(zβ(zα))
dzβ
dzα

.

An Abel differential has local Laurent series :

ω =







a−n

zn
+ · · ·+ a−2

z2
+
a−1

z
︸ ︷︷ ︸

principle part

+ a0 + · · · akzk · · ·
︸ ︷︷ ︸

holomorphic part






dz

= ω2 + ω3 + ω1

where

Type 1 : ω1 = (a0 + a1 + · · ·+ akz
k + · · · )dz

Type 2 : ω2 =
(a−n

zn
+
a−(n−1)

zn−1
+ · · ·+ a−2

z2

)

dz

Type 3 : ω3 =

(
a−1

z − p −
a−1

z − q

)

dz

Fig. 1 left shows an Abel differential with two zeros
(blue circles centered at ±

√
−1) and two simple poles

(red circles centered at ±1), whose local representation
is

ω =

(

1 +
1

z − 1
− 1

z + 1

)

dz,

The right frame shows a holomorphic differential (type
1 Abel differential) on a genus two surface with two zero
points (blue circles).

3.2 Hodge Decomposition A differential 1-form ω
on a differential manifold M at each point p assigns a

linear functional ωp on the tangent space TpM at p. If
(x1, x2, . . . , xn) are local coordinates on M , then ω can
be written as

ω =

n∑

i=1

fidx
i

where fi are smooth functions and dxi are the basis
for cotangent space T ∗

pM . The wedge product of k
differential 1-forms ω1, ω2, . . . , ωk is a anti-symmetric
multi-linear function, ω1∧· · ·∧ωk : TpM×· · ·×TpM →
R, ∀v1, . . . , vk ∈ TpM ,

ω1 ∧ · · · ∧ ωk(v1, . . . , vk) :=

∣
∣
∣
∣
∣
∣
∣
∣
∣

ω1(v1) · · · ω1(vk)
ω2(v1) · · · ω2(vk)

...
...

ωk(v1) · · · ωk(vk)

∣
∣
∣
∣
∣
∣
∣
∣
∣

,

which is called a k-form, and has the local representation

ω =
∑

i1<···<ik

fi1...ikdx
i1 ∧ · · · ∧ dxik .

The linear space of all k-forms is denoted as Ωk(M).
The exterior derivative d : Ωk(M) → Ωk+1(M) acts in
a k-form given by

dω =
∑

i1<···<ik

dfi1...ik ∧ dxi1 ∧ · · · ∧ dxik ,

The kernel of d is called closed forms, the image of d
the exact forms. The exact forms must be closed, that
is, d2 = 0, the difference is the de Rham cohomology
group,

Hk
dR(S,R) :=

Ker dk

Img dk−1
.

Suppose M has a Riemannian metric g = (gij). Let
ω =

∑

i ωidx
i and η =

∑

j ηjdx
j , the inner product is

given by

g(ω, η) =
∑

i,j

ωiηjg
ij

where gij are the components of the inverse metric
tensor. For an orthonormal basis {e1, e2, . . . , en} of the
cotangent space at a point, the action of the Hodge star

on a basis k-form is given by

⋆(ei1 ∧ ei2 ∧ · · · ∧ eik) = ±ej1 ∧ ej2 ∧ · · · ∧ ejn−k

where the sign is positive, If (i1, i2, . . . , ik, j1, . . . , jn−k)
is an even permutation of (1, 2, . . . , n); negative other-
wise. If ω is a k-form, the codifferential δω is given
by:

δω = (−1)n(k+1)+1 ⋆ d ⋆ ω,

The Laplace-Beltrami operator ∆ : Ωk(M)→ Ωk(M) is
defined as ∆ := dδ + δd. A differential form ω is called
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harmonic, if it satisfies the Laplace-de Rham equation:
∆ω = 0. The Hodge decomposition theorem plays a
fundamental role in the current work.

Theorem 3.1. (Hodge Decomposition) In a com-

pact orientable Riemannian manifold (M,g), every de

Rham cohomology class has a unique harmonic repre-

sentative.

4 Computational Algorithm

In this section, we explain our algorithmic pipeline in
detail.

4.1 Doubling the Input Surfaces The input is a
compact and oriented surface embedded in E

3 with neg-
ative Euler characteristic numbers and multiple bound-
aries. Fig. 2 shows the surface of the kitten, which is
a surface of genus one with two boundaries. The sur-
face is with a triangulation T and approximated by the
polyhedral metric, such that each face is a Euclidean
triangle.

Figure 2: The input genus one surface with two bound-
aries.

From the input surface S, we construct a closed
symmetric surface S̄ using the doubling technique. Ba-
sically, we denote the original surface as S+, dupli-
cate a copy S− of S+, and reverse the orientations
of all faces in S−1, which induces a bijective mapping
ψ : S+ → S−; then we glue both S+ and S− along the
common boundaries to obtain the doubled surface S̄.
The mapping ψ is lifted as a convolution map φ : S̄ → S̄
and φ2 = id. Alg 4.1 gives the details of the algorithm,
where the dual map is denoted as ψ, the convolution
map as φ, and the covering vertex of v as v̄.

Algorithm 4.1. (Doubling) Surface Doubling

Require: Input mesh S+ with boundaries
Ensure: The doubled surface S̄ and the convolution

map φ : S̄ → S̄
function Doubling(S)

for each vertex v+i ∈ S+ do

3: construct the dual vertex v−i in S−

Set the images of the dual map ψ(v+i ) as v
−
i

end for

6: for each face [v+i , v
+
j , v

+
k ] ∈ S+ do

construct the dual face [v−j , v
−
i , v

−
k ] ∈ S−

end for

9: for each vertex v+i ∈ S+ do

construct a covering vertex v̄+i in S̄
end for

12: for each vertex v−i ∈ S− and v−i ̸∈ ∂S− do

construct a covering vertex v̄−i in S̄
end for

15: for each boundary vertex v−i ∈ ∂S− do

set the covering vertex v̄−i as ψ−1(v−i ) in S̄
end for

18: for each face [v+i , v
+
j , v

+
k ] ∈ S+ do

construct the covering face [v̄+j , v̄
+
i , v̄

+
k ] ∈ S̄

end for

21: for each face [v−i , v
−
j , v

−
k ] ∈ S− do

construct the covering face [v̄−j , v̄
−
i , v̄

−
k ] ∈ S̄

end for

24: for each vertex v+i ∈ S+ do

set φ(v̄+i ) as ψ(v
+
i ).

end for

27: end function

Figure 3: Homology group basis, from left to right:
tunnel loop, handle loop, bridge loop and boundary
loop.
4.2 Homology Group Basis Suppose that the sur-
face S is of genus g with b boundaries. First, we fill the
b bouondaries with b disks to obtain a closed surface Ŝ
embedded in E

3. By adding the {∞} point, E3 is com-
pactified to S

3, and the surface Ŝ is embedded in S
3. Ŝ

divides S3 into two connected components, the interior
I and the exterior O. The exterior contains the infinite
point ∞ ∈ O.

Suppose γ : S1 → Ŝ is a closed loop on the surface
represented as a continuous map from the unit circle
to the surface, if γ is homological to 0 in the interior
I, but nontrivial in the exterior O, then γ is called a
tunnel loop; on the contrary, if the loop γ is trivial in the
exterior and nontrivial in the interior, then γ is called
a handle loop. Each handle hi on the surface has a pair
of handle loops ai and tunnel loop bi, i = 1, 2, . . . , g,
where g is the genus of Ŝ. Fig. 3 the first and second
frames show the tunnel and handle loops of the kitten
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model. The handle and tunnel loops can be computed
using persistent homology algorithm in [8].

Suppose that the genus g surface S has n bound-
aries, ∂S = {α0, α1, . . . , αn−1}, we call αk as the k-th
boundary loop. For each boundary loop αk, k > 0, the
shortest path between α0 and αk is denoted as βk, and
called the k-th bridge path.

We denote the tunnel and handle loops on S+ as
{a+i , b+i }

g
i=1, their dual images on S− are denoted as

a−i := ψ(a+i ), b−i := ψ(b+i ), i = 1, 2, . . . , g,

Their liftings on the doubled mesh S̄ are denoted as
{ā+i , b̄+i , ā−i , b̄−i }

g
i=1. It is obvious that

φ(ā±i ) = ā∓i , φ(b̄±i ) = b̄∓i .

The lifting of the boundary loop α+
k ⊂ ∂S+ are denoted

as ᾱk, k = 1, 2, . . . , n− 1, which are invariant under the
convolution φ(ᾱk) = ᾱk. Each bridge path β+

k ⊂ S+

has a dual path β−
k ⊂ S−, the union of their liftings on

S̄ is a loop, the so-called bridge loop:

β̄k := β̄+
k ∪ β̄−

k , k = 1, 2, . . . , n− 1.

The 4g tunnel and handle loops, n− 1 boundary loops
and n − 1 bridge loops form the basis of the first
homology group of the doubled surface H1(S̄,Z), hence
the genus of S̄ is 2g+(n−1). Fig. 3 shows the homology
group basis of the kitten model with 2 holes.

Suppose S is a closed genus g surface, with homol-
ogy group basis {γ1, γ2, . . . , γ2g}, we slice the surface
along these loops to obtain a surface with 2g bound-
aries, {b1, b2, . . . , b2g}. Without loss of generality, we
can assume b1 is the longest boundary. For each bk,
k > 1, we find the shortest path τk from bk to b1. Then
we further slice the surface along these τk’s. The re-
sulting surface is called a fundamental domain of the
surface. The details can be found in Alg. 4.2.

Algorithm 4.2. (Foundamental Domain)
Foundamental Domain

Require: Input closed mesh S with genus g
Require: Basis of H1(S,Z)
Ensure: A fundamental domain of S.

function FoundamentalDomain(S)
for each base loop γk of H1(S,Z) do

3: Slice the mesh S along the loop γk
end for

The surface has 2g boundaries, ∂S =
⋃2g

k=1 bk
6: for each boundary bk, k > 1 do

Compute the shortest path τk from b1 to bk
end for

9: for each shortest path τk, k > 1 do

Slice the surface along τk
end for

12: end function

4.3 Hodge Decomposition We construct the basis
of the cohomology group of the doubled mesh H1(S̄,Z).
Basically, for each base loop γ of H1(S̄,Z), we slice the
surface along γk to produce a surface with boundaries
S̃k, such that ∂S̃k = γ̃+k ∪ γ̃−k . We then construct a real

valued function f̃k : S̃k → R, such that the restriction
of f̃k on γ̃+k and γ̃−k are 1 and 0 respectively. The the

differential of f̃k, df̃k is a closed differential form well
defined on the original surface S̄, denoted as η̄k, then
all such η̄k’s form the basis of the H1(S̄,R).

Algorithm 4.3. (Cohomology Basis)
Cohomology Basis

Require: Input closed mesh S with genus g
Require: Basis of H1(S,Z)
Ensure: Basis of H1(S,R), {η1, η2, . . . , η2g}.

function CohomologyBasis(S)
for each base loop γk of H1(S,Z) do

3: Slice the mesh S along the loop γk to
obtain S̃k, ∂S̃k = γ̃+k − γ̃−k
// Construct the function f̃k : S̃k → R

6: for each vertex vi ∈ S̃k do

if vi ̸∈ ∂S̃k then

f̃k(vi)← random
9: else if vi ∈ γ̃+k then

f̃k(vi)← 1
else

12: f̃k(vi)← 0
end if

end for

15: // Construct the differential ηk ← df̃k
for [vi, vj ] ∈ S do

if [vi, vj ] ∈ γk then

18: η([vi, vj ])← 0
else

η([vi, vj ])← f̃k(ṽj)− f̃k(ṽi)
21: end if

end for

According to the Hodge decomposition theorem,
each cohomological class has a unique harmonic differ-
ential from. Namely, all harmonic differentials form a
group H1

∆(S̄,R), which is isomorphic to H1(S̄,R). For
each η̄ ∈ H1(S̄,R), we find a function f̄ : S̄ → R, such
that δ(η̄+df̄) = 0, this is reduced to a Poisson equation

(4.1) ∆f̄ = −δη̄.

The Poisson equation can be solved using the Finite
Element Method on exterior calculus as follows. For
each edge eij = [vi, vj ] on the mesh, it is shared by two
faces fijk = [vi, vj , vk] and fjik = [vj , vi, vl], the corner
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angle in fijk against eij is θijk , and that in fjil θ
ji
l . The

cotangent edge weight of eij is defined as

(4.2) wij :=
1

2

(

cot θijk + cot θjil

)

.

The Poisson equation (4.1) is discretized as follows: for
each vertex vi ∈ S̄,

∑

vj∼vi

wij(η̄ + df̄)([vi, vj ]) = 0,

it is simplified to

(4.3)
∑

vj∼vi

wij(f̄j − f̄i) = −
∑

vj∼vi

wij η̄([vi, vj ]).

This leads to a linear system with the discrete Laplace

Beltrami matrix L = (lij), where

(4.4) lij :=

{
wij i ̸= j

−∑

k wik i = j

The harmonic differential homological equivalent to η̄ is
given by ω̄ = η̄ + df̄ . Details can be found in Alg. 4.4

Figure 4: Harmonic differential group basis.

Algorithm 4.4. (Harmonic Differential Basis)
Harmonic Differential Basis

Require: Input closed mesh S with genus g
Require: Basis of cohomology group H1(S,Z),
{η1, η2, . . . , η2g}.

Ensure: Basis of harmonic differential group
H1

∆(S,R), {ω1, ω2, . . . , ω2g}.
function HarmonicDifferentialBasis(S)

for each edge eij of S do

3: Find the two adjacent faces fijk and fjil
Compute the edge weight using Eqn. 4.2

end for

6: Construct the Laplace-Beltrami matrix Eqn. 4.4

for each basis differential ηk of H1(S,R) do
for each basis vertex vi ∈ S do

9: Compute the right hand side of Eqn. 4.3
end for

Solve the discrete Poisson equation 4.3 to
get fk

12: ωk ← ηk + dfk
end for

end function=0

For the purpose of visualizing a harmonic differ-
ential ω, we can define a function in the fundamental
domain D by integrating ω on it, f : D → R, and
use texture mapping to check the differential. First, we
choose a base vertex v0 ∈ D, then define

(4.5) f(p) :=

∫ p

v0

ω,

since ω is harmonic, it is closed, therefore the integration
value is independent of the choice of the integration
path. By mapping the surface to the line segment, we
can visualize the level set of f , and the differential ω.
Alg. 4.5 gives the details.

Algorithm 4.5. (Integration) Integration

Require: A fundamental domain D of a surface S
Require: A harmonic 1-form ω
Ensure: The integration function f : D → R of ω on

D
function Integration(D,ω)

Choose a base vertex v0 ∈ D,
3: Set f(v0)← 0, v0.access←

Enqueue v0 to Q, Q.push(v0)
while Q is non-empty do

6: v ← Q.pop()
for each edge [v, w] in D do

if not w.access then

9: f(w)← f(v) + ω([v, w])
Set w.access←
Enqueue w to Q, Q.push(w)

12: end if

end for

end while

15: end function

Fig. 4 shows the basis of the harmonic differential
group of the doubled kitten mesh with two holes. The
upper row shows the front views and the lower row
shows the back views. Each column shows the harmonic
differential corresponds to the homology base loop in the
same column of Fig. 3.

4.4 Abel Differentials In this step, we construct
the first type Abel differentials (holomorphic differen-
tials) on the doubled surface S̄, then the second type
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Figure 5: Holomorphic differential group basis.

of Abel differentials on the original surface with bound-
aries and negative Euler characteristic numbers.

On a compact genus g Riemann surface S, each
holomorphic 1-form can be decomposed into a pair
of conjugate harmonic 1-forms ω +

√
−1∗ω. Since ω

is harmonic, ∗ω is also harmonic and therefore can
be represented as a linear combination of the basis

of the harmonic differential group H
(
∆S,R). Suppose

{ω1, ω2, . . . , ω2g} is a basis of H1
∆(S,R), assume ∗ωk

can be represented as
∑

j λkjωj . We obtain the linear
system,








ω1 ∧ ∗ωk

ω2 ∧ ∗ωk

...
ω2g ∧ ∗ωk








=








ω1 ∧ ω1 · · · ω1 ∧ ω2g

ω2 ∧ ω1 · · · ω2 ∧ ω2g

...
...

ω2g ∧ ω1 · · · ω2g ∧ ω2g















λk,1
λk,2
...

λk,2g








We can compute the integration of 2-forms on each
triangular face. Given a Euclidean triangle ∆ =
[vi,vj ,vk], the edge vector is ei = vk − vj , suppose
ω1 and ω2 are constant 1-forms on ∆, then

(4.6)

∫

∆

ω1 ∧ ω2 =
1

6

∣
∣
∣
∣
∣
∣

ω1(ei) ω1(ej) ω1(ek)
ω2(ei) ω2(ej) ω2(ek)

1 1 1

∣
∣
∣
∣
∣
∣

Furthermore, the wedge product with the conjugate
differential form has

(4.7)

∫

∆

ω1 ∧ ∗ω2 =
1

2

∑

i

cot θiω1(ei)ω2(ei).

The conjugate harmonic 1-forms can be evaluated using
Alg. 4.6.

Algorithm 4.6. (Conjugate Harmonic Differential)
Conjugate Harmonic Differential

Require: A closed genus g surface S

Require: Harmonic differential group basis {ωk}2gk=1

Ensure: Conjugate harmonic differentials {∗ωk}2gk=1

function HodgeStar(S,{ωk})
for each harmonic differential ωk do

3: for each harmonic differential ωi do

Compute
∫

S
ωi ∧ ωk using Eqn. 4.6

Compute
∫

S
ωi ∧ ∗ωk using Eqn. 4.7

6: end for

Solve the linear system obtain λk,i’s

Set ∗ωk ←
∑2g

i=1 λk,iωi

9: end for

end function

Each harmonic differential ωk paired with its con-
jugate ∗ωk forms a holomorphic differential

(4.8) Ωk := ωk +
√
−1∗ωk,

{Ω1,Ω2, . . . ,Ω2g} forms the basis for all holomorphic
differentials of S, namely Ω(S). Fig. 5 shows the holo-
morphic differentials, whose real parts are the harmonic
differentials in Fig. 4 respectively. The upper row shows
the front views and the lower row shows the back views.

4.5 Symmetrization In practice, we prefer symmet-
ric holomorphic differentials on the doubled surface S̄.
A holomorphic differential h ∈ Ω(S̄) is symmetric, if
for any point on the boundary of the original surface
p ∈ ∂S, or equivalently, p̄ ∈ S̄, φ(p̄) = p̄, there
is a neighborhood U(p̄) ⊂ S̄ with local parameter z,
h(z) = f(z)dz,

(4.9) f(z) = f(z̄),

where c̄ means the conjugate of the complex number c.
Or globally, for each edge e ∈ S̄,

(4.10) h(e) = h ◦ φ(e),

where φ is the convolution map of the doubled mesh S̄.
In our construction algorithm, the holomorphic 1-

form basis h corresponding to γ is denoted hγ . Then

h̄ai
:= h̄ā+

i
+ h̄ā−

i
, h̄bi := h̄b̄+

i
+ h̄b̄−

i

are symmetric. Fig. 6 shows the symmetric differential
corresponding to the tunnel loop hai

. All zero points
are in the boundaries of S as shown in frame (b),
two boundaries are mapped to parallel slits in frame
(c). The whole surface S can be periodically mapped
onto the plane as shown in frame (d). Fig. 7 shows
the differential corresponding to the handle loop hbi .
Similarly, the zeros are in the boundaries and the
boundaries are mapped to parallel slits.

The holomorphic differential h̄βk
corresponds to the

bridge loop βk, for any edge on the boundary e ∈ ∂S,

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



z1

z2

z3

z4

z1 z2

z3 z4

a. front view b. back view c. one period d. periods

Figure 6: Symmetric Abel differential (corresponds to ā+1 + ā−1 )h = f(z)dz satisfying f(z) = f(z̄) in a local chart
near the boundary, the boundaries are mapped to horizontal slits.

Figure 7: Symmetric Abel differential corresponds to b̄+1
plus b̄−1 , the boundaries are mapped to vertical slits.

Figure 8: Symmetric Abel differentials correspond to ᾱ1

and β̄1 respectively. The neighborhoods of boundaries
are mapped to cylinders.

h̄βk
(e) is a real number, h̄βk

is symmetric. Fig. 8 left
frame shows h̄β1

, we can see that there is no zero point
on the boundaries, hence the neighborhoods of bound-
aries are mapped to cylinders. For h̄αk

corresponding to
a boundary loop αk, h̄αk

(e) is imaginary. In this case,
we multiply h̄αk

by
√
−1 to make it symmetric. Fig. 8

right frame shows
√
−1h̄α1

.
Then we obtain a basis for symmetric holomorphic

differentials are the doubled surface S̄,

g
⋃

k=1

{
h̄ak

, h̄bk
}
,

n−1⋃

i=1

{√
−1h̄αi

, h̄βi

}
.

The symmetric holomorphic differential basis on

Figure 9: The quad-mesh produced by the symmetric
Abel differential halpha1

.

the doubled surface S̄ can be projected to the original
surface S, which form a holomorphic differential basis
of S,

(4.11)

g
⋃

k=1

{hak
, hbk} ,

n−1⋃

i=1

{√
−1hαi

, hβi

}
,

such that these holomorpic differentials restricted on the
boundaries of S are real. Furthermore, from Fig. 7 we
can see that the

√
−1hαi

and hβ1
are the third type

Abel differentials, the boundaries can be extended to
cusps to become the poles of the differentials.

4.6 Quadrilateral Mesh Generation Given a sur-
face with genus g and n boundaries, we have com-
pute the basis for H1(S,Z), tunnel and handle loops
{ai, bi}gi=1 and boundary loops {α1, . . . , αn−1}. We re-
label them as γk’s, k = 1, 2, . . . , 2g + n − 1. We also
compute the holomorphic differential basis Eqn. 4.11,
whose real part form the basis of H∆(S,R), denoted as
{ω1, ω2, . . . ω2g+n−1}. We construct another harmonic
differential group basis, {ω′

k}, which is dual to the ho-
mology basis {γk}, namely

∫

γi

ω′
j = δij , i, j = 1, 2, . . . , 2g + n− 1.
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Assume ω′
k =

∑

j µk,jωj , then we construct a linear
system


























∫

γ1
ω1 · · ·

∫

γ1
ω2g+n−1

∫

γ2
ω1 · · ·

∫

γ2
ω2g+n−1

.

.

.

.

.

.
∫

γk
ω1 · · ·

∫

γ2g+n−1
ωk

.

.

.

.

.

.
∫

γ2g+n−1
ω1 · · ·

∫

γ2g+n−1
ω2g+n−1

















































µk,1

µk,2

.

.

.

µk,k

.

.

.

µk,2g+n−1























=



















0

.

.

.

1

.

.

.

0



















By linear combine the basis in Eqn. 4.11 to obtain
a holomorphic differential h, with periods λk :=

∫

γk
h,

k = 1, . . . , 2g + n− 1. In general λk’s are real numbers,
may be irrationals. We choose a positive integer q ∈ Z

+,
and quantize all the periods to be rational numbers in
the form p/q. For each k, find the rational number

{qℜ(λk)} = qℜ(λk)− [qℜ(λk)],
{qℑ(λk)} = qℑ(λk)− [qℑ(λk)]

where [x] is the operator of taking the integer part of a
real number x ∈ R, ℜ(z), ℑ(z) taking the real and the
imaginary part of a complex number z respectively. We
construct a complex differential,

h′ = h− 1

q

2g+n−1
∑

k=1

(
{qℜ(λk)}+

√
−1 {qℑ(λk)}

)
ω′
k

Then all the periods of h′ are rational numbers in the
form p/q. The integration of h′ on the fundamental
domain D maps D to the complex plane using the
Alg. 4.5 with h′ as the input differential, this gives a
parameterization of the surface. On the complex plane,
we construct the regular grid with size 1/q, and pull the
grid back onto the surface using the parameterization.
Since the periods of h′ are p/q, therefore the pull-backed
grid on the surface form a quadrilateral tessellation (the
grid lines aligned consistently on the surface across the
boundaries of the fundamental domain).

Fig. 9 shows the quad-mesh produced by the sym-
metric holomorphic differential corresponding to the
boundary loop α1. We can see that each cell is simi-
lar to the planar unit square, all the corners are close to
right angles, the grid lines are either parallel or orthog-
onal to the boundaries.

5 Experimental Results

We use the fertilty model to validate our proposed
algorithms. The model is of the genus 4 and has 3
boundaries. Fig. 11 and Fig. 12 show the computational
process. The top row, middle and bottom rows show the
basis of the homology group H1(S,Z), the basis of the
harmonic differential group H1

∆(S,R) and the basis of
the holomorphic differential group Ω1(S). Each frames
of the same column correspond to the same homology

b2

b3

z1

b0

b0

z2

Figure 10: The zeros and poles (top right frame) on a
symmetric Abel differential.

basis. The upper half of Fig. 11 shows the intermediate
results corresponding to the tunnel loops a1, a2, a3 and
a4; the lower half shows those corresponding to the
handle loops b1, b2, b3, b4; The left part of Fig. 12 shows
computational process corresponding to the boundary
loops α1, α2; the right part shows those corresponding
to the birdge loops β1, β2.

Fig. 10 shows the zeros and poles of a symmetric
Abel differential ω in the fertilty model. ω is real
along the boundaries. There are two zeros z1, z2 on
the boundary b0, and no zeros on b1, b2. Therefore, the
two boundaries b1 and b2 are poles of the differential.

Fig. 13 illustrates some quad-meshes induced by
symmetric Abel differentials. We can see the grid
lines are orthogonal to each other, and either parallel
or perpendicular to the boundaries. Furthermore, the
quad-meshes are with minimal number singularities.

6 Conclusion

This work proposes a quadrilateral mesh generation
method for the surfaces with multiple boundaries and
negative Euler characteristic numbers, based on sym-
metric Abel differentials. The method has solid the-
oretic foundations and produces high quality quad-
meshes with high orthogonality and least number of
singularities. Furthermore, the grid lines align with the
boundaries.

In the future, we plan to generalize the proposed
method to symmetric Abel quadratic differentials to
further improve the flexibility.
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a1 a2 a3 a4

b1 b2 b3 b4
Figure 11: The tunnel loops (upper half) and handle loops (lower half).
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α1 α2 β1 β2

Figure 12: The boundary (left two frames) and the bridge (right two frames) loops of the fertility model.

Figure 13: The quad-mesh produced by the symmetric Abel differential.
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