
LINEAR-ALGEBRAIC REPRESENTATION AND

TRANSFORMATION OF UNSTRUCTURED MESHES

Daniel Shapero1

1University of Washington, Seattle, WA, USA, shapero@uw.edu

ABSTRACT

This paper will show some new approaches for implementing common transformations to the connectivity or topology
of an unstructured mesh. The key enabling technology for our approach is to borrow ideas from algebraic topology:
we use the boundary operators of a chain complex to represent the mesh. Boundary operators are really just integer
matrices. By representing the objects of study using the language of linear algebra, we can use linear algebraic
reasoning and intuition to define transformations. We show how to implement a few common transformations on the
boundary operator representation: merging cells, splitting cells on a new vertex, and splitting a cell on facets. The
source code for these transformations becomes short and easy to test.

Keywords: mesh generation, computational geometry, algebraic topology

1. INTRODUCTION

Nearly all constructions in unstructured meshing re-
quire the ability to perform local transformations to
the mesh topology. For example, to compute the De-
launay triangulation, the Lawson algorithm uses a se-
quence of edge flips, while the Bowyer-Watson algo-
rithm is based on splitting star-shaped polytopes along
a vertex [1]. Algorithms for mesh coarsening, on the
other hand, apply a sequence of edge or face collapses
[2]. Implementing these low-level transformation ker-
nels on common mesh data structures can be difficult
and error-prone. Are there other mesh data structures
that make common algorithms easier to implement?

The idea of linear-algebraic representation is to de-
scribe the mesh topology using a sequence of linear
operators between certain vector spaces or modules.
The idea comes from algebraic topology: the linear op-
erators are the boundary operators on a certain chain
complex. If we can describe the mesh topology

using linear algebra, then we can transform it

using linear algebra as well. Other domains of
science and engineering have seized on the idea of us-
ing linear algebra as the common language for build-
ing applications as well. For example, the Graph-

BLAS project aims to implement common algorithms
in graph theory using linear algebra [3].

This paper will show three transformations on the
linear-algebraic representation of a polygonal mesh:
(1) splitting a cell on a vertex, (2) merging adjacent
cells, and (3) subdividing a cell along a collection of
facets. The main advantage of this linear-algebraic ap-
proach is that the transformation kernels are easy to
write down and to code. We show how other higher-
level transformations can be implemented in terms
of these primitive operations. Finally, as a proof-of-
concept, we implemented algorithms for computing
convex hulls in arbitrary dimensions and constrained
Delaunay triangulations in 2D.

2. RELATED WORK

The key innovation of this paper is using chain com-
plexes to implement certain topological transforma-
tions, mainly bistellar flips. Many previous works have
used bistellar flips and a few have used chain com-
plexes. To our knowledge, no work has combined both.

Nearly all methods for improving the quality of a mesh
by transforming its topology use bistellar flips [4, 5, 6,

7]. One notable exception is polyhedron reconnection
[8]. These works all assume a half-edge or array-based
data structure to describe a simplicial complex.

The closest work to ours is DiCarlo and others [9],
which defines the Euler operators and a bisection op-
erator on chain complexes. The operators defined in
that paper work on only two cells at a time; ours op-
erate on an arbitrary number of cells. Other papers
use chain complexes to implement Catmull-Clark sub-
division [10] or to compute arrangements [11].

Our main results are explicit formulas for certain
transformations in arbitrary dimensions. These are
equations (18) and (19) for vertex splits; (24) for
merges; and (32) and (33) for face splits. These formu-
las have not appeared in the meshing literature before.
Equation (18) has appeared in the homological algebra
literature [12] but not for practical computation. The
GAP and polymake packages both include routines for
computing topological cones and performing bistellar
moves on simplicial complexes [13, 14, 15]. But both of
these packages use array-based data structures rather
than the linear-algebraic representation. Finally, these
routines are not used for meshing as such but to find
homeomorphisms of piecewise-linear manifolds.

3. THEORY

In this section, we will describe polytopal complexes,
a class which includes all common types of meshes.
The boundary operators on a polytopal complex can
be used as a data structure to represent the complex.
Next, we will describe how to convert between a poly-
topal complex and the more familiar representation
of a simplicial complex as an array describing which
vertices are contained in each simplex. Finally, we’ll
then introduce the concept of a topological cone and
give explicit formulae for the boundary operators of
a cone. The transformations that we describe in the
next section all “factor through” the topological cone.

3.1 Polytopal complexes

We will assume as given the notions of simplices,
cubes, polytopes, and meshes or spatial subdivisions
made up of these objects. The mathematical theory
that underlies the rest of the paper is basic algebraic
topology. We will present very abbreviated definitions;
we refer to [9] for a longer exposition of the algebraic-
topological point of view on solid modeling and to [16]
for the theory of algebraic topology.

Let Ω be a polytopal mesh of some domain in Eu-
clidean space. Given a k-dimensional polytope σ and
a k − 1-dimensional face τ of σ, the incidence number
is an integer that describes the handedness or orien-
tation with which τ is attached into σ. We will write

d

e

b

c a

1 3

20

A

B

∂1 =

[a b c d e
+ − 0

− + − 1
+ − + 2

+ − 3

]

∂2 =

[A B
+ − a
+ b
+ c

+ d
+ e

]

Figure 1: Pair of adjacent triangles (left) and their
boundary matrices (right). Vertices are labelled with
numbers, edges with lower-case letters, and polygons
with upper-case letters.

the incidence number as [σ, τ]. An informal definition
of the incidence number is

[σ, τ] ≡

+1 τ is attached positively in σ

−1 τ is attached negatively in σ

0 τ is not in σ

. (1)

This informal definition is enough for the constructions
that follow. For example, if e = ⟨v0, v1⟩ is an edge con-
necting the vertices v0 and v1, then [e, v0] = −1 and
[e, v1] = +1. Likewise, if we consider a positively-
oriented triangle t = ⟨v0, v1, v2⟩, then the incidence
number of t to the edges ⟨v0, v1⟩, ⟨v1, v2⟩, and ⟨v2, v0⟩
are all positive. The most important property of inci-
dence numbers is that, if ω is a k + 1-cell and τ is a
k − 1-cell, then

∑

σ

[ω, σ] · [σ, τ] = 0 (2)

where the sum is over all k-cells σ. This is a property
that requires proof for different classes of cell types.
The proofs for simplices and cubes use only combina-
torial facts about taking faces of these cells; the proof
for general polytopes is more involved [16, 17]. We will
assume this property in the following.

Let nk be the number of cells of Ω of dimension k.
Suppose that we have numbered all of the cells, so the
k-cells can be enumerated as {σj}

nk

j=1. We associate

to the set of all k-dimensional cells a Z-module CkΩ
of dimension nk. Each k-cell σj corresponds to the j-
th standard basis vector ej . These modules are called
the chain spaces and an element of a chain space is
referred to as a chain or a k-chain.

The utility of chains is that taking the boundary of
a cell is a one-to-many relation – a single simplex or
cube has many faces. A vector with non-zero entries
corresponding to these faces summarizes which cells
are in the boundary, and their signs describe the in-
cidence. The boundary operators extend this notion
beyond a single cell to a linear combination of cells, i.e.
a chain. The boundary operators are linear mappings
from k-chains to k − 1-chains:

∂k : CkΩ → C
k−1Ω. (3)

The representation of a boundary operator in the basis
described above is an nk−1×nk matrix; its entries are
the incidence coefficients. Suppose that the k − 1-
cells are enumerated as {τi}

nk−1

i=1 . The i, j entry of the
matrix ∂k is then

(∂k)ij = [σj , τi]. (4)

By reading off columns of each boundary matrix, we
can see which k−1-cells are faces of a given k-cell and
how they are attached. To continue with the example
above, we might say that if e = ⟨v0, v1⟩ is an edge, then
∂e = +v1−v0. Likewise, if t = ⟨v0, v1, v2⟩ is a triangle,
then ∂t = ⟨v0, v1⟩+ ⟨v1, v2⟩+ ⟨v2, v0⟩. Figure 1 shows
the boundary matrices for two adjacent triangles.

Equation (2) lets us prove the most important fact
about the boundary operators. The boundary of a

boundary is always equal to zero:

∂k · ∂k+1 = 0. (5)

A collection of modules {Ck} together with linear op-
erators ∂k : Ck → Ck−1 that satisfy equation (5) is
called a chain complex. From a polytopal complex one
can get a chain complex, but chain complexes can be
studied on their own.

There is one final definition that will clarify a later con-
struction at a critical juncture. The definitions above
assume that the mesh terminates at the points or 0-
dimensional cells. We will instead include a single bot-
tom cell ⊥ of dimension −1 and we will say that the
bottom cell is positively incident to every vertex, i.e.

[v,⊥] = +1 (6)

for all vertices v. We can then define the 0-boundary
operator ∂0 as a row vector of all 1s:

∂0 = 1
∗

. (7)

The condition that ∂0∂1 = 0 now implies that the
boundary of every edge has one positive and one neg-
ative vertex: ∂e = vi − vj for some i, j. We cannot
have that, say, ∂e = vi + vj . This outcome would
be undesirable but we have not explicitly forbidden it
otherwise. Equation (7) will reappear when we define
the topological cone.

The boundary matrices do not capture important ge-
ometric data describing how cells are embedded into
Euclidean space. We could have the same connectiv-
ity structure for two different triangular meshes, one
which uses only piecewise linear facets and another
that uses curved polynomial mappings. In the remain-
der, we consider only transformations to the connec-
tivity structure or topology and not to the geometry.

What kinds of alterations or transformations to a set
of boundary matrices preserve the fundamental rela-
tion ∂∂ = 0? Suppose A, B are integer matrices,

{∂0, . . . , ∂n} are boundary matrices, and we define

∂
′

k = ∂k ·A, ∂
′

k+1 = B · ∂k+1. (8)

What conditions do we need on A and B in order to
guarantee that ∂′

k · ∂′

k+1 = 0? One sufficient condi-
tion is that the image of ∂k+1 is an invariant subspace
of A · B. An important particular case is A · B = I,
which includes both permutations and sign flips. We
can reorder the columns of ∂k so long as we apply the
inverse permutation to the rows of ∂k+1. Likewise, we
can flip the sign of any column of ∂k as long as we flip
the sign of the corresponding row of ∂k+1. Speaking
informally, we can say that individual incidence num-
bers don’t matter as much as the relation between all
cells and faces. The more general case where A · B is
not equal to the identity matrix but its image is an
invariant subspace of ∂k+1 is needed for other trans-
formations, such as merging multiple cells into one or
deleting cells.

3.2 Simplicial complexes

For many problems in meshing, the goal is to pro-
duce a mesh where all the cells are simplices or cubes
rather than general polytopes. The utility of poly-
topal meshes is that they can represent intermediate
states that are not of the right type. For example, one
might merge a set of triangles into a polygon and then
split or subdivide the polygon into a different trian-
gulation incrementally. A polytopal mesh can repre-
sent the polygonal intermediate states, whereas if one
could only represent triangular data then this trans-
formation has to be completed all in one shot. But
the ability to use polytopal meshes, or more specifi-
cally the boundary operators, as an intermediate step
relies on the ability to convert between the two.

We assume that the standard data structure for a pure,
orientable k-dimensional simplicial complex is an ar-
ray of size n × (k + 1) where n is the number of top
simplices. Each row of this array stores the vertices of
the corresponding simplex, ordered in such a way to
give a positive orientation. For a k-dimensional com-
plex embedded in R

k, positive orientation is the usual
condition that the determinant of the matrix formed
by a simplex’s points in homogeneous coordinates is
positive. The order is non-unique up to any permuta-
tion with positive parity.

Simplicial → polytopal. Let σ = ⟨v0, . . . , vk⟩ be an
oriented k-simplex. If we re-order the vertices of σ by
some permutation p, then we get the same simplex if
p has positive parity and the “opposite” simplex if p
has negative parity:

⟨vp(0), . . . , vp(k)⟩ = parity(p) · ⟨v0, . . . , vk⟩ (9)

The incidence number from σ to the face τ =

⟨v0, . . . , v̂j , . . . , vk⟩ obtained by removing the jth ver-
tex is positive if j is even and negative if j is odd:

[σ, τ] = (−1)j . (10)

We can motivate this formula by observing that if σ
is in R

k, the oriented half-space formed by the jth
face contains σ if j is even and does not contain σ

if j is odd. Given a numbering scheme for all the
simplices of the mesh, the previous equation gives us
the incidence numbers that we need to fill in the entries
of the boundary matrices for each simplex.

Polytopal → simplicial. Suppose that {∂0, . . . , ∂k}
are the boundary operators of a single simplex with
vertices v0, . . . , vk. We do not know whether the right
order of the vertices is ⟨v0, . . . , vk⟩ or some orientation-
reversing permutation. Now let {∂′

0, . . . , ∂
′

k} be the
boundary matrices of a simplex using the canonical
choice of incidence numbers from equation (10). The
goal is to find an isomorphism of the two complexes.
We take the starting permutation and sign flip matri-
ces to be P0 = In0 where n0 is the number of vertices
and s0 = 1. For each dimension 1 ≤ j < k, we find a
permutation matrix Pj and sign flips sj such that

diag(sj−1) · P
∗

j−1 · ∂j · Pj · diag(sj) = ∂
′

j . (11)

The permutations can be found by finding columns
with the same sets of non-zero entries. Finally, at di-
mension k, we will find that diag(sk−1) · P

∗

k−1∂k is a
column vector of all +1 or -1. If the resulting vector
is positive, then the ordering ⟨v0, . . . , vk⟩ will result
in boundary matrices that are isomorphic to the in-
put boundary matrices. Otherwise, any orientation-
reversing permutation of that order is the correct
choice. We can then apply this logic to each top-
dimensional cell of a whole complex provided that it is
known to be simplicial. If at any point a set of permu-
tations and sign flips cannot be found, the resulting
polytopal complex was not simplicial.

3.3 Cone spaces

In the next section, we will show several transforma-
tions on a polytopal complex that are expressible as
operations on their boundary matrices. Each of these
transformations is a type of bistellar move, also re-
ferred to in the literature as a Pachner move after
U. Pachner [18, 19, 20]. A bistellar move of a set of
cells of a mesh first embeds them into the boundary
of a higher-dimensional ball, and then replaces them
with the closure of their complement in the bound-
ary of the ball. These transformations are known to
preserve important invariants and other global proper-
ties. The fact that the new cells have the same bound-
ary as the old ensures that the the fundamental rela-
tion ∂∂ = 0 is preserved. But how we polygonize
the higher-dimensional ball is a matter of choice. The

Figure 2: A 2D footprint polygon (left) and its topolog-
ical cone (right).

constructions that follow are all based on a particular
polygonization called the topological cone.

To describe what a topological cone is, it is helpful to
first describe the concept of a join. The join of two
subsets C and C′ of Euclidean space is the set

C ∗ C′ = {λ · c+ (1− λ)c′ : c ∈ C, c
′ ∈ C

′

, λ ∈ [0, 1]}.
(12)

Intuitively, the join of two spaces consists of the set of
all lines between them. If C and C′ are, respectively,
m- and n-dimensional submanifolds, then C ∗ C′ is
m + n + 1-dimensional. An important fact for the
transformations that we’ll define is that the join of an
m-simplex and an n-simplex is an m+ n+ 1-simplex.

The topological cone of a space Ω, which we will
write as cone(Ω), is the join with a single point. We
will refer to this added point as the apex. An il-
lustration is shown in Figure 2. Suppose that we
have a set of boundary matrices {∂0, . . . , ∂n} for a
space Ω. We can express the boundary matrices

{∂′

0, . . . , ∂
′

n+1} for cone(Ω) in terms of the bound-

ary matrices of the original space. This construc-
tion underlies both the vertex- and face-split transfor-
mations described below.

First, if the original space has N vertices, the cone
space adds one more. So ∂0 is a row vector of all 1s
with N columns, and ∂′

0 is a row vector of all 1s with
N + 1 columns. Next, the cone space includes all the
1-cells or edges of the original space, so we know that
∂′

1 will include ∂1 as a sub-matrix. Forming the cone
space adds edges between every original vertex and
the apex of the cone. Any one of these edges could
have negative or positive incidence on the apex. But
by applying sign flips to the columns of ∂′

1, which as
per the previous section does not alter the topology,
we can always guarantee that every edge has positive
incidence to an original vertex and negative incidence
to the new cone vertex. In linear algebraic terms,

∂
′

1 =

[
∂1 I

0 −1∗

]

(13)

where 1 is the vector of all 1s. Moreover, we can ob-

serve here that the row vector of all 1s is the same as
the 0-boundary matrix:

∂
′

1 =

[
∂1 I

0 −∂0

]

. (14)

We can then state that the number of edges or 1-cells
in the cone space is equal to #vertices + #edges.

Now we need to determine what the remaining bound-
ary operators should be. We can start by counting how
many 2-cells there should be in the cone. Every 2-cell
of the original space must also be present in the cone.
The added 2-cells are formed through a topological
join of the original 1-cells with the cone vertex. So
we can again state that the number of 2-cells in the
cone space is equal to #2-cells + #1-cells. Again, in
principle all of the new 2-cells could have a completely
arbitrary incidence w.r.t. to the original 1-cells, but
by a sign flip we can ensure instead that all of these in-
cidences are positive. In other words, so far, we know
that the 2-boundary matrix has the form

∂
′

2 =

[
∂2 I

0 [?]

]

(15)

where the question mark is a matrix that has to be
determined. We have a constraint, however, that ∂′

1 ·
∂′

2 = 0. The upper-right block of the product ∂′

1 ·∂
′

2 is

∂1 · I + I · [?] (16)

and a solution that would make this expression equal
to zero is to take [?] = −∂1. In other words, we make
the ansatz

∂
′

2 =

[
∂2 I

0 −∂1

]

. (17)

Calculating each block by hand, we find that this guess
does indeed make ∂′

1 · ∂
′

2 = 0.

Equations (14) and (17) both have the same form but
with the dimensions incremented by 1. We can then
guess that, in general, all of the boundary matrices of
the cone space up to dimension n have the form

∂
′

k =

[
∂k I

0 −∂k−1

]

. (18)

Again, a rudimentary hand-computation by blocks
shows that ∂′

k · ∂′

k+1 = 0. To complete the construc-
tion, the final boundary matrix is

∂
′

n+1 = (−1)n
[
−I

∂n

]

. (19)

We will explain the sign convention below. These

two equations are the crux of the paper.

A few consequences of equations (18), (19) are then ap-
parent. First, the number of k-cells in cone(Ω) is equal
to the number of k-cells + the number of k−1-cells in

Ω. Second, while we have chosen particular signs for
the incidence numbers, we can flip these signs as we
see fit. For example, in the vertex-split transformation
we will write the n-boundary matrix as

∂
′

n =

[
∂n diag(∂n · 1)
0 −∂n−1 · diag(∂n · 1)

]

(20)

with an equivalent sign flip applied to the n + 1-
boundary matrix. Finally, we can write down a for-
mula for the boundary matrices of the suspension of
a space – the topological join with two isolated points
instead of one – in the same way:

∂
′

k+1 =

∂k I I

0 −∂k−1 0
0 0 −∂k−1

 (21)

and for the top cells

∂
′

n+1 = (−1)n

−I +I

+∂n 0
0 −∂n

 . (22)

Suspensions will appear again when we consider 2-3
flips of tetrahedra and multi-face retriangulation.

Before we proceed to the transformations themselves,
we should explain the sign convention in equation (19).
The sign of the final boundary matrix is ultimately ar-
bitrary – we can multiply on the right by any sign flip
and still preserve ∂∂ = 0. But we can pick a nor-
malization by the following argument. The standard
construction defines the boundary of a k-simplex ac-
cording to equation (10). But we can also construct
the simplex inductively as a cone space. A 0-simplex
is a single point, and a k + 1-simplex is the cone of
a single point and the k-simplex with boundary ma-
trices chosen according to equations (18) and (19).
Choosing the normalization factor (−1)n makes the re-
peated cone construction isomorphic to the positively-
oriented simplex through a sequence of permutations
and sign flips. With no normalization at all, the even-
dimensional simplices under the cone construction are
instead isomorphic to the standard construction but
with the opposite orientation.

4. TRANSFORMATIONS

Having written down the explicit formulas (18) and
(19) for the boundary matrices of a cone, we can then
apply them to define transformations.

4.1 Merging

A merge of a set of k-cells replaces them with a single
cell. Merging is a column operation on the matrix ∂k.
In the simplest case, the result column is the sum of

all the columns to be merged, but in general we might
need to flip some signs:

∂
′

k = ∂k · s, (23)

∂
′

k+1 = e
∗

i · ∂k+1. (24)

where ei is again the i-th standard basis vector and
the entries si of the vector s are all ±1. The signs
are chosen so that any higher-dimensional cell σ has
the same incidence with respect to any of the cells τ

to be merged. The transformation to the rows of ∂k+1

collapses all incidence to any of the desired k-cells into
incidence to the merged k-cell. For merging cells of top
dimension n, there are no higher-dimensional cells to
apply equation (24) to and this step is left out.

We can also write a merge as a bistellar move, in which
case the extended boundary matrices are:

∂
′

k =
[
−∂k ∂k · s

]
= ∂k ·

[
−I s

]
(25)

∂
′

k+1 =

[
∂k+1

e∗i ∂k+1

]

=

[
I

−e∗i

]

∂k+1 (26)

and the k + 2-boundary matrix, if any, is unaltered.

Edge collapsing, the key transformation in surface sim-
plification algorithms [2], is a merge of two vertices.

4.2 Vertex-splitting

A vertex-split divides the union of several polytopes
along a vertex. The key correctness criteria for this
operation are that (1) every newly-created polytope
contains the splitting vertex and (2) the boundary of
the sum of all polytopes does not change. This second
condition can be expressed mathematically as

∂
′

n · 1 =

[
∂n · 1
0

]

. (27)

The cells of the vertex split can be obtained as the
“top” of the topological cone of the original cells, so
equations (18) and (19) are applicable with some mod-
ifications. Boundary matrices ∂′

0 through ∂′

n−1 all
transform according to equation (18).

For dimension n, we want to do three things differ-
ently. First, the cone over a space has 1 higher dimen-
sion, but we want to transform a space to one of the
same dimension. We thus discard the n+1-th bound-
ary matrix from the cone when we form a vertex split.
Second, the cone over a space includes the space it-
self as a sub-complex, whereas we want to remove the
original polytopes. The resulting modification is that
we discard the lower- and upper-left blocks of ∂′

n from
the usual formula for cones. Finally, we want to pre-
serve the original boundary of the starting polytopes,
as specified in equation (27). The alteration to the
usual cone formula is to multiply ∂′

n on the right by

a

b

c

d A

a

b

c

d

e f

gh

A

B

C

D

∂1 =

[a b c d
− + 0
+ − 1

+ − 2
+ − 3

]

, ∂2 =

[A
+ a
+ b
+ c
+ d

]

∂
′

1 =

[a b c d e f g h
− + + 0
+ − + 1

+ − + 2
+ − + 3

− − − − 4

]

, ∂
′

2 =

A B C D
+ a

+ b
+ c

+ d

+ − e
− + f

− + g
− + h

Figure 3: Quadrilateral before and after splitting on a
new vertex in the center (top) and boundary matrices
before and after (bottom).

the diagonal matrix diag(∂n · 1). Putting all of these
together, we find that

∂
′

n ≡

[
∂n I

0 −∂n−1

]

·

[
0
I

]

︸︷︷︸

cut left
column

· diag(∂n · 1)
︸ ︷︷ ︸

preserve
boundaries

=

[
diag(∂n · 1)

−∂n−1 · diag(∂n · 1)

]

(28)

We can see that this choice of ∂′

n satisfies equation (27)
by using the fact that diag(z) · 1 = z for any vector z.

A final pruning step is necessary when we split the
union of more than one polytope. The vector ∂n · 1
will have zero entries along any interior faces. Conse-
quently, some n− 1-cells of the newly-generated com-
plex are not in the boundary of any n-cell. We can
then remove these zero rows from ∂′

n and columns from
∂′

n−1. Proceeding down by dimension, we remove any
row from ∂′

k that is all zeros and the corresponding
column from ∂′

k−1 for k = n− 1, . . . , 1.

Figure 3 illustrates the split transformation on a single
quadrilateral and shows the boundary matrices before
and after. The Bowyer-Watson algorithm for com-
puting Delaunay triangulations and all common al-
gorithms for computing convex hulls require only the
vertex-split transformation [1].

More transformations can be obtained by combining
splits and merges; figure 4 shows how to perform flips
in 2D and 3D.

4.3 Face-splitting

A face-split divides a polytope into several cells along a
collection of splitting faces. We assume that the initial

merge-2 split merge-2 merge-1

merge-3 split merge-3 merge-2

Figure 4: 2-2 and 2-3 flips implemented as sequences of
merges and splits. The vertex added in the split step is
deleted when the two edges are merged in the final trans-
formation. We’ve shown the tetrahedra in an “exploded”
view to help with visualization.

(a) (b) (c)

Figure 5: (a) An initial polygon. (b) Add separator cells,
shown in grey; the connected components are in teal and
orange. A path from a teal edge to an orange edge does
not have to pass through a grey edge, but it does have
to pass through one of its faces, i.e. a grey vertex. (c)
Split the polygon in two along the separator.

polytope is not incident upon the splitting faces. The
correctness criteria for this operation are that (1) each
new polytope is incident on the splitting faces and (2)
the boundary of the sum of all polytopes does not
change.

In order to be able to split the top cell, we
need to assume a certain connectivity structure be-
tween its faces. A k-path in Ω is a collection
{f0, s0, f1, s1, . . . , fm−1, sm−1, fm} such that si is a
k−1-face of both fi and fi+1 for each i. Given two col-
lections of k-cells F1, F2, we say that a third collection
of k-cells F is a separator for F1, F2 if any path from
a cell f1 in F1 to a cell f2 in F2 must pass through a
k−1-face s of some f in F . The definition is similar to
that of graph theory but with some important differ-
ences in the case of polytopal complexes. See Figure
5 for an illustration.

In order to be able to subdivide P into multiple cells,
we need to be able to partition its faces into two or
more groups {F1, . . . , Fm} with a common separator

F0. Moreover, we assume at first that [P, F0] = 0 and
[P, Fi] ̸= 0 for i ≥ 1. We can find separators and sub-
groups through a procedure analogous to breadth-first
search but with adjacency defined by sharing common
subfaces.

The n− 1-boundary matrix will have the form

∂n−1 =
[

[S, F0] [S, F1] · · · [S, Fm]
]

, (29)

where S denotes the set of all subfaces or n − 2-
dimensional cells contained in P , and

∂n =

0
[F1, P]

...
[Fm, P]

. (30)

The fundamental equation (5) then implies that

∑

i

[S, Fi] · [Fi, P] = 0. (31)

We will not alter the n − 1-boundary matrix at all,
only the n-boundary matrix.

Now we make the ansatz that the transformed n-
boundary matrix will have one column for each con-
nected component; each column will have one block for
the separator F0; and column k will have a non-zero
block for the corresponding component Fk. In all, the
new matrix will have the form

∂
′

n =

[F0, P1] · · · [F0, Pm]
[F1, P]

. . .

[Fm, P]

(32)

where the incidences [F0, Pi] need to be solved for.
The incidences [Fi, P] are the same as in the initial
polytope. If we can show that

∑

i[F0, Pi]1 = 0, then
the boundary of the new polytopes will be the same as
the old. To preserve the fundamental equation ∂∂ = 0,
we need that

[S, F0][F0, Pi] = −[S, Fi][Fi, P] (33)

for each i. We can then attempt to find a solution
of this collection of linear systems of equations. The
existence of a solution is not guaranteed a priori, but
if we can find one then it defines a valid subdivision of
the original cell. The system is also rectangular, so it
may be under- or over-determined depending on the
number of faces and subfaces. We can obtain a square
system by instead opting to solve

[S, F0]
∗[S, F0][F0, Pi] = −[S, F0]

∗[S, Fi][Fi, P]. (34)

We can compute solutions to integer linear systems by
first finding the Hermite normal form of the system

matrix [21]. Let [S, F0]
+ denote the pseudo-inverse of

this system or the matrix {[S, F0]
∗[S, F0]}

−1[S, F0] if
the system is solvable. Then

∑

i

[F0, Pi]1 =

− [S, F0]
+
∑

i

[S, Fi][Fi, P] (35)

which equals zero by equation (31), so indeed the new
polytopes have the same boundary as the old.

We can also look at this transformation as a bistellar
move. Both the old polytope and the new polytopes
are the common boundary of the n+ 1-polytope with
boundary matrices

∂
′

n =

0 [F0, P1] · · · [F0, Pm]
−[F1, P] +[F1, P]

. . .

−[Fm, P] +[Fm, P]

(36)

and ∂′

n+1 = 1. We then remove the n+1-dimensional
cell and the original n-cells.

Finally, observe that the size of the linear system (34)
is equal to the number of faces of the separator F0.
When there is only one face, the linear system reduces
to a scalar equation and questions about solvability
reduce to divisibility.

4.4 Tetrahedral mesh operations

The simplest topological transformations used in
tetrahedral mesh improvement are 2-3, 3-2, and 4-4
face flips [1]. These transformations work on a rela-
tively small number of tetrahedra at a time. Several
publications have argued that two families of trans-
formations, edge removal and multi-face removal, give
superior results for increasing common mesh quality
measures [5]. A third transformation, multi-face retri-
angulation, can be written as a composition of multi-
face removal followed by edge removal in order to re-
triangulate a polygon [6]. These transformations op-
erate on many more tetrahedra at a time, but are,
according to an author of a popular mesh generator,
“particularly tedious to implement” [8]. Here we show
how to implement these transformations on the linear
algebraic representation of the mesh.

Both transformations operate on tetrahedra that are
assumed to have special structure. The starting mesh
for multi-face removal is assumed to consist of a set of
triangles that are sandwiched between a pair of ver-
tices. The result is a set of tetrahedra that all meet
at a common central edge. Edge removal goes in the
opposite direction. In either case, we can observe that
the sandwich scenario is really the topological suspen-
sion of the filling, i.e. the join with two vertices. We

will exhibit both of these states as parts of the bound-
ary of a higher-dimensional polytope.

Let {∂0, ∂1, ∂2} be the boundary matrices of the filling
faces. We will take the cone of this polytopal complex
twice, which will lift it into 4D. The boundary matrices
of the first cone are

∂
′

1 =
[
∂1 I

−1
∗

]

, ∂
′

2 =
[
∂2 I

−∂1

]

, ∂
′

3 =
[
−I
∂2

]
(37)

and the boundary matrices of the iterated cone are

∂
′′

1 =

[
∂1 I I

−1
∗ +1

−1
∗

−1

]

, ∂
′′

2 =

[
∂2 I I

−∂1 I
−∂1 −I

−1
∗

]

,

∂
′′

3 =

[
−I +I
+∂2 +I

−∂2 −I
∂1

]

, ∂
′′

4 =
[

I
I

−∂2

]

. (38)

Notice the first two columns of ∂′′

3 , highlighted in or-
ange – these are identical to equation (22) for the top
boundary matrix of a suspension. In other words, the
starting state for multi-face removal and the ending
state of edge removal are both isomorphic to a sub-
complex of the iterated cone. The complement of these
tetrahedra, highlighted in teal, is the starting state of
edge removal and the final state of multi-face removal.
The column of ∂′′

1 corresponding to the edge that joins
the apices in the starting state of edge removal / end-
ing state of multi-face removal is highlighted in purple.

The fact that the end states of either operation are
both complementary components of the boundary of a
higher-dimensional polytope suggests an implementa-
tion strategy. First, find an isomorphism of the start-
ing tetrahedra with a subcomplex of the iterated cone.
Then remove the starting tetrahedra; the remainder
are the desired final state. If we take the original 2D
filling faces to be a single triangle, then the previous
equations give an alternative implementation of 2 ↔
3 face flips.

5. DEMONSTRATION

As a proof of concept, we developed a Python package
called zmsh which implements the transformations de-
fined above. The main external dependency is numpy
for matrix algebra and array operations. For geomet-
ric predicates, we compute determinants using interval
arithmetic; if the result interval contains zero, we try
again with exact rationals. We then implemented sev-
eral common algorithms in computational geometry
using the linear-algebraic representation of topologi-
cal transformations described in the previous section.

These transformations and algorithms are built
around a small core functionality. The two key data
structures are simplicial and polytopal topologies.
Functions for querying and operating on both data
types are in the modules simplicial and polytopal

respectively.

polytopal.Topology : An n-dimensional polytopal
topology is a list of n + 1 integer matrices. The
0th matrix is a row vector of all 1s. A topology
is considered valid if it obeys the fundamental re-
lation ∂∂ = 0, all its entries are between -1 and
+1, and the number of non-zero entries in every
column of ∂k is either 0 or ≥ k + 1.

simplicial.Topology : An n-dimensional simplicial
topology is an array with one row for every top
simplex and n+ 1 columns.

The condition on the number of non-zero entries in
each column for a polytopal complex is necessary to
ensure regularity.

The simplicial module includes routines for checking
that simplices are consistently oriented with respect
to each other. The remaining features are all in the
polytopal module.

closure : Given the integer IDs of a set of k-cells
{σα}, return the IDs of their immediate faces,
their faces’ faces, and so on.

subcomplex : Given the integer IDs of a set of cells
{σk

α} for each dimension k = 0, . . . , n, return the
boundary matrices corresponding to the subcom-
plex formed by these cells.

find isomorphism : Given a pair of complexes, return
the permutations and sign flips that transform
one into the other if they exist.

to simplicial : Given a polytopal complex, convert
it to a simplicial complex if possible. For each top
cell of the input complex, find an isomorphism
of the subcomplex consisting of this cell and its
closure to the boundary operators of the standard
simplex using the find isomorphism routine.

from simplicial : Given a simplicial complex, re-
turn the equivalent polytopal complex by assign-
ing cell IDs to all lower-dimensional simplices and
repeatedly applying equation (10).

join vertex Given a polytopal complex, return the
join with a single point (i.e. the cone) as shown
in equations (18) and (19).

join vertices Given a polytopal complex, return the
join with two points (i.e. the suspension) as
shown in equations (21) and (22).

The source code for the join vertex routine is shown
in Figure 6; the source code for the join vertices

function is similar. The main advantage of work-
ing with the linear-algebraic representation is that
many key routines are easy to implement and test.

1 import numpy as np
2

3 Topology = list[np.ndarray]
4

5 def join_vertex (D: Topology) -> Topology:
6 n = len(D) - 1
7 num_vertices = D[0].shape[1]
8 # Create the boundary matrices for 1 <= k < n

9 E = [ones((1, num_vertices + 1))]
10 for k in range(1, n + 1):
11 num_cells = D[k].shape[1]
12 num_sub_faces, num_faces = D[k - 1].shape
13 I = eye(num_faces)
14 Z = zeros((num_sub_faces, num_cells))
15 E_k = np.block([[D[k], I], [Z, -D[k - 1]]])
16 E.append(E_k)
17

18 # Create the top-dimensional boundary matrix

19 num_cells = D[n].shape[1]
20 I = eye(num_cells)
21 E_n = (-1) ** n * np.vstack((-I, D[n]))
22 E.append(E_n)
23

24 return E

Figure 6: Python source code for the split transforma-
tion. Lines 15 and 21 correspond to equations (18) and
(19) respectively.

The very concise source code for join vertex shown
here is an example. We do not claim that using
the linear-algebraic representation has superior per-
formance characteristics to the conventional approach
based on applying transformations directly to the sim-
plicial data type.

5.1 Convex hulls and vertex-split

The vertex-split transformation is the key compu-
tational kernel for computing convex hulls in any
dimension. The implementation of the vertex-split
transformation consists of a small modification of the
join vertex routine shown in Figure 6.

We used the vertex-split transformation to implement
a convex hull algorithm that works in arbitrary di-
mensions. To test the convex hull code, we used (1)
random point sets up to dimension 5 and (2) several
synthetic input sets with various degeneracies such as
coplanarity.

Our implementation of the convex hull algorithm takes
in a function as argument which supplies the procedure
for computing the signed volume predicate. Comput-
ing Delaunay triangulations is equivalent to comput-
ing the lower half of a convex hull of the input points
lifted to a paraboloid. We also implemented a Delau-
nay triangulation method which reuses our convex hull
algorithm by supplying an insphere function instead of
the usual signed volume function.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Test cases for splitting polygons along edges:
(a) nothing to split at all, (b) splitting along an edge, (c)
splitting along multiple edges, (d) nothing to split but
with a hanging face, (e) splitting along an edge but with
a hanging face, (f) straightforward split but with linearly
dependent columns of ∂1, (g) extraneous hanging edge,
(h) three-way split.

5.2 Constrained Delaunay triangulation
and face-split

The vertex-split transformation is sufficient for com-
puting convex hulls and unconstrained Delaunay tri-
angulations. Computing a constrained Delaunay tri-
angulation (CDT) requires merges and face-splits. We
follow the approach of [22] for computing CDTs. First,
we compute an unconstrained triangulation of the in-
put point set. We then add constrained edges one by
one. To add a constrained edge, we (1) merge all of the
triangles that contain it into one polygon and remove
any edges that cross the constrained edge; (2) add the
constrained edge, dividing this polygon in two; and (3)
retriangulating the remaining polygonal cavities in or-
der to maintain the constrained Delaunay property.

A significant complication that can arise when in-
serting constrained edges is the presence of hanging
edges of the polygonal cavity [1]. At the initial in-
sertion of the constrained edge and subsequent split-
ting of the polygonal cavity, we know that the sepa-
rator consists only of the constrained edge. At some
later step, the hanging edge will be connected by two
more edges and become part of the separator. So we
can assume that at least one face of the separator is
known from the outset, but at later stages we might
not know what the entire separator is. Our imple-
mentation uses a breadth-first search to identify the
entire separator from the starting faces. We then per-
form further searches to mark the remaining connected
components.

We first implemented the face-split transformation
and tested it on several cases including ones with hang-
ing edges. The test cases we chose are shown in Figure
7. Some of these cases should never show up in real
problems, but we check for them anyway in the inter-

0 1

2 3

4 5

Figure 8: The steps of the cavity retriangulation al-
gorithm. The hanging edge at the start and the non-
simplicial intermediate states are all representable as
boundary operators.

est of completeness. Case (h), with only two out of the
three separator edges known to start, is the scenario
where a hanging edge is incorporated into a CDT.

We then tested several realistic configurations for cav-
ity retriangulation. Figure 8 shows one such test case
from Figure 3.13 of [1]. This test case is a non-
convex cavity with a hanging edge. The algorithm
proceeds entirely by subdividing polygons into smaller
ones with no special cases to handle hanging edges be-
yond the breadth-first searches described above. By
contrast, the CavityCDT algorithm described in [1]
requires special cases to re-traverse hanging edges and
to delete triangles of the wrong orientation.

5.3 Multi-face retriangulation

We implemented part of the multi-face removal and re-
triangulation transformations described in [6]. These
transformations are assumed to operate on the sus-
pension of a set of filling triangles. In [6], the fill-
ing triangles are identified via a search procedure and
are then transformed into another triangulation of the
same polygon. Here we focus entirely on the transfor-
mation step and assume that we are given both the
filling triangles and the tetrahedra that they fill.

For multi-face re-triangulation, the goal is to take the
suspension S1 of a set of triangles and replace it with
the suspension S2 of a given set of triangles T2. The
Python source code for our implementation is shown in
Figure 9. The implementation is correct if it can find
an isomorphism between the boundary subcomplexes
of S1 and the suspension of T2.

For multi-face removal, the goal is to take the suspen-
sion S1 of a set of triangles T1 and (1) merge the tri-
angles of T1 into a single polygon P , (2) form the cone
of the cone of P , and (3) replace S1 with its comple-
ment in the iterated cone of P . The implementation
is correct if the original triangles are no longer present

in the final tetrahedralization, there is an edge con-
necting the apexes of the suspension, and if the two
boundaries are isomorphic. See Figure 10 for an illus-
tration. The source code is in Figure 9.

We evaluated the correctness of both procedures by
running a set of randomized test cases. To make the
inputs, we generate random triangulations of a poly-
gon of n vertices for n = 4, 5, . . . , 10. We then form
the suspension of these triangles and apply a random
permutation and sign flip. This permutation and sign
flip is included because, in realistic 3D meshes, it is
not generally the case that the triangular filling of a
set of tetrahedra that we wish to transform is coher-
ently oriented. In other words, two tetrahedra should
have opposite incidence to their common triangle, but
two triangles need not have opposite incidence to their
common edge. For multi-face retriangulation, we gen-
erate a second random triangulation of the same poly-
gon as the other input. Our implementations passed
all of the randomized tests according to the correctness
criteria outlined above for both problems.

The main takeaway here is that the transformation
code shown in Figure 9 is very concise and doesn’t
require deeply-nested loops with large bodies. These
routines do rely on other pre-defined library functions
such as procedures to compute the closure of a complex
and to find isomorphisms, but these procedures are
easy to specify and test in isolation.

5.4 Edge collapse

Finally, we implemented the edge collapse operation
used in mesh simplification [2]. This procedure is
error-prone enough on edge-based data structures that
some authors have resorted to using SMT solvers [23].
The source code is shown in figure 11.

An edge collapse merges two vertices v0, v1 into one.
We implemented this in three phases. First, we sum
the rows in ∂1 corresponding to v0 and v1 together;
call the merged vertex v∗. This step creates a host
of degeneracies. If we had a third vertex u and edges
e0 = ⟨u, v0⟩, e1 = ⟨u, v1⟩, then after this first step we
are left with two copies of the edge ⟨u, v∗⟩. From a
linear algebra perspective, the columns corresponding
to the two copies are scalar multiples of each other. In
the second phase, we apply column operations to ∂1

to remove such redundant edges and row operations to
∂2 to collapse any adjacency to the redundant edges
down to one remaining representative. We then repeat
this procedure at each higher dimension. This elim-
ination procedure is equivalent to a merge operation
but applied to the dual complex. Finally, we remove
any k-cells with fewer than k + 1 faces.

The results of the edge collapse operation on a sim-
ple and a less-simple case are shown in figure 12. The

1 import numpy as np
2 from numpy import flatnonzero as nonzero, count_nonzero
3 from zmsh.polytopal import (
4 closure, subcomplex, merge,
5 join_vertex, join_vertices,
6 find_isomorphism, Topology,
7)
8

9 def boundary_complex (T: Topology) -> Topology:
10 face_ids = nonzero(T[-1].sum(axis=1))
11 cell_ids = closure(T[:-1], face_ids)
12 return subcomplex(T[:-1], cell_ids)
13

14 def retriangulate (
15 S_1: Topology,
16 T_2: Topology,
17) -> Topology:
18 dS_1 = boundary_complex(S_1)
19 S_2 = join_vertices(T_2)
20 dS_2 = boundary_complex(S_2)
21 return S_2, find_isomorphism(dS_1, dS_2)
22

23 def multi_face_removal (
24 S: Topology, face_ids: list[int]
25) -> Topology:
26 # Merge the triangle filling into a polygon

27 cells_ids = closure(S[:-1], face_ids)
28 d_0, d_1, d_2 = subcomplex(S[:-1], cells_ids)
29 interior_edge_ids = \
30 nonzero(count_nonzero(d_2, axis=1) == 2)
31 s = merge(poly, interior_edge_ids)
32 d_2 = (d_2 @ s).reshape((-1, 1))
33

34 # Form the iterated cone of the polygon and

35 # return the complement of its suspension

36 cone = join_vertex([d_0, d_1, d_2])
37 f_0, f_1, f_2, f_3, f_4 = join_vertex(cone)
38 return [f_0, f_1, f_2, f_3[:, 2:]]

Figure 9: Source code for multi-face retriangulation and
multi-face removal.

first case is straightforward and produces well-shaped
triangles. In the second case, we can compute the col-
lapsed topology, but the resulting geometry is invalid
because it introduces triangles of zero or negative area.
Mesh simplification algorithms have to detect and re-
ject these cases [2].

6. CONCLUSION

Doubly-connected edge lists have historically been
popular for mesh generation because they offer a sim-
ple interface for traversing the topology [24]. Here we
propose that boundary operators are a viable choice
of representation if the goal is to perform topological
transformations. This idea has appeared before, for
example in the work of DiCarlo and others [9].

Boundary operators are only necessary for represent-
ing a small patch of the topology at a time. Once the
transformed patch is computed, it can be translated
back to a set of simplices. We adopted this approach
in our implementation of each of the algorithms de-
scribed above. Boundary operators are useful for de-

Figure 10: A randomly-generated triangulation of a poly-
gon, its suspension, and the interior facets after multi-
face removal / edge insertion.

1 def edge_collapse (
2 D: Topology, vertex_ids: int
3) -> Topology:
4 # Form the matrix for the initial edge collapse

5 P = np.eye(D[1].shape[0], dtype=np.int8)
6 P[np.ix_(vertex_ids, vertex_ids)] = \
7 np.array([[1, 1], [0, 0]])
8

9 # Remove redundant and empty cells

10 E = [D[0].copy(), P @ D[1], *D[2:]]
11 for k in range(1, n := len(D) - 1):
12 A, B = make_reduction_matrices(E[k])
13 E[k], E[k + 1] = E[k] @ A, B @ E[k + 1]
14

15 empty_cell_ids = \
16 nonzero(count_nonzero(E[-1], axis=0) <= n)
17 E[-1] = np.delete(E[-1], empty_cell_ids, axis=1)
18 return E

Figure 11: The source code the edge collapse trans-
formation. The routine make reduction matrices (not
shown) forms the row and column operations to remove
redundant cells.

scribing non-simplicial intermediate states of a trans-
formation; they are not space-optimal for describing
an entire simplicial complex.

We focused here on serial algorithms to produce a sim-
plicial mesh. The transformations that we defined here
are also applicable to hex or poly meshing. Moreover,
large-scale 3D finite element analysis requires the mesh
to be decomposed into subdomains that are then dis-
tributed to different processes. The connectivity be-
tween these subdomains does not necessarily have a
simplicial or cubical structure. We can then describe
the overall topology hierarchically – a simplicial rep-
resentation inside a domains and a polytopal complex
between domains.

We showed how to implement two common topological
operations for tetrahedral mesh improvement. These
operations assume a particular structure for the tetra-
hedra that they operate on. The small polyhedron re-
connection (SPR) approach, on the other hand, works
on any set of input tetrahedra at the cost of a more
expensive search step [8]. The linear-algebraic repre-
sentation might be able to accelerate SPR by instead
bisecting cavities into smaller polytopes that only be-

(a) (b)

(c) (d)

Figure 12: Edge collapsing before (a) and after (b) in
the ideal case. In a bad case (c) we can compute the
topology but the resulting geometry is always invalid (d).

come simplicial by the end. The branch and bound
procedure over polytopes might be faster or easier to
implement than its counterpart over tetrahedra.

We evaluated our code correctness by testing that we
could compute convex hulls, Delaunay triangulations,
etc. We did not give formal proofs that each oper-
ation is guaranteed to result in a topologically valid
end state. For example, applying the face-split trans-
formation assumes that a certain integer linear system
is solvable. Are there cases where this system has ei-
ther no solution or multiple solutions but the polytope
is splittable? Are there cases where the system has a
unique solution but not one that produces the desired
final topology? We found empirically that the linear
system was solvable in all the cases that we tried and
gave the expected results. But an interesting future di-
rection would be to use formal methods to verify these
transformations using established results, for example
on total unimodularity of boundary matrices [25].

When the objects of study can be represented as linear
operators, we can apply linear algebraic reasoning to
define transformations and verify that they preserve all
of the important invariants. The condition in equation
(5) that the product of two boundary operators is zero
is a powerful invariant for ensuring the validity of the
underlying topology.

ACKNOWLEDGEMENTS

Thanks to Matt Knepley, Tobin Isaac, Mauricio del
Razo, and Leila de Floriani for many helpful discus-
sions.

References

[1] Cheng S.W., Dey T.K., Shewchuk J. Delaunay
mesh generation. CRC Press Boca Raton, 2013

[2] Guéziec A. “Surface simplification with vari-
able tolerance.” Second Annual Symposium on
Medical Robotics and Computer Assisted Surgery,
1995. 1995

[3] Mattson T., Bader D., Berry J., Buluc A., Don-
garra J., Faloutsos C., Feo J., Gilbert J., Gonzalez
J., Hendrickson B., et al. “Standards for graph
algorithm primitives.” 2013 IEEE High Perfor-
mance Extreme Computing Conference (HPEC),
pp. 1–2. IEEE, 2013

[4] Freitag L.A., Ollivier-Gooch C. “Tetrahedral
mesh improvement using swapping and smooth-
ing.” International Journal for Numerical Meth-
ods in Engineering, vol. 40, no. 21, 3979–4002,
1997

[5] Klingner B.M., Shewchuk J.R. “Aggressive tetra-
hedral mesh improvement.” Proceedings of the
16th international meshing roundtable, pp. 3–23.
Springer, 2008

[6] Misztal M.K., Bærentzen J.A., Anton F., Erleben
K. “Tetrahedral mesh improvement using multi-
face retriangulation.” Proceedings of the 18th
international meshing roundtable, pp. 539–555.
Springer, 2009

[7] Hu Y., Zhou Q., Gao X., Jacobson A., Zorin D.,
Panozzo D. “Tetrahedral meshing in the wild.”
ACM Trans. Graph., vol. 37, no. 4, 60, 2018

[8] Marot C., Verhetsel K., Remacle J.F. “Reviv-
ing the search for optimal tetrahedralizations.”
Proceedings of the 28th International Meshing
Roundtable. Zenodo, Buffalo, New York, USA,
2020

[9] DiCarlo A., Milicchio F., Paoluzzi A., Shapiro
V. “Solid and physical modeling with chain com-
plexes.” Proceedings of the 2007 ACM symposium
on Solid and physical modeling, pp. 73–84. 2007

[10] Mueller-Roemer J.S., Altenhofen C., Stork A.
“Ternary sparse matrix representation for vol-
umetric mesh subdivision and processing on
GPUs.” Computer Graphics Forum, vol. 36, pp.
59–69. Wiley Online Library, 2017

[11] Paoluzzi A., Shapiro V., DiCarlo A., Furiani F.,
Martella G., Scorzelli G. “Topological comput-
ing of arrangements with (co) chains.” ACM
Transactions on Spatial Algorithms and Systems
(TSAS), vol. 7, no. 1, 1–29, 2020

[12] Gelfand S.I., Manin Y.I. Homological algebra,
vol. 38. Springer Science & Business Media, 1994

[13] Gawrilow E., Joswig M. “Polymake: a frame-
work for analyzing convex polytopes.” Poly-
topes—combinatorics and computation, pp. 43–
73. Springer, 2000

[14] Björner A., Lutz F.H. “Simplicial manifolds,
bistellar flips and a 16-vertex triangulation of
the Poincaré homology 3-sphere.” Experimental
Mathematics, vol. 9, no. 2, 275–289, 2000

[15] Effenberger F., Spreer J. “simpcomp: a GAP
toolbox for simplicial complexes.” ACM Commu-
nications in Computer Algebra, vol. 44, no. 3/4,
186–189, 2011

[16] Hatcher A. Algebraic Topology. Cambridge Uni-
versity Press, 2002

[17] Massey W.S. A basic course in algebraic topology,
vol. 127. Springer, 2019

[18] Pachner U. “Shellings of simplicial balls and pl
manifolds with boundary.” Discrete mathematics,
vol. 81, no. 1, 37–47, 1990

[19] Pachner U. “PL homeomorphic manifolds are
equivalent by elementary shellings.” European
Journal of Combinatorics, vol. 12, no. 2, 129–145,
1991

[20] Casali M.R. “A note about bistellar operations on
PL-manifolds with boundary.” Geometriae Dedi-
cata, vol. 56, no. 3, 257–262, 1995

[21] Kannan R., Bachem A. “Polynomial algorithms
for computing the Smith and Hermite normal
forms of an integer matrix.” siam Journal on
Computing, vol. 8, no. 4, 499–507, 1979

[22] Anglada M.V. “An improved incremental algo-
rithm for constructing restricted Delaunay trian-
gulations.” Computers & Graphics, vol. 21, no. 2,
215–223, 1997

[23] Papadakis M., Bernstein G.L., Sharma R., Aiken
A., Hanrahan P. “Seam: Provably safe local edits
on graphs.” Proceedings of the ACM on Program-
ming Languages, vol. 1, no. OOPSLA, 1–29, 2017

[24] Guibas L., Stolfi J. “Primitives for the manipu-
lation of general subdivisions and the computa-
tion of Voronoi diagrams.” ACM transactions on
graphics (TOG), vol. 4, no. 2, 74–123, 1985

[25] Dey T.K., Hirani A.N., Krishnamoorthy B. “Op-
timal homologous cycles, total unimodularity,
and linear programming.” Proceedings of the
forty-second ACM symposium on Theory of com-
puting, pp. 221–230. 2010

