
Validity-first automatic polycube labeling for CAD models
Sébastien Mestrallet*† Christophe Bourcier* Franck Ledoux†‡

Figure 1: Collection of polycube labelings generated using our algorithm.
Abstract
For many simulation codes, block-structured hex meshes re-
main preferred while their automatic generation is unsolved.
We investigate the usage of a polycube-based approach. More
specifically, we focus on the labeling stage, which consists in
assigning each boundary facet to one of the 6 signed principal
axis. Similar works are confronted with 2 challenges: over-
constraining validity criteria, and the conflated processing of
validity criteria with quality metrics. We tackle these obstacles
with automatic routines based on semi-global labeling oper-
ators. Our approach is successfully tested on CAD models,
which are of interest for many numerical simulation problems.
1 Introduction
Hex meshes, and more specifically block-structured hex
meshes, are preferred for high-fidelity numerical simulation
in several fields like computational fluid dynamics (CFD),
hypersonic flows, hydrodynamics, or structural analysis [1].
They are efÏcient in highly anisotropic physical simulations
(boundary layers, shockwaves, etc.), as the associated tri-lin-
ear basis has cubic terms that capture higher order variations
and provide less elements, reducing simulation time. Such
types of simulations frequently consider geometric domains
that are CAD (Computer-Aided Design) models made of

points, curves, surfaces, and volumes with sharp features.
For complex assemblies of mechanical parts, state-of-the-art
hex meshing algorithms [2] are not yet applicable. As a conse-
quence, industry-mature tools produce hex block structures
by adopting an interactive decomposition strategy [3], [4]. Two
main strategies are possible: either the CAD shape is split at
the geometric level into simple shapes that can be discretized
using sweeping-like algorithms (Abaqus, Cubit/CSimsoft); or
the CAD shape remains unchanged, and an associated struc-
ture is split into hex blocks (ICEM-CFD Hexa). Both options
require interactive tools with sophisticated GUI, as well as
qualified engineers that spend hours or days to create meshes.
Today, this process is a bottleneck for incremental design and
sensitivity analysis.
 Hex meshing algorithms have been struggling for several
decades regarding the global combinatorial structure of hex
meshes that prevents algorithms to rely on local decisions [5].
To provide an automatic solution, research on hex meshing
focuses on global approaches where the block structure may be
extracted directly using frame fields, or indirectly by gener-
ating a non-optimal structure, using polycubes or medial axes,
that are optimized thereafter. Grid-based [6] and octree-based
methods [7], [8] may also be used as an indirect approach but
their lack of regular structure makes difÏcult the topology

*Université Paris-Saclay, CEA, Service de Génie Logiciel pour la Simulation, 91191 Gif-sur-Yvette, France
†Université Paris-Saclay, CEA, Laboratoire en Informatique Haute Performance pour le Calcul et la simulation, 91680, Bruyères le Chatel, France
‡CEA, DAM, DIF, F91297 Arpajon, France

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

optimization post-process. Medial structures have been used
to guide all-hex meshing for simple CAD models [9], tubular-
like shapes [10], [11] or more general CAD models using
post-process operations and sweeping [12]. The difÏculty of
robustly generating a clean medial object for 3D CAD models,
coupled with the necessity to simplify it, makes this approach
still challenging. The idea of polycube-based approaches is to
“deform” a volumetric mesh into a polycube shape [13], [14]
by defining a polycube-map from which integer grid lines will
be used to extract regular grids. Such approaches have been
demonstrated as being efÏcient and automatic. However, due
to the lack of inner singularities, obtained meshes may suffer
from large distortions near the boundary, and sharp features
of CAD models are difÏcult to handle. Unlike polycube,
frame-field-based approaches aim to first insert singularities
inside the domain in order to build global parameterizations
with low distortion along the boundary. Such parameteriza-
tions can be obtained from a frame field using CubeCover
[15] or PGP3D [5], [16]. The main issue is that an arbitrary
3D frame field can have a topological structure that is not
compatible with hex meshing. And unfortunately, generating
hex-compatible frame fields is still challenging.

(a) (b) (c) (d) (e)
Figure 2: Our pipeline steps: (a) CAD model; (b) tetrahedral
mesh 𝑇Ω; (c) polycube labeling ℓ on the surface mesh 𝜕𝑇Ω; (d)
polycube obtained by morphing the triangle mesh with the
labeling orientation constraints; (e) hex mesh 𝐻Ω obtained by

quantization and inverse deformation.

Figure 3: Diagram of our method. After a graph-cut opti-
mization on the input mesh to generate an initial labeling,
two routines are executed. The first one aiming at a valid
labeling, the second at removing turning-points (in yellow)
while keeping a valid labeling. S36 model from MAMBO [17].

 We propose a new polycube algorithm dedicated to
CAD models. Our approach is based on the traditional
pipeline (Fig.2), which consists in: (1) discretizing the CAD
model Ω with a tetrahedral mesh 𝑇Ω; (2) extracting the
boundary surface 𝜕𝑇Ω; (3) computing a valid and feature-
preserving labeling ℓ, which assigns boundary triangles to one
of {±𝑋,±𝑌 ,±𝑍}; (4) deforming the mesh with respect to
the orientation constraints; (5) quantizing the deformed mesh
within an integer grid, obtaining a polycube; (6) applying
of the inverse deformation. We focus in this paper on the
labeling stage, which remains very challenging for realistic
CAD models. We propose an automatic procedure that relies
on : improved validity criteria (Section 4); a graph-cut based
initial labeling (Section 5); a routine targeting a valid labeling
(Section 7.1); another one targeting an all-monotone labeling
(Section 7.2); both based on existing and new semi-global
operations (Section 6). In this way, our method makes a clear
distinction between desirable and required conditions. Fig.3 il-
lustrates the three steps of this algorithm. Our approach takes
into account CAD feature curves as constraints to preserve.
For all the other stages, we rely on established state-of-the-art
components: tetrahedrization with Gmsh [18] or MeshGems
[19], both available in SALOME [20]; hex-mesh extraction
with HexEx [21] or Protais et al. 2022 [22]. We have tested our
approach on a wide collection of CAD models, and we obtain
valid and expected labeling for realistic CAD models and some
configurations of features edges known as difÏcult to handle
in an automatic manner. Our implementation is open-source
and available at https://github.com/LIHPC-Computational-
Geometry/validity-first-polycube-labeling.
2 Related works
Polycube generation. Polycubes were introduced in
computer graphics in [14] to generate seamless texturing of
triangulated surfaces. Polycubes rely on two main concepts:
an axis-aligned polyhedral structure and a volumetric map 𝑀 ,
often called polycube-map. Considering a geometric domain Ω,
and a tetrahedral mesh 𝑇Ω of Ω, the first stage of polycube-
based approaches consists in labeling each triangle of 𝜕𝑇Ω,
which is the triangular mesh of the boundary, with a value
that represents one of the six principal axes {±𝑋,±𝑌 ,±𝑍}.
A naive labeling can be computed by assigning to each surface
triangle the label closest to its normal [13]. However, this
does not produce a valid structure in general and labeling
improvement is necessary. This improvement aims to ensure
a set of sufÏcient topological conditions [23].
 First usages of polycubes for hex meshing [13], [24] built
the inverse of 𝑀 by applying a volumetric deformation [25],
[26] to convert 𝑇Ω to a polycube while minimizing the distor-
tion introduced by the deformation. Then, many works have
focused on improving the mesh quality by trying to reduce the
number of polycube facets and the distortion of 𝑀 , such as:
reformulating the polycube building problem as a graph-cut

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

https://github.com/LIHPC-Computational-Geometry/validity-first-polycube-labeling
https://github.com/LIHPC-Computational-Geometry/validity-first-polycube-labeling

optimization [27]; minimizing the ℓ1 norm of mesh normals,
using an as-rigid-as-possible deformation [28]; driving the
polycube to be aligned along a prescribed frame field [29];
using a constrained voxelization to generate the polycube
surface [30]; using evolutionary algorithms, to explore a larger
space of polycube structures [31], [32]; or by considering CAD
models by adopting a two-stage process, where sharp features
are first considered then the whole domain, by resolving two
non-linear optimization problems [33].
Polycube improvement. As singularities are located on𝜕𝑇Ω and their number is difÏcult to control, obtained hex
meshes may suffer from large distortions near the boundary.
Possible improvements are to insert new layers of hexahedra
and so singularity points inside the domain using global [13]
or selective padding [34]. Such processes provide more degrees
of freedom to move mesh vertices while pushing singularities
inside. Authors of [35] define three types of fundamental layers
that can be added locally to better capture sharp boundary
curves and surfaces solving an integer linear program. In
a similar manner, [33] enhances polycube-maps using clever
cuts directly on the polycube to capture sharp features. Other
approaches rely on the base complex structure in order to
post-process hex meshes in order to extract coarse structure.
Such algorithms can be applied to polycube resulting meshes.
Validity criteria. Several research works use the topological
properties of simple orthogonal polyhedra [23] to check the
validity of a potential polycube. However, this set of properties
is neither sufÏcient nor necessary as shown in [36] or [37].
CAD sharp features. Unlike smooth surfaces, CAD mod-
els contain sharp features (corner, ridges) where 𝐺1-continuity
is not guaranteed. It is a constraint to ensure when trying
to get a valid high-fidelity polycube. To our knowledge, only
authors of [28] and [33] explicitly consider sharp features in
order to constraint the polycube structure to integrate them.
3 Problem statement
In this section we focus on the labeling stage of the pipeline
(Fig.2), and the indicators to take into account to product
valid and low-distortion labelings.
3.1 Polycube labeling definition
Instead of manipulating the volume to define a polycube
transformation, labelings offer a simpler approach by only
considering the surface. Each triangle is mapped to one of
the six signed principal axes {±𝑋,±𝑌 ,±𝑍}. The represented
polycube is the one where all triangles are warped so that
their normal coincide with their assigned label. In subsequent
illustrations, 𝑋, 𝑌 and 𝑍 axes are respectively colored in red,
white and blue, with a darker tone for the negative direction.
Unless stated otherwise, figures are of our own work and
rendered with Geogram [38].

3.2 Labeling graph
From the triangle-level representation, we assemble a graph
by aggregating adjacent triangles having the same label as
a chart, named 𝒞𝑖. For that, we use a disjoint-set (union-
find) algorithm. For two adjacent charts, the delimitation is
an ordered set of edges called boundary (ℬ𝑖). Vertices where
several boundaries meet are called corners (𝒱𝑖). To assemble
boundaries and corners, we iterate over all mesh vertices until
finding a corner (three or more adjacent labels), then we move
along adjacent boundaries with a depth-first exploration.
 Charts, boundaries and corners are sometimes called
patches, arcs and nodes [39]. Labeling graphs are sometimes
called patch layouts, or polycube layouts if valid [40]. To
mention a chart, a boundary or a corner without specifying
the kind of element, we later use the term labeling graph
component. The valence of a chart refers to the number of
adjacent charts, and the valence of a corner is the number of
adjacent boundaries, which by definition is greater than 2.
3.3 Validity criteria
Polycube labelings being less restrictive than polycube defor-
mations, work has been conducted to define necessary and
sufÏcient validity criteria. Authors of [23] extend Steinitz’s
theorems [41] to orthogonal polyhedra by analyzing the graph
of those polyhedra. Their analysis applies to unsigned axes
mapping. Each chart is either matched to 𝑋, 𝑌 , or 𝑍. Among
the special kinds of polyhedra they defined, simple orthogonal
polyhedra are “three-dimensional polyhedra with the topology
of a sphere in which three mutually-perpendicular edges
meet at each vertex”. Criteria on labeling graph components
(Section 3.2) can be derived as: (1) all charts must have a
valence of at least 4; (2) all boundaries must be orthogonal
separations, i.e. must be between charts of different axes; (3)
all corners must have a valence of 3 (Fig.4).
 Despite not crafted for polycubes, these criteria are popular
for labeling-based polycube generation [37], for their simple
expression and because the last two criteria are purely local.
There are proved to be sufÏcient for genus-0 shapes (with
unsigned labels), but are not necessary (Fig.5 left). In case of
signed labelings, authors of [36] showed they are not sufÏcient
for genus-0 neither (Fig.5 right). Those issues are discussed
in Evocube [31] appendix A and [37]. The latter and [32] also

Invalid chart Invalid boundary Invalid corner
Figure 4: Labelings that do not correspond to simple orthog-

onal polyhedra [23]. Illustration from [31].

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 5: (left) 4 cubes joined to form a valid polycube with a
4-connected corner ; (right) A labeled genus-0 shape satisfying
criteria from [23] despite not leading to a polycube if the
labels’ sign is enforced: cuboid slope branches will be mixed-

up on the same z-coordinates.
picked another counterexample up, regarding non-orthogonal
boundaries: in case of a local parametrization, overlapping
polycube faces can produce distinct hex mesh surfaces and
are valid when the solid angle is greater than 180° (Fig.6).
 For want of anything better, simple orthogonal polyhedra
[23] have often been used as topology constraints for polycube
generation. This leads recent works to propose a specific set
of conditions tailored to polycubes. Zhao et al. [39] focused
on higher genus shapes and non-simply connected faces, but
they maintain the valence-of-3 limit on corners. By counting
the number of corners 𝑉𝑖 with a quad-mesh valence of i, and
the number of chart corners 𝑇𝑗 having a polycube angle of𝑗𝜋2 , He et al. [32] expand the valid space of polyhedra for
polycube generation, allowing configurations in Fig.5 left and
Fig.6 right. The corner validity criterion is here constrained
by a maximum valence of 6.
3.4 Quality metrics

(a) solid angle < 180° (b) solid angle > 180°
Figure 6: Two shapes with non-orthogonal boundaries: (a)
rightfully invalid, the corresponding polycube has no volume,
so no mesh; (b) the corresponding polycube has overlapping

faces but this configuration is valid. Illustration from [37].

Figure 7: Identification steps for turning-points. Illustration
from [31].

Because the labeling is upstream to the polycube, to avoid the
costly polycube generation, we need quality metrics that are
defined on the labeling. As a proxy to the geometric closeness,
the per-triangle fidelity measures the angle between its normal
and its assigned direction. The global fidelity averages the per-
triangle fidelity on the surface. To favor simple polycubes and
as a result low singularity count on hex-meshes, we measure
the number of labeling corners 𝒱𝑖, and to favor straight
boundaries – avoiding parametric distortion along them –
we identify vertices called turning-points where the boundary
markedly drift away from the assigned direction. In the same
manner as [27], [31], we use a graph-cut optimization with
two possible labels per edge (Fig.7). A turning-points-free
boundary is said to be monotone. An all-monotone labeling
is a labeling having no turning-points. To deal with CAD
models, our algorithm takes into account feature edges; a low
distortion polycube should preserve them as much as possible,
by coinciding feature edges and labeling boundaries. This goal
can be measured by counting how many feature edges have
different labels on either side. Such feature edges will be said
“preserved” whereas those having the same label on both sides
will be said “lost” (Fig.8).
4 Improved validity criteria
Our algorithm proposes the optional acceptance of boundaries
between opposite labels, but along > 180° solid edges (equiva-
lent to boundaries between 3-connected, 𝑉6 and 𝑇4/𝑇1 corners
from [32]). Our proposed criterion on boundaries is therefore:
“A boundary ℬ𝑖 must be between charts assigned to different
axes. Optional: or between charts of the same axis if the solid
angle is greater than 180°”.
 In the case of corners validity, [37] showed that high-valence
corners (greater than 3) can be valid, and these configurations
arise in academic datasets. Recalling the axis assignment
(among {𝑋, 𝑌 , 𝑍}) on polycube boundaries, we can see the
difference between truly invalid corners and valid ones in
Fig.9. On the top left, we have 4 𝑍 boundaries meeting at the
corner. In the polycube domain, 4 parallel lines to the 𝑍 axis
cannot meet at a vertex. On the top right, we have 2 𝑋 and
2 𝑍 axes, so for each axis we have a pair of boundaries where

Figure 8: (left) a triangle mesh with feature edges (thick
lines); (right) a labeling with most feature edges preserved (on
boundaries), except inside the green box (same red label on

both sides). Model S35 from MAMBO [17].

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 9: Better discrimination between valid and invalid
corners: (top) 4-connected corners (bottom) 6-connected cor-
ners (leftmost two columns) invalid corners (rightmost two
columns) valid corners. For each shape, the diagram on the

right depicts adjacent labels and boundaries.
one of them is an elongation of the other one. This analysis
can be extended to higher valence corners, for example on the
bottom row with 6-connected corners, where the boundaries
can be grouped in pairs on the right, but not on the left.
 Our corner criterion no longer constrains its valence, but the
associativity of incident boundaries. Boundary axes must not
be the same, else we allow 2 pairs of Z axes, like in the cone
case Fig.9 top left. However, we must not forget the trivial
case of a cube corner, and accept trio of 𝑋𝑌 𝑍 boundaries.
Our proposed formulation is “The incident boundaries of a
corner 𝒱𝑖 must not be associated to the same axes, they must
be associable in pairs, or make a 𝑋𝑌 𝑍 trio”. This boundaries
processing at corners allows us to reach the same polycube
feasible space as [32] – accepting higher connectivity, higher
singularity count (𝑉𝑖), and 𝑇2 and 𝑇4 points (following their
convention). Nevertheless, our approach is not limited to 6-
connected corners (e.g. [37, fig.5 & 8d]).
5 Initial labeling
The most straightforward polycube labeling generation con-
sists in picking, for each triangle, the nearest label ∈{±𝑋,±𝑌 ,±𝑍} of its normal. We refer to this method as the
naive labeling. The obtained labeling is not guaranteed to be
valid, the compactness can be too low or too high depending
on the geometry, but the fidelity is maximal. An important
issue with this initial labeling is the fragmentation induced
on sub-surfaces poorly aligned with principal axes (Fig.10a).
Indeed, the closest label assignment is subject to floating-
point numbers inaccuracy, and the uniqueness of the result: if
the normal at 𝜕Ω is locally �⃗� = (12 , 12 , 0), the closest label on𝜕𝑇Ω can be just as +𝑋 as +𝑌 . There is no reason to prefer
one over the other, except to impose global consistency. With
the naive labeling however, the preference only derives from
the floating-point representation of coordinates.
 To avoid labeling fragmentation, PolyCut [27] and Evocube
[31] feed boundary triangles and their normals into an opti-

mization process aiming at higher compactness by minimizing
cuts [42], [43], [44], the so-called graph-cut optimization
(Fig.10). The boundary mesh is represented by a graph (𝑁,𝐸)
where each node of 𝑁 corresponds to a triangle, and each edge
of 𝐸 connects two nodes of 𝐸 that correspond to triangles
that share an edge. Costs are assigned to nodes and edges of(𝑁,𝐸): the cost of assigning a node of 𝑁 , and so a triangle𝑡, to each of the 6 labels is proportional to the angle between
the normal to 𝑡 and the label’s direction (unary fidelity term);
the cost assigned to an edge 𝑒 ∈ 𝐸 is proportional to the angle
between the normals of the triangles corresponding to the end
points of 𝑒 (binary term). The optimized solution is adjustable
with a compactness over fidelity ratio.
 One of our contributions is to propose a tweaked graph-cut
labeling that adjusts graph-cut costs on areas that would lead
to fragmentation with a naive labeling (Fig.10b). Triangles
are in these areas if the two closest labels of their normal
have almost the same weight. We use a sensitivity (minimum
delta) of 10−10. For those triangles, before selecting the best
label, we apply to the normal a rotation of 0.05 rad around
the X, Y and Z axes. Applying the same rotation matrix
on the whole mesh give rotation consistency between patches
across 90° angles (Fig.10 d). For labeling operators defined in
the next section, a labeling of this kind is a better starting
point than the original graph-cut labeling. Regarding graph-
cut parameters, we use a compactness over fidelity ratio of 13 .
6 Operators
If the initial labeling is invalid or not all-monotone, we apply
modifications to correct it. Modifications are results of a
labeling operator applied to solve an invalid component or
a turning-point. Some operators were already proposed in
the literature (Section 6.1 – Section 6.3), and we introduce
new ones (Section 6.4). In this section, we describe operators
independently. They will be used all together in an automatic
pipeline given in Section 7.

(a) (b) (c) (d)
Figure 10: (a) naive labeling, resulting in charts fragmenta-
tion; (b) areas to tilt, in red, with a sensitivity of 0.001; (c)
graph-cut labeling, no pre-processing; (d) tweaked graph-cut
labeling where our pre-processing adjusts the costs on areas

to tilt. B39 model from MAMBO [17].

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 11: A new chart (top left, in blue) is inserted along a
non-orthogonal boundary (middle, between two white charts)
to get a valid polycube (right). Illustration from [13, fig.7].

6.1 Proposed by Gregson et al. 2011 [13]
To our knowledge, [13] were the first to generate a polycube
using surface labeling and labeling operators. In their process,
after successive volumetric deformations of the input tet mesh,
axes alignment is almost achieved. Before the final deforma-
tion imposes strict planarity constraints, a naive labeling is
computed then edited to obtain a valid polycube topology.
 The first modification re-draws jagged boundaries by rela-
beling adjacent triangles having two times the same label in
their neighborhood. Then they target charts having one or
two neighbors, and remove them by re-labeling inner trian-
gles starting from the contour (flood-filling). Afterwards, if
the labeling contains non-orthogonal boundaries, which by
definition forms same-axis adjacent charts, they split these
charts with a separating chart along the boundary (Fig.11).
The width of the new chart is user-specified, and its label
is derived from the labels of its four neighbors, possibly by
taking normal similarity into account if there is not enough
information to choose a single label.
 The labeling analysis also identifies turning-points, which
are associated to a wedge at their base (Fig.12 left). At their
tip is a highly non-planar and convex chart, which would
result in severe distortion under polycube mapping. Axis-
aligned cut options are traced on this chart, starting from the
turning point, and then evaluated. Valid cuts are those leading
to charts with 4 or more neighbors (Fig.12 middle). Among
two valid cuts, they select the shortest and most aligned to
the global axes. Finally, a chart is emplaced on the cut path
(Fig.12), and its label is chosen like the previous operator. Its
width is proportional to the width of the base wedge.
6.2 Proposed by PolyCut [27]
PolyCut solutions have a more constraining representation.
Labeling modification is not done through direct label assign-
ment updates, but by modifying graph-cut weights. The only
operator used in PolyCut relies on the local bias of graph-cut
weights in a turning-point neighborhood.
6.3 Proposed by Evocube [31]
The Evocube [31] genetic algorithm distinguishes stochastic
operators (mutations) and deterministic ones (repairs): re-

Figure 12: Split of a non-planar chart at a turning-point (left,
extrema of a wedge) : among the 3 possible axis-aligned cuts
(middle), the yellow one produces a valid labeling, whereas
pink ones would produce a chart with only 2 neighbors.
Inserting a chart along the yellow cut (right) preserves the red

wedge from being collapsed. Illustrations from [13, fig.8].
pairs guarantee a better solution, whereas mutations do not. It
is the genetic framework that discards solutions coming from
bad mutation choices. We propose a new operators classifica-
tion, based on what the operator is trying to fix, instead of its
deterministic nature in Evocube: we distinguish operators that
targets validity –– polycube topology –– and those targeting
quality –– low-distortion.
6.3.1 Evocube operators targeting the validity
Fig.13 top illustrates these operators within the same order.
Chart removal is applied on an invalid chart: its facets are fed
to a graph-cut optimization, allowing the neighboring labels
only, thus forcing the facet re-labeling. Opposite boundaries
fixes a non-orthogonal boundary by tracing a chart along.
High valence corner inserts a new chart on what was a
corner with a valence greater than 3. Those operators edit the
labeling graph to have, locally, a polycube topology. Although
not based on a graph-cut optimization, we previously covered
how Gregson et al. [13] are removing invalid charts in a similar
manner. They also process non-orthogonal boundaries like
Evocube (Section 6.1).
6.3.2 Evocube operators targeting the quality
Fig.13 bottom illustrates these operators within the same
order. Around a turning-point, chart propagation spreads the
label on one side to the facets of the other side. Path smoothing
re-draws a boundary to avoid superfluous spikes. These two
operators do not modify the labeling graph, only its embed-
ding onto the mesh. Directional path creates a chart along a
random direction, starting from a turning-point. Note that the
polycube topology changes but this operator is still quality-
oriented (turning-point removal) and the labeling stays locally
valid. The last two are taken from [13] (Section 6.1), but the
latter is stochastic within the Evocube genetic framework.
6.4 New labeling operators
Our analysis of initial labelings (Section 5), taking into ac-
count existing operators and the distinction between validity
and quality, led us to define new labeling operators.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 13: Evocube operators (mutations and repairs com-
bined) [31]. From left-to-right then top-to-bottom: chart
removal, opposite boundaries, high valence corner, chart prop-

agation, path smoothing and directional path.
6.4.1 Increase chart valence
It is common for CAD models to contain triangular surfaces
surrounded by hard edges (Fig.14). The initial labeling is
likely to mark the corresponding chart 𝒞𝑖 as invalid (insufÏ-
cient valence). Such a chart must not be removed, otherwise
the quality will be degraded (from both the fidelity and the
preservation of feature edges). For such cases, we apply a new
operator that identifies the problematic vertex 𝑣 on an acute
angle between same-axis boundary edges, along the contour𝐶𝒞𝑖 of 𝒞𝑖. Vertex 𝑣 can be located on a corner (Fig.14a left, in
black) or on a turning-point (Fig.14a right, in yellow). With 𝑒𝑣1
and 𝑒𝑣2 the boundary edges incident to 𝑣 on 𝐶𝒞𝑖 , we compute
the axis 𝑎 ∈ {𝑥, 𝑦, 𝑧} to apply on 𝐶𝒞𝑖 , by picking the most
aligned to 𝑒𝑣1 and 𝑒𝑣2. This axis will define a new boundary in𝐶𝒞𝑖 and incrementing the valence of 𝒞𝑖. Two polyedges 𝑝↻ and𝑝↺ are assembled by aggregating end-to-end boundary edges
along 𝐶𝒞𝑖 , starting from 𝑣 and going respectively clockwise
and counterclockwise until reaching a corner. Along 𝑝↻ and𝑝↺, we want to distribute the 2D geometric fidelity between
the assignment of the existing label and axis 𝑎. For each
polyedge 𝑝 ∈ {𝑝↻, 𝑝↺}, we compute the cost of assigning every
edge to each of the two axes. The association cost is equal
to the angle between the edge vector and the label vector.
Then, starting from 𝑣 and going to the other end of 𝑝, the
cumulative cost of 𝑎 is computed. In the opposite direction,
the cumulative cost of the current axis is computed. In this
way, an equilibrium point 𝑜𝑝 is identified for each 𝑝. If 𝑣 does

(a)

(b)

(c)

Figure 14: The increase chart valence operator applied on
MAMBO [17] B23 (left) and B49 (right).

not coincide with one of them, the closer to 𝑣 is moved on 𝑣 to
enforce the placement of a corner on 𝑣: between 𝑜𝑝↻ and 𝑜𝑝↺will be the new boundary around 𝒞𝑖. Afterwards, we greedily
trace, edge-by-edge, a boundary 𝑏𝑜 starting from each of the
two equilibrium point 𝑜 (Fig.14b). The direction leading this
path is along the same axis as the label of 𝒞𝑖. The sign is
resolved by checking which one gives the most aligned vector
with edges incident to 𝑣. The path tracing reuses boundary
paths if any (Fig.14b left), and stops when a boundary or
a turning-point is met. Between the two boundaries 𝑏𝑜 we
re-label triangles of the base chart 𝒞𝑗, creating a new chart𝒞𝑘 (Fig.14c). The axis of its label is the remaining one after
forbidding the 𝒞𝑖 and the 𝒞𝑗 one. By optimizing the 3D fidelity
of the average normal of 𝒞𝑘, we can settle on the label sign.
6.4.2 Join turning-points pair with new chart
We provide an automatic bond creation between two turning-
points 𝑡1 and 𝑡2, that are at the extremity of lost feature edges.
With 𝑇left and 𝑇right the set of facets at the left and right of
the feature edges path, the label to insert 𝑙 is chosen to be
different from the 3 labels around 𝑡1 and 𝑡2, while being close
to the average normal of 𝑇left ∪ 𝑇right. Then we select among𝑇left and 𝑇right the one having the best fidelity if relabeled

Figure 15: The join turning-points pair operator applied on
MAMBO [17] B29.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Figure 16: The pull closest corner operator applied on
MAMBO [17] S36. The turning-point is in yellow.

Figure 17: The move boundary near turning-point operator
applied on CAD5 [45]. Here the two turning-points are

removed in one iteration.
with 𝑙, and we extend the relabeling to adjacent facet of the
same side, effectively creating a new chart (Fig.15). Unlike
Evocube [31] (Section 6.3.2, directional path), this operator is
deterministic because it is applied on pairs of turning-points.
6.4.3 Pull closest corner
Our analysis on output labelings shows that some turning-
points are on the ideal vertex location for their closest corner𝑐. Moving the corner would result in the suppression of the
turning-point (Fig.16). The boundary to shift 𝐵𝑠 is the next
(counter)clockwise incident boundary of 𝑐, according to the
side the turning-point is leaning. A path is greedily traced
starting from the turning-point and following the vector 𝐵𝑠.
Triangles between the current boundary and the new path
are relabeled in order to move 𝐵𝑠. If feature edges are in the
neighborhood of the turning-point, the path is instead traced
along the feature edge until we arrive at the corner to move.
6.4.4 Move boundary near turning-point
For turning-points that are not on a feature edge, the process
of re-labeling its neighboring triangles moves it closer to the
boundary corners. To know which of the two adjacent labels
to propagate over the other, we compute the per-label sum of
triangle corner angles and keep the maximum (Fig.17).
6.4.5 Straighten boundaries
The labeling graph boundaries 𝐵𝑖 being in the end mapped
to straight segments in the polycube domain, we have every
interest to follow a straight path between the two corners𝑐start and 𝑐end. Thus, we added an operator that re-draw an
existing boundary from 𝑐start, and step by step choosing the
edge leading us closer to 𝑐end. Boundaries on feature edges are
ignored by this operator and stay on their path.

7 Routines
Now, we present how to combine labeling operators in a
fully automatic process. In accordance with our goal to favor
validity (a polycube topology) over quality (low distortion
mapping), we designed two routines (Fig.3): The first one
targets invalid charts, boundaries and corners, by inserting
and removing charts (Section 7.1); the second one processes
non-monotone boundaries (Section 7.2).
7.1 Routine to fix the validity
The first operation we apply after the initial labeling (Sec-
tion 5) is increase chart valence, as much as possible. It is done
before fix invalid boundaries and fix invalid corners because

Algorithm 1: Validity-oriented routine
Input: mesh 𝜕𝑇Ω, labeling ℓ, max number of iter. 𝑁max
Output: updated labeling ℓ

1 𝑁 ← 0
2 While ℓ is not valid and 𝑁 ≤ 𝑁max
3 𝑁 ← 𝑁 + 1
4 Repeat until no chart processed

5
Find an invalid chart surrounded by feature edges,
if any increase its valence by inserting new chart
(Section 6.4.1)

6 If ℓ is valid then return ℓ
7 Repeat until no boundary processed
8 Find the first invalid boundary, if any fix this invalid

boundary (Section 6.3.1, opposite boundary)
9 If ℓ is valid then return ℓ

10 Repeat until no corner processed
11 Find the first invalid corner, if any fix this invalid

corner (Section 6.3.1, high valence corner)
12 If ℓ is valid then return ℓ
13 𝑆 ← ∅
14

Insert the number of charts, boundaries, corners, invalid
chars, invalid boundaries, invalid corners, and turning-
point in 𝑆

15 While true
16 Remove all invalid charts (Section 6.3.1, chart re-

moval) that are not surrounded by feature edges
17 If ℓ is valid then return ℓ
18

Compute the number of charts, boundaries, corners,
invalid chars, invalid boundaries, invalid corners, and
turning-point as 𝑠

19 If 𝑠 ∈ 𝑆 then // infinite loop → remove more charts
20 Remove charts around invalid boundaries, like chart

removal does (Section 6.3.1)
21 Else insert 𝑠 in 𝑆
22 Return ℓ

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

configurations on which increase chart valence is applied can
also contain invalid boundaries and invalid corners, that would
be better fixed with increase chart valence. We apply the fix
invalid boundaries then the fix invalid corners operator from
Evocube [31]. The order is important because corners at the
extremities of an invalid boundary are likely to be invalid
as well, and fix invalid corners would not be a proper fix
in this case. Finally, we have the most aggressive transforma-
tion based on graph-cut [42], [43], [44]: chart removal from
Evocube, on all charts that are not surrounded by feature
edges. All of the aforementioned process in embedded in a
loop, tracking at each step the number of labeling graph
features (charts, boundaries and corners) and the number of
invalid ones. If at a given step we encounter for the second
time the same set of tracked values, we detect a backtracking
and remove the charts around invalid boundaries to escape a
potential infinite loop. Between each operator, if we obtain a
valid labeling, the routine is stopped (Algorithm 1).
7.2 Routine to fix the monotonicity
If we get zero invalid components, we execute a routine to sup-
press turning-points, aiming to get all-monotone boundaries.
We think that getting a valid polycube is more important
than getting low parametric distortion, and in this context we
delayed the use of the following operators. The one having the
most constrained condition of application is the first we apply:
join turning-points pair. Then, we focus on turning-points

Algorithm 2: Monotonicity-oriented routine
Input: triangle mesh 𝜕𝑇Ω, valid labeling ℓ
Output: updated labeling ℓ

1 If all boundaries are monotone then return ℓ
2 Repeat until no turning-points processed

3
Find the first pair of turning-points joined by lost feature
edges, if any insert a chart between these two turning-
points (Section 6.4.2)

4 If all boundaries are monotone then return ℓ
5 Repeat until no turning-point processed

6
Find the turning-point on feature edges, if any re-trace
a boundary of the closest corner, pulling this corner on
the turning-point vertex (Section 6.4.3)

7 If all boundaries are monotone then return ℓ
8 Process turning-points on smooth surfaces by locally mov-

ing their boundary (Section 6.4.4)
9 If all boundaries are monotone then return ℓ

10 Straighten boundaries that are not on feature edges (Sec-
tion 6.4.5)

11 Return ℓ

near features edges with pull closest corner. Then we apply
operators for non-monotone boundaries on smooth edges:
move boundary near turning-point and straighten boundaries.
The absence of turning-point is checked after applying each
operator and allows to stop the routine sooner (Algorithm 2).
8 Results
We applied our algorithm on the 113 CAD models of the
MAMBO dataset [17] and the 109 ones of OctreeMeshing [45],
after generating tetrahedral meshes with Gmsh [18] (charac-
teristic length factor of 0.1) and MeshGems [19], respectively,
then extracting the surface triangular mesh. A subset of
output labelings is shown in Fig.1, and another one is put
side by side with PolyCut [27] and Evocube [31] results in
Fig.18 and Table 3. Hexahedral meshes are generated using
HexEx [21], [46] (scale factor of 1.3), then post-processed with
a global padding [2] and a volumetric smoother [47]. Statis-
tical comparisons on the whole datasets are synthesized in
Table 1 and Table 2 and per-model results are provided as
supplemental material.
 For each data subset and each method, we report: the
percentage for each four labeling cases; the average labeling
fidelity over the whole data subset; the percentage of sharp
features edges that are preserved, lost, and ignored (i.e. low
dihedral angle)4; labeling duration in seconds, including file I/
O and including the initial labeling duration for our method,
measured on an Intel® Core™ i5-12600H laptop with 32 Go
of RAM – through a Windows virtual machine for PolyCut;
the percentage of hex meshes having a positive minimum
Scaled Jacobian; the per-model minimum and average Scaled
Jacobian, averaged over the data subset. No hex-meshing was
attempted our initial labeling, and for other methods, a hex
mesh is generated only if the labeling is valid (all-monotone
or not). If despite it all, no hex-mesh is generated, a Scaled
Jacobian of −1 (worse value) is substituted. PolyCut was not
executed on OctreeMeshing meshes because many of them are
beyond the 300k tetrahedra limit of the demo executable. For
MAMBO we had to generate coarser meshes (characteristic
length factor of 0.15).
 Our approach stands out for the percentage of valid labeling
in all datasets. In particular on MAMBO/Basic and Simple,
our method is the only one to reach 100% of all-monotone
and valid labelings. In terms of duration, we offer important
speedups (10 to 100 times faster). Regarding quality metrics
(Section 3.4), fidelity is similar, and sharp feature edges
preservation is a bit worse than our initial labeling, but still
better than Evocube [31]. On some models, our validity defin-
ition (Section 4) significantly improves the labeling and the
generation time (Fig.19).

4The OctreeMeshing dataset does not contain feature edges, and the PolyCut file formats did not allow us to extract such information, hence the
empty cells.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Valid and all monotone;
Valid with turning-points;

Invalid;
Failed

Dataset/subset (size) Labeling
method

Overall
aver-
age

fidelity

feature edges:
Sharp and preserved;

Sharp and lost;
Ignored

Total labeling
duration (s) minSJ ≥ 0

Overall
average
minSJ;
avgSJratio cumulative

Graph-cut
73.0 %
6.8 %
20.3 %
0.0 %

73.0 %
79.7 %

100.0 %
(100.0 %)

0.976
88.5 %
0.8 %
10.6 %

9.23 - -

PolyCut [27]
93.2 %
1.4 %
0.0 %
5.4 %

93.2 %
94.6 %
94.6 %

(100.0 %)
0.974 - 1 294.15

(×78 ours) 71.4 % 0.006
0.893

Evocube [31]
94.6 %
1.4 %
4.1 %
0.0 %

94.6 %
95.9 %

100.0 %
(100.0 %)

0.966
82.3 %
7.0 %
10.6 %

2 614.23
(×157 ours) 63.4 % −0.084

0.925

MAMBO/
Basic (74)

Ours
100.0 %
0.0 %
0.0 %
0.0 %

100.0 %
100.0 %
100.0 %
(100.0 %)

0.975
88.5 %
0.8 %
10.6 %

16.70 74.3 % −0.042
0.922

Graph-cut
40.0 %
30.0 %
30.0 %
0.0 %

40.0 %
70.0 %

100.0 %
(100.0 %)

0.978
81.3 %
1.6 %
17.1 %

4.31 - -

PolyCut [27]
86.7 %
6.7 %
0.0 %
6.7 %

86.7 %
93.3 %
93.3 %

(100.0 %)
0.977 - 842.67

(×72 ours) 57.1 % −0.109
0.907

Evocube [31]
73.3 %
26.7 %
0.0 %
0.0 %

73.3 %
100.0 %
100.0 %
(100.0 %)

0.974
78.8 %
4.1 %
17.1 %

1 446.38
(×124 ours) 20.0 % −0.393

0.925

MAMBO/
Simple (30)

Ours
100.0 %
0.0 %
0.0 %
0.0 %

100.0 %
100.0 %
100.0 %
(100.0 %)

0.975
81.2 %
1.7 %
17.1 %

11.67 56.7 % −0.172
0.917

Graph-cut
22.2 %
33.3 %
44.4 %
0.0 %

22.2 %
55.6 %

100.0 %
(100.0 %)

0.966
70.5 %
3.6 %
25.9 %

1.26 - -

PolyCut [27]
77.8 %
22.2 %
0.0 %
0.0 %

77.8 %
100.0 %
100.0 %
(100.0 %)

0.963 - 409.10
(×25 ours) 22.2 % −0.541

0.832

Evocube [31]
22.2 %
44.4 %
33.3 %
0.0 %

22.2 %
66.7 %

100.0 %
(100.0 %)

0.954
65.1 %
9.0 %
25.9 %

611.72
(×37 ours) 0.0 % −0.658

0.885

MAMBO/
Medium (9)

Ours
77.8 %
11.1 %
11.1 %
0.0 %

77.8 %
88.9 %

100.0 %
(100.0 %)

0.954
69.8 %
4.3 %
25.9 %

16.51 12.5 % −0.384
0.896

Table 1: Statistical results on the MAMBO dataset.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

Valid and all monotone;
Valid with turning-points;

Invalid;
Failed

Dataset/subset (size) Labeling
method

Overall
aver-
age

fidelity

Total labeling
duration (s) minSJ ≥ 0

Overall
aver-
age

minSJ;
avgSJratio cumulative

Graph-cut
70.6 %
6.4 %
22.9 %
0.0 %

70.6 %
77.1 %

100.0 %
(100.0 %)

0.973 8.68 - -

Evocube [31]
85.3 %
7.3 %
7.3 %
0.0 %

85.3 %
92.7 %

100.0 %
(100.0 %)

0.968 31 609.29
(×570 ours) 66.3 % −0.059

0.915OctreeMeshing/cad (109)

Ours
89.0 %
8.3 %
2.8 %
0.0 %

89.0 %
97.2 %
100.0 %
(100.0 %)

0.963 55.49 74.5 % 0.003
0.913

Table 2: Statistical results on the OctreeMeshing [45] CAD dataset.
 There still are cases where we fail to produce a valid labeling,
especially when valid solutions requires to label areas with
poor geometric fidelity. On the 113 models from MAMBO [17],
only the labeling of the helix in Fig.20 is invalid.
 As for all fidelity-driven labelings, we are unable to explore
more compact polycubes by warping [48]. Despite leading
to an higher quality hex-mesh, Fig.21 right is considered a
worse solution than Fig.21 left because of high angles between
normals and assigned labels. Eventually, by working on the
input surface, we cannot detect conflicting normal constraints
[36] or in-volume twists [37] that would classify a labeling as
valid despite not representing a polycube.
9 Conclusion and future work
We presented a novel approach for the labeling stage of
automatic polycube generation, based on three main contri-
butions: (1) better formulation of validity criteria (Section 4)
that broaden the space of valid polyhedra; (2) biased graph-
cut costs to generate initial labelings that better process
misaligned parts of the input model (Section 5); (3) a
validity-oriented routine and a monotonicity-oriented routine
(Section 7) that achieve robustness, while being considerably
faster than state-of-the-art algorithms.
 We identify future works. The behavior of our boundary
tracing algorithm may be improved by taking curvature
into consideration and by favoring passing by feature edges
with a Dijkstra algorithm. More generally, instead of captur-
ing feature edges when a labeling operator find some, we
would benefit from a feature-edge-aware initial labeling. CAD
features preservation would be better measured on the dedi-
cated HexMe dataset [49]. Because the routines described
in Section 7 requires fine-tuning to ensure the conditional
branchings to be adapted to a wide range of shapes, a more
robust approach may be to use a tree-based exploration algo-

PolyCut [27] Evocube [31] Ours

Scaled Jacobian: 0 1
Figure 18: (left to right) Comparisons between PolyCut [27],
Evocube [31] and our algorithm, with hexahedral meshes gen-
erated with [21], [46]. Models MAMBO [17] B76, S35 and B49.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

model;
method

#corners;
#invalidities;

#turning-points

fidelity:
min;
avg

preserved
feature
edges

#hex;
minSJ;
avgSJ

B76
PolyCut

24
0
1

0.500
0.980 –

29980
−0.879
0.956

B76
Evocube

26
0
0

0.500
0.981 91.1 %

92774
−0.884
0.968

B76
Ours

34
0
0

0.711
0.972 95.4 %

92877
−0.025
0.969

S35
PolyCut

22
0
0

0.500
0.985 –

20016
−0.712
0.923

S35
Evocube

28
0
0

0.406
0.954 79.9 %

65006
−0.978
0.938

S35
Ours

22
0
0

0.749
0.983 99.1 %

72974
0.024
0.944

B49
PolyCut

12
0
0

0.500
0.995 –

46110
−0.001
0.989

B49
Evocube

12
0
0

0.500
0.996 95.0 %

147619
−0.022
0.993

B49
Ours

14
0
0

0.629
0.994 100 %

151668
0.069
0.992

Table 3: Statistical results for PolyCut [27], Evocube [31] and
our algorithm, on the three models in Fig.18.

Figure 19: Labelings of Evocube [31] (left) and our method
(right) on the cheese2 model from [45]. It has 6-connected
corners that Evocube classifies as invalid and tries to avoid,
whereas we rightfully classify them as valid. Evocube lasts

4min 36s, while we return a result in 0.127s.
rithm, testing different operators orderings, instead of relying
on the same routine for all inputs. Finally, our pipeline focuses
on labeling validity, then aims at low distortion by consid-
ering turning-points. The distortion may be further reduced
with new validity-preserving operators, directly driven by the
labeling fidelity or by the downstream polycube distortion.

Figure 20: Invalid labeling on MAMBO [17] M8.

Figure 21: (left) a labeling generated with the fidelity as
objective; (right) a labeling corresponding to one cuboid. The

latter gives hexahedra that are better surface-aligned.
The polycube distortion can be estimated with fast surface
polycube generation [50], [51]. Adding charts and adjusting
boundaries placement would noticeably improved downstream
hexahedral meshes (Fig.18).
References
[1] J. F. Shepherd and C. R. Johnson, “Hexahedral

mesh generation constraints,” Engineering with Com-
puters, vol. 24, pp. 195–213, 2008, doi: 10.1007/
s00366-008-0091-4.

[2] N. Pietroni et al., “Hex-Mesh Generation and Pro-
cessing: A Survey,” ACM Trans. Graph., vol. 42, no. 2,
pp. 1–44, 2022, doi: 10.1145/3554920.

[3] L. Li, P. Zhang, D. Smirnov, S. Mazdak Abulnaga,
and J. Solomon, “Interactive all-hex meshing via
cuboid decomposition,” ACM Trans. Graph., vol. 40, no.
6, 2021, doi: 10.1145/3478513.348056.

[4] F. Zoccheddu, E. Gobbetti, M. Livesu, N. Pietroni,
and G. Cherchi, “HexBox: Interactive Box Modeling
of Hexahedral Meshes,” Computer Graphics Forum, vol.
42, no. 5, 2023, doi: 10.1111/cgf.14899.

[5] N. Ray, D. Sokolov, M. Reberol, F. Ledoux, and
B. Lévy, “Hex-dominant meshing: Mind the gap!,”
Computer-Aided Design, vol. 102, pp. 94–103, 2018, doi:
10.1016/j.cad.2018.04.012.

[6] R. Schneiders, “A grid-based algorithm for the gener-
ation of hexahedral element meshes,” Engineering with
Computers, vol. 5, no. 3, pp. 168–177, 1996, doi: 10.1007/
BF01198732.

[7] X. Gao, H. Shen, and D. Panozzo, “Feature Pre-
serving Octree-Based Hexahedral Meshing,” Computer

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1007/s00366-008-0091-4
https://doi.org/10.1007/s00366-008-0091-4
https://doi.org/10.1145/3554920
https://doi.org/10.1145/3478513.348056
https://doi.org/10.1111/cgf.14899
https://doi.org/10.1016/j.cad.2018.04.012
https://doi.org/10.1007/BF01198732
https://doi.org/10.1007/BF01198732

Graphics Forum, vol. 38, no. 5, pp. 135–149, 2019, doi:
10.1111/cgf.13795.

[8] L. Maréchal, “Advances in Octree-Based All-Hexahe-
dral Mesh Generation: Handling Sharp Features,” in
Proceedings of International Meshing Roundtable, 2009,
pp. 65–84. doi: 10.1007/978-3-642-04319-2_5.

[9] A. Sheffer, M. Etzion, A. Rappoport, and M.
Bercovier, “Hexahedral Mesh Generation using the
Embedded Voronoi Graph,” Engineering with Com-
puters, vol. 15, pp. 248–262, 1999, doi: 10.1007/
s003660050020.

[10] M. Livesu, A. Muntoni, E. Puppo, and R. Scateni,
“Skeleton-driven Adaptive Hexahedral Meshing of Tubu-
lar Shapes,” Computer Graphics Forum, 2014, doi:
10.1111/cgf.13021.

[11] P. Viville, P. Kraemer, and D. Bechmann, “Meso-
Skeleton Guided Hexahedral Mesh Design,” Computer
Graphics Forum, vol. 42, no. 7, 2023, doi: 10.1111/
cgf.14932.

[12] Quadros W. R., “LayTracks3D: A New Approach
to Meshing General Solids using Medial Axis Trans-
form,” Procedia Engineering, 2014, doi: 10.1016/
j.proeng.2014.10.374.

[13] J. Gregson, A. Sheffer, and E. Zhang, “All-Hex
Mesh Generation via Volumetric PolyCube Deforma-
tion,” Computer Graphics Forum, vol. 30, no. 5, pp.
1407–1416, 2011, doi: 10.1111/j.1467-8659.2011.02015.x.

[14] M. Tarini, K. Hormann, P. Cignoni, and C. Mon-
tani, “Polycube-Maps,” in SIGGRAPH, ACM, 2004,
pp. 853–860. doi: 10.1145/1186562.1015810.

[15] M. Nieser, U. Reitebuch, and K. Polthier, “Cube-
Cover - Parameterization of 3D Volumes,” Computer
Graphics Forum, vol. 30, pp. 1397–1406, 2011, doi:
10.1111/j.1467-8659.2011.02014.x.

[16] D. Sokolov, N. Ray, L. Untereiner, and Lévy
Bruno, “Hexahedral-Dominant Meshing,” ACM Trans.
Graph., vol. 35, no. 5, 2016, doi: 10.1145/2930662.

[17] F. Ledoux, MAMBO: Model dAtabase Mesh BlOcking.
Accessed: May 20, 2024. [Online]. Available: https://
gitlab.com/franck.ledoux/mambo

[18] C. Geuzaine and J.-F. Remacle, “Gmsh: a three-
dimensional finite element mesh generator with built-in
pre- and post-processing facilities,” 2008. doi: 10.1002/
nme.2579.

[19] Dassault Systèmes - Spatial Corp., “3D Precise
Mesh.” [Online]. Available: https://www.spatial.com/
products/3d-precise-mesh

[20] EDF, CEA, and OpenCascade, “SALOME: The open
source platform for numerical simulation.” [Online].
Available: https://www.salome-platform.org/?lang=en

[21] M. Lyon, D. Bommes, and L. Kobbelt, “HexEx:
Robust Hexahedral Mesh Extraction,” ACM Trans.
Graph., vol. 35, no. 4, pp. 1–11, 2016, doi:
10.1145/2897824.2925976.

[22] F. Protais, M. Reberol, N. Ray, E. Corman, F.
Ledoux, and D. Sokolov, “Robust Quantization for
Polycube Maps,” Computer-Aided Design, vol. 150, 2022,
doi: 10.1016/j.cad.2022.103321.

[23] D. Eppstein and E. Mumford, “Steinitz Theorems
for Orthogonal Polyhedra,” in Proceedings of the 26th
annual symposium on Computational Geometry, ACM,
pp. 429–438. doi: 10.1145/1810959.1811030.

[24] S. Han, J. Xia, and Y. He, “Hexahedral shell mesh
construction via volumetric polycube map,” ACM Sym-
posium on Solid and Physical Modeling, 2010, doi:
10.1145/1839778.1839796.

[25] W. Yu, K. Zhang, S. Wan, and X. Li, “Optimizing
polycube domain construction for hexahedral remesh-
ing,” Computer-Aided Design, vol. 46, pp. 58–68, 2014,
doi: 10.1016/j.cad.2013.08.018.

[26] X.-M. Fu, C.-Y. Bai, and Y. Liu, “EfÏcient Volumetric
PolyCube-Map Construction,” vol. 35, no. 7, pp. 97–106,
2016, doi: 10.1111/cgf.13007.

[27] M. Livesu, N. Vining, A. Sheffer, J. Gregson,
and R. Scateni, “PolyCut: Monotone Graph-Cuts
for PolyCube Base-Complex Construction,” in Pro-
ceedings of SIGGRAPH Asia, ACM, 2013. doi:
10.1145/2508363.2508388.

[28] J. Huang, T. Jiang, Z. Shi, Y. Tong, H. Bao, and
M. Desbrun, “ℓ1-Based Construction of Polycube Maps
from Complex Shapes,” ACM Trans. Graph., vol. 33, no.
3, 2014, doi: 10.1145/2602141.

[29] X. Fang, W. Xu, H. Bao, and J. Huang, “All-
Hex Meshing using Closed-Form Induced Polycube,”
ACM Trans. Graph., vol. 35, no. 4, 2016, doi:
10.1145/2897824.2925957.

[30] Y. Yang, X.-M. Fu, and L. Liu, “Computing Surface
PolyCube-Maps by Constrained Voxelization,” Com-
puter Graphics Forum, vol. 38, no. 7, pp. 299–309, 2019,
doi: 10.1111/cgf.13838.

[31] C. Dumery, F. Protais, S. Mestrallet, C.
Bourcier, and F. Ledoux, “Evocube: a Genetic Label-
ing Framework for Polycube-Maps,” vol. 41, no. 6, pp.
467–479, 2022, doi: 10.1111/cgf.14649.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1111/cgf.13795
https://doi.org/10.1007/978-3-642-04319-2_5
https://doi.org/10.1007/s003660050020
https://doi.org/10.1007/s003660050020
https://doi.org/10.1111/cgf.13021
https://doi.org/10.1111/cgf.14932
https://doi.org/10.1111/cgf.14932
https://doi.org/10.1016/j.proeng.2014.10.374
https://doi.org/10.1016/j.proeng.2014.10.374
https://doi.org/10.1111/j.1467-8659.2011.02015.x
https://doi.org/10.1145/1186562.1015810
https://doi.org/10.1111/j.1467-8659.2011.02014.x
https://doi.org/10.1145/2930662
https://gitlab.com/franck.ledoux/mambo
https://gitlab.com/franck.ledoux/mambo
https://doi.org/10.1002/nme.2579
https://doi.org/10.1002/nme.2579
https://www.spatial.com/products/3d-precise-mesh
https://www.spatial.com/products/3d-precise-mesh
https://www.salome-platform.org/?lang=en
https://doi.org/10.1145/2897824.2925976
https://doi.org/10.1016/j.cad.2022.103321
https://doi.org/10.1145/1810959.1811030
https://doi.org/10.1145/1839778.1839796
https://doi.org/10.1016/j.cad.2013.08.018
https://doi.org/10.1111/cgf.13007
https://doi.org/10.1145/2508363.2508388
https://doi.org/10.1145/2602141
https://doi.org/10.1145/2897824.2925957
https://doi.org/10.1111/cgf.13838
https://doi.org/10.1111/cgf.14649

[32] L. He, N. Lei, Z. Wang, C. Wang, X. Zheng, and
Z. Luo, “Expanding the Solvable Space of Polycube-
Map via Validity-Enhanced Construction,” in Interna-
tional Meshing Roundtable, 2024, pp. 40–52. doi:
10.1137/1.9781611978001.4.

[33] H.-X. Guo, X. Liu, D.-M. Yan, and Y. Liu, “Cut-
enhanced PolyCube-maps for feature-aware all-hex
meshing,” ACM Trans. Graph., vol. 39, no. 4, doi:
10.1145/3386569.3392378.

[34] G. Cherchi, P. Alliez, R. Scateni, M. Lyon, and D.
Bommes, “Selective Padding for Polycube-Based Hexa-
hedral Meshing,” Computer Graphics Forum, vol. 38, no.
1, pp. 580–591, 2019, doi: 10.1111/cgf.13593.

[35] N. Kowalski, F. Ledoux, M. L. Staten, and Owen
S. J., “Fun sheet matching: towards automatic block de-
composition for hexahedral meshes,” Eng. with Comput,
2012.

[36] D. Sokolov and N. Ray, “Fixing normal constraints
for generation of polycubes,” HAL:hal-1211408, 2015.
[Online]. Available: https://hal.inria.fr/hal-01211408

[37] S. Mestrallet, F. Protais, C. Bourcier, and F.
Ledoux, “Limits and prospects of polycube labelings,”
2023, HAL:cea-4169841. [Online]. Available: https://cea.
hal.science/cea-04169841

[38] B. Lévy and contributors, Geogram: a program-
ming library with geometric algorithms. Accessed: Jun.
24, 2024. [Online]. Available: https://github.com/
BrunoLevy/geogram

[39] H. Zhao et al., “Polycube Shape Space,” Computer
Graphics Forum, vol. 38, pp. 311–322, 2019, doi:
10.1111/cgf.13839.

[40] M. Snoep, B. Speckmann, and K. Verbeek, “Poly-
cube Layouts via Iterative Dual Loops,” 2024. doi:
10.48550/arXiv.2402.00652.

[41] E. Steinitz, “Polyeder und Raumeinteilungen,” Ency-
clopädie der mathematischen Wissenschaften, 1922.

[42] Y. Boykov, O. Veksler, and R. Zabih, “Fast approxi-
mate energy minimization via graph cuts,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
pp. 1222–1239, 2001, doi: 10.1109/34.969114.

[43] V. Kolmogorov and R. Zabih, “What Energy Func-
tions can be Minimized via Graph Cuts?,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
pp. 147–159, 2004, doi: 10.1109/TPAMI.2004.1262177.

[44] Y. Boykov and V. Kolmogorov, “An Experimental
Comparison of Min-Cut/Max-Flow Algorithms for En-
ergy Minimization in Vision,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp. 1124–
1137, 2004, doi: 10.1109/TPAMI.2004.60.

[45] “OctreeMeshing dataset.” Accessed: Oct. 07, 2024. [On-
line]. Available: https://cims.nyu.edu/gcl/papers/2019-
OctreeMeshing.zip

[46] F. Protais, polycube with HexEx. Accessed: May 25,
2024. [Online]. Available: https://github.com/fprotais/
polycube_withHexEx

[47] F. Protais, hexsmoothing. Accessed: Oct. 04,
2024. [Online]. Available: https://github.com/fprotais/
hexsmoothing

[48] M. Mandad, R. Chen, D. Bommes, and M. Campen,
“Intrinsic mixed-integer polycubes for hexahedral mesh-
ing,” Computer Aided Geometric Design, vol. 94, 2022,
doi: 10.1016/j.cagd.2022.102078.

[49] P.-A. Beaufort, M. Reberol, D. Kalmykov, H. Liu,
F. Ledoux, and D. Bommes, “Hex me if you can,”
Computer Graphics Forum, vol. 41, no. 5, pp. 125–134,
2022, doi: 10.1111/cgf.14608.

[50] F. Protais, fastbndpolycube. Accessed: Jun. 18,
2024. [Online]. Available: https://github.com/fprotais/
fastbndpolycube

[51] H. Zhao, N. Lei, X. Li, P. Zeng, K. Xu, and X. Gu,
“Robust edge-preserving surface mesh polycube defor-
mation,” Computational Visual Media, vol. 4, pp. 33–42,
2018, doi: 10.1007/s41095-017-0100-x.

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited

https://doi.org/10.1137/1.9781611978001.4
https://doi.org/10.1145/3386569.3392378
https://doi.org/10.1111/cgf.13593
https://hal.inria.fr/hal-01211408
https://cea.hal.science/cea-04169841
https://cea.hal.science/cea-04169841
https://github.com/BrunoLevy/geogram
https://github.com/BrunoLevy/geogram
https://doi.org/10.1111/cgf.13839
https://doi.org/10.48550/arXiv.2402.00652
https://doi.org/10.1109/34.969114
https://doi.org/10.1109/TPAMI.2004.1262177
https://doi.org/10.1109/TPAMI.2004.60
https://cims.nyu.edu/gcl/papers/2019-OctreeMeshing.zip
https://cims.nyu.edu/gcl/papers/2019-OctreeMeshing.zip
https://github.com/fprotais/polycube_withHexEx
https://github.com/fprotais/polycube_withHexEx
https://github.com/fprotais/hexsmoothing
https://github.com/fprotais/hexsmoothing
https://doi.org/10.1016/j.cagd.2022.102078
https://doi.org/10.1111/cgf.14608
https://github.com/fprotais/fastbndpolycube
https://github.com/fprotais/fastbndpolycube
https://doi.org/10.1007/s41095-017-0100-x

	Introduction
	Related works
	Problem statement
	Polycube labeling definition
	Labeling graph
	Validity criteria
	Quality metrics

	Improved validity criteria
	Initial labeling
	Operators
	Proposed by Gregson et al. 2011
	Proposed by PolyCut
	Proposed by Evocube
	Evocube operators targeting the validity
	Evocube operators targeting the quality

	New labeling operators
	Increase chart valence
	Join turning-points pair with new chart
	Pull closest corner
	Move boundary near turning-point
	Straighten boundaries

	Routines
	Routine to fix the validity
	Routine to fix the monotonicity

	Results
	Conclusion and future work
	References

