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Abstract

The generation of meshes and mesh-based parametrizations

for given geometric domains is a cornerstone of modeling and

analysis. Of particular interest in this context are spaces

of increased smoothness, in terms of the continuity order

across elements. We describe a method to, by means of

higher-order mesh generation, construct a parametrization

of 2D shapes with curved boundaries, with a focus on

C
1-continuity. Different from previous work, this method

guarantees the absence of inversions or degeneracies as well

as exact conformance to the given polynomial boundary.

It leverages recent results on higher-order triangle mesh

generation with guaranteed quality bounds. These bounds

enable us to formulate an optimization problem aiming for

continuity while maintaining validity.

1 Introduction

In the context of meshing of planar freeform shapes,
the use of higher-order elements is of notable interest
[40, 1, 24, 35, 10, 20, 21]. The input is a shape described
by a piecewise polynomial or rational boundary curve.
Mesh generation methods then focus on creating meshes
with specific properties, including element regularity
(i.e. absence of degeneracies or inversions), element
shape quality, and exact or approximate boundary
conformance (i.e. interpolation of the boundary).

An additional property of interest in this context
is smoothness. Concretely, we are concerned here with
C1-continuity across the mesh’s elements. Continuity
beyond C0 plays an important role in isogeometric
analysis [12, 37, 11, 39, 3]. C1-continuous higher-order
meshes can yield numerical advantages over methods
relying on C0 inter-element continuity in finite element
analysis. These benefits are evident in various aspects,
notably through the enhancement of convergence rate
per degree-of-freedom (DOF) [5] and improvements in
numerical efficiency and accuracy, in areas including
structural analysis [4, 6], fluid simulation [2], shape
optimization [25, 26, 18], and deformation [17].

A mesh of (higher-order) planar triangles that join
C1-continuously effectively provides a global C1-smooth
parametrization for the underlying shape. In this sense
the problem of boundary conforming C1-mesh genera-
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tion can also be viewed as the problem of computing
C1-smooth (piecewise polynomial) parametrizations of
2D freeform shapes over polygonal domains, see fig. 1.

1.1 Challenges Generating meshes that are regular,
conforming, and C1 proves difficult. Even the simpler
problem of generating meshes that are just regular and
conforming has found first solutions with success guar-
antee only recently [20, 21]. This difficulty is exacer-
bated by the fact that the problem can be infeasible,
achieving C1-continuity globally (in addition to regu-
larity and conformance) can be impossible. At least
at some boundary points (exceptional points) one may
have to accept C0-continuity, as illustrated in fig. 2.
Furthermore, a trade-off in favor of lower parametric
distortion may require additional exceptional points be-
yond those strictly necessary. The necessity of choosing
these points, their number and location, adds to the
complexity of the problem.

Our method aims to establish C1-continuity as
broadly as possible, leaving only a small (if not minimal)
number of exceptional points. To this end an important
feature is that the method considers the parametric
domain’s shape a variable, up for optimization, so
as to enable establishing a smoothness-accommodating
domain.

Figure 1 underlines the complexity of the problem:
Effectively, besides finding a regular conforming higher-
order triangle mesh for the given shape (center), a
domain polygon (right) needs to be determined that
admits a regular conforming linear triangulation that
is structurally identical to the curved triangle mesh,
and the per-triangle maps from linear triangle to curved
triangle need to join C1-continuously. Together this
forms a problem with numerous coupled degrees of
freedom and complex constraints.

2 Related Work

In this section, we review previous work on the prob-
lems of higher-order mesh generation and higher-order
piecewise parametrization, focusing particularly on the
properties of regularity and C1-continuity.

2.1 Regular, not C1-continuous Many methods
are available to generate 2D higher-order meshes of
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Figure 1: Given a freeform shape, formed by polynomial boundary curves (left), our method is able to compute a
parametrization Φ (as indicated by a grid of iso-curves) over a suitably determined polygonal domain (right). The
resulting parametrization is piecewise polynomial (based on a suitably generated higher-order mesh, center) and
is guaranteed to be bijective and of bounded distortion. Furthermore, it is C1-smooth almost everywhere; around
some exceptional boundary points (highlighted in green) degradation to C0-continuity is partially inevitable.

polynomial triangles with a particular focus on regu-
larity. One class of methods, indirect methods, start
by generating a linear mesh of straight-edge elements,
which is then elevated to higher order and progressively
deformed towards boundary conformance [10, 7, 29, 34,
8, 28]. By testing for regularity violations during defor-
mation, regularity can be maintained. Achieving con-
formance, however, is not guaranteed.

In contrast to these, a few approaches offer direct
higher-order triangulation with guarantees on regularity
and conformance [20, 21], i.e. curved mesh edges exactly
interpolate the shape boundary with zero approxima-
tion error. Further guarantees concerning bounded dis-
tortion are also available [21], and extensions to rational
triangles have been described [38, 15].

None of these regularity-focused approaches con-
sider the smoothness of the resulting mesh, only C0-
continuity is established.

Figure 2: The parametrization of a shape with smooth
boundary (left) over a domain with non-smooth bound-
ary (right) cannot be globally C1-continuous. At least
at the spots (green) where a smooth boundary point
is in correspondence with a non-smooth corner point,
continuity must degrade to C0 (or the parametrization
must degenerate).

2.2 C1-continuous, not Regular A number of ar-
ticles address the challenge of generating 2D triangular
meshes that offer higher continuity. Qian et al. present
methods to generate such meshes for freeform shapes,
focusing on ensuring Cr-continuity while minimizing the
distortion of the higher-order elements [12, 36]. Their
approach utilizes macro-element constructions, such as
the Clough-Tocher and Powell-Sabin schemes, subdivid-
ing an initial mesh into smaller triangle elements. Sim-
ilarly, Xia et al. [37] propose a method based on such
schemes, with an emphasis on rational elements.

By default, these schemes lead to the desired con-
tinuity in the interior, but to only C0-continuity along
the boundary. The above works suggest a modification
of the underlying parametric domain mesh, straighten-
ing the boundary, so as to raise this to higher continuity
in most places. However, no algorithm nor a generally
applicable recipe for manual execution of such a modi-
fication is described.

Importantly, none of these continuity-focused meth-
ods offer any guarantee regarding the regularity of
the resulting meshes—the employed macro-element con-
structions provide no means to control this prop-
erty. Consequently, the resulting parametrization, while
smooth (in the interior), may be non-injective.

2.3 Approximately C1-continuous As satisfying
continuity conditions is a challenge and may require
hard trade-offs with other quality aspects, some research
efforts aim at relaxing these conditions, trading off strict
continuity for better overall geometric quality or lower
computational cost [19, 22]. The notion of approximate
continuity, ε-C1, can be defined, requiring adjacent ele-
ments to meet with the deviation of derivatives bounded
by ε. However, such concepts have mainly been used for
tangent continuity of 3D surface patches rather than for
parametric continuity in planar configurations.
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Figure 3: Domains (left) and images (right) of two
adjacent Bézier triangles (n=3). Control nets are shown
dashed, control points pij as dots.

3 Overview

In this section, after providing essential background
definitions, we formalize the problem setting and outline
our approach to address this problem.

3.1 Preliminaries Our discussion centers on poly-
nomial elements. We represent these in the Bernstein
basis. Hence, we start by defining 2D Bézier curves and
2D Bézier triangles, being fundamental to our method.

Definition 1. (Bézier Curve) Given control points
p0, . . . ,pn ∈ R2, a 2D (polynomial) Bézier curve c is
defined by a univariate geometric map ϕ ∶ [0,1]→ R

2,

ϕ(t) =
n

∑
i=0

piB
n
i (t),

where Bn
i (t) are the Bernstein polynomials of degree n.

Definition 2. (Bézier Triangle) A 2D Bézier tri-
angle t represented by a bivariate geometric map
ϕ(u, v) ∶ → R

2 of order n is defined by its control
points (forming its control net) pij ∈ R2, (i, j ≥ 0, i+j ≤
n) as

ϕ(u, v) = ∑
i+j≤n

pijB
n
ij(u, v),

where Bn
ij(u, v) are the triangular Bernstein polynomi-

als and = {(u, v) ∣ u, v ≥ 0, u+v ≤ 1} denotes a unit
triangular domain.

Note that via pre-composition with an affine map,
these geometric maps can also be expressed over any
other straight-edge triangle domain instead of the unit
triangular domain (see fig. 9).

These geometric maps, being polynomial, are C∞.
When considering not a single triangle but a mesh of
triangles, its triangles’ geometric maps join at the edges
and vertices (see fig. 3). A join is C1 if the geometric
maps as well as their derivatives agree on the edges
and vertices. In fig. 4, we show a comparison of a
shape meshed with C0 (left) and C1 (right) continuity.
C0-continuity merely requires that adjacent triangles
(with adjacent domains) share identical control points

Figure 4: Comparison between a C0 (left) and a
C1-continuous (right) parametrization of a shape, both
defined by the combined geometric maps of conforming
curved triangle meshes. Shown is a grid of iso-u and
iso-v curves. On the left, notice the prominent kinks in
the isocurves.

along their common edge (as in fig. 3), guaranteeing
continuity of the combined map’s value across the edges.
This implies that iso-curves continue across edges, but
commonly with hard kinks. Conversely, in the case of
C1-continuity, in addition adjacent triangles also exhibit
agreeing partial derivatives at shared edges and vertices,
resulting in smooth transitions without kinks.

3.2 Problem Statement The problem that we ad-
dress is formally defined as follows:

Input: We assume a 2D shape Ω whose boundary
is represented by a set of Bézier curves of order n, de-
noted as C = {c1,⋯,cm}. These input curves are as-
sumed to be regular (i.e. with non-vanishing derivative),
to intersect only at their endpoints, and to not meet
at a zero angle. Besides curves forming a closed shape
boundary, the set may contain additional internal curves
representing features or interfaces to be respected.

Output: The goal is to generate a higher-order
triangular mesh, denoted as T = {ti}, consisting of
curved triangles ti. These triangles are defined by
a combined geometric map Φ ∶ Ω̂ → Ω over a 2D
parametric domain Ω̂. This map Φ = ∪iφi consists of
per-triangle geometric maps φi that map straight-edge
triangles t̂i ∈ Ω̂ onto curved triangles ti ∈ Ω. The desired
properties of the output mesh include:

• Conformance: The boundary of Ω, ∂Ω, is the image
of the boundary of Ω̂ under the mapping Φ, i.e.
Φ (∂Ω̂) = ∂Ω.

• Regularity: Map Φ is regular within Ω̂, there are
no degeneracies or inversions, i.e. detΦ > 0.

• Continuity: Map Φ is close to being globally C1-
continuous on Ω̂.

While T = {tk} denotes the mesh of curved triangles
tk in shape space, with sets of control points {pij}, we
use T̂, t̂k to refer to the corresponding entities in the
domain space, cf. fig. 8
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shape mesh domain mesh shape mesh domain mesh shape mesh domain mesh

Figure 5: Method overview. Left: Initial triangulation: The input shape (red) is initially triangulated with
regular conforming higher-order elements, such that their linearized versions form a valid domain mesh. Center:
In a broad phase, both meshes are deformed through a coupled optimization process, resulting in the reduction of
exceptional vertices (corners on the domain mesh boundary). Right: Accepting the exceptional vertices (here three
green points) and fixing the flatness of the others enables further improvement in a second round of optimization.

3.3 Approach The main steps of our approach are
outlined in fig. 5. We start by giving a brief ap-
proach overview, before section 4 provides details. First,
our method generates an initial higher-order triangula-
tion T for the given shape using the method proposed
in [21]. This triangulation is guaranteed to be regular
and conforming—but only C0. Subsequently, we cre-
ate a compatible domain mesh T̂, initially obtained as
a linearized version of T. We then modify this pair
(T, T̂) towards C1-continuity, by means of an optimiza-
tion approach, while maintaining regularity and confor-
mity. The optimization iteratively adjusts the geometry
of the shape mesh T as well as the domain mesh T̂, in
two phases. We note that considering not only T (by
means of its inner control point positions p) but also T̂

(by means of its vertex positions v̂) a variable in this
process is crucial for achieving a low number of excep-
tional boundary points.

Phase One: Broad-Phase. Both the shape mesh
and the domain mesh are deformed by adjusting the
control points of the shape mesh and the vertices of the
domain mesh. Boundary control points remain fixed,
so as to preserve conformance, and the deformation is
constrained to preserve regularity.

The main driving force of this deformation pro-
cess is achieving C1-continuity across edges, which de-
pends on the shape mesh’s control points and the do-
main mesh’s vertices. A particular role is played by the
boundary vertices, each of which may initially form a
corner or a flat constellation, as an uncontrollable result
of the initial mesh generation (fig. 5 left). As shown in
fig. 2, a map from a corner to a flat (or smooth) bound-
ary point (or vice versa) cannot be C1. Hence, aiming
for C1-continuity will cause the domain mesh’s bound-
ary vertices to relocate into the necessary corner/flat
constellations, as mandated by the shape boundary, to
the extent possible (fig. 5 center). This underlines the
importance of assuming a variable domain.

Phase Two: Fine-Tuning Not all boundary vertices
may reach the desired corner/flat state, as this may
be infeasible (see fig. 2) or only achievable under ex-
treme parametric distortion. Those boundary vertices
not in the desired state after phase one are identified
and classified as exceptional vertices (green points in
fig. 5 right). The other boundary vertices (blue) are
ensured to be perfectly flat. With these states fixed ac-
cordingly, we proceed with another round of optimiza-
tion. This time C0-continuity at the exceptional points
is accepted and the optimization can focus on instead
fine-tuning distortion and C1-continuity where it is ac-
tually achievable, i.e. everywhere else.

Remark Let us remark that it is crucial to maintain
bounded mapping distortion during the deformation
process. Otherwise it can be energetically cheaper to
bring the mesh into near-degenerate states than to
properly modify the domain, as illustrated in fig. 6.

Domain Mesh Shape Mesh

Figure 6: Top: When not enforcing a bound on map-
ping distortion, a near-degeneracy may evolve where a
corner is mapped to a smooth boundary point, effec-
tively hiding the C1 violation. Bottom: When main-
taining a bound, instead the corner is driven towards a
flat state when aiming for C1-continuity.
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4 Method

To provide a comprehensive description, we start by re-
viewing the initial higher-order triangulation approach.
Next, we delve into our optimization algorithm, detail-
ing its key components, including the objective function
and constraints. Following this, we present the com-
plete optimization algorithm, illustrating how it exploits
these components to achieve the desired result.

4.1 Initial Triangulation As starting point we gen-
erate a higher-order shape mesh that is regular and con-
forming to the curves given as input – without regard
for continuity. A few mesh generation methods offer
these properties in a guaranteed manner [20, 21, 38]. We
pick the method by Mandad and Campen [21], because
it allows prescribing an upper bound on mesh element
distortion, in particular in terms of the MIPS distor-
tion measure [9, 32]. This is beneficial towards being
able to maintain low distortion during our optimization
process, so as to prevent the issue illustrated in fig. 6.

This mesh generation method first constructs a
layer of curved triangular warp elements that cover
the input curves (see fig. 7 left). These elements are
constructed such that they conform to the curves while
their inner edges are linear. By means of a constrained
Delaunay triangulation, constrained by these edges, a
mesh of linear triangles is then constructed. Those of
its triangles that lie inside a warp triangle are then
deformed according to the warp triangle’s geometric
map, turning the linear mesh into a higher-order mesh
that conforms to the input shape (see fig. 7 right) [21].

Importantly, the thus generated initial higher-order
shape mesh T possesses a known valid corresponding
linear domain mesh T̂. While it is tempting to simply
use the linearized version of T (with triangles spanned
by the curved triangle’s corner points) as T̂, this mesh
may exhibit degeneracies or overlaps. The above De-
launay triangulation before applying the warp deforma-

Figure 7: Initial triangulation process: The input
curves (red) are covered with curved warp elements
(left). Then a linear mesh is constructed, constrained
by these elements’ straight edges. Triangles lying inside
a warp element (orange) are then warped into a curved
boundary conforming state (right).

tion, however, is valid by construction and can thus
be used as T̂ (generally or as fallback). Defining the
curved shape mesh triangles over these domain trian-
gles, their geometric maps φi therefore together form a
C0-parametrization Φ of the shape over the domain.

Note that this map Φ restricted to the non-warp
region is actually the identity. This is because shape
mesh triangles in this region are identical with their
domain mesh counterparts by construction. Hence, in
this region the map is already C1-continuous (even C∞).
Concretely, we already have the desired C1-continuity
where these linear elements join (black in fig. 7 right).
Across edges (and vertices) that are incident to at least
one warp-affected triangle, however, the map is only
guaranteed to be C0 (orange in fig. 7 right).

We accordingly categorize the edges:

• Soft edges ET

S
: Interior edges of T that are incident

to at least one warped triangle, as indicated in
orange in fig. 7 right.

• Hard edges ET

H
: Interior edges of T that are

incident to only non-warped triangles, as indicated
in black in fig. 7 right.

4.2 Optimization Components Starting from the
above initial configuration (T, T̂), the central goal
of our method is to adjust it so as to achieve C1-
continuity also at the soft edges, while maintaining
it at the hard edges. Therefore, in our optimization
strategy, we impose C1-maintaining constraints at hard
edges and C1-promoting objective terms at soft edges.
Additional constraints ensure that conformance and
bounded distortion are maintained. The importance
of the latter is illustrated in fig. 6. Note that these
distortion constraints imply preservation of regularity.
Finally, as all these constraints still leave a potentially
large space of minimizers, we further add a regularizing
term, favoring low distortion relative to the initial state.

Below, these ingredients are described in detail and
then combined in an overall optimization strategy.

C1-Energy for Soft Edges For an inner directed soft
edge e = (v0,v1) of initial triangulation T, consider the
two adjacent triangles t = {pij} and t′ = {p′ij} in T

sharing this edge. Correspondingly, t̂ = △(v̂0v̂1v̂2) and
t̂′ = △(v̂1v̂0v̂3) represent the domain mesh triangles
in the parameter space, as illustrated in fig. 8. Let
γ = {γ0, γ1, γ2} be the barycentric coordinates of v̂3

with respect to triangle t̂. The join of t and t′ across
the common edge e is C1 if [12]:

1. p′
0(n−i) = p0i (0 ≤ i ≤ n), i.e. the positions

of corresponding control points along the edge e
match, ensuring C0-continuity.
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Figure 8: Two Bézier triangles sharing an edge. It is
assumed that their control points are indexed such that
the shared edge is the first edge in each triangle. C1-
continuity across the shared edge is given iff the second
row control points in the green triangle (indicated by
cross points) lie at specific positions implied by the
control points of the first and second row in the blue
triangle.

2. p′
1(n−i−1) = γ0p0i + γ1p0(i+1) + γ2p1i (0 ≤ i ≤ n − 1),

i.e. the control points p′
1(n−i−1) of t

′ match a specific
affine combination of neighboring control points
of t, with coefficients {γ0, γ1, γ2}.

Based on this, we introduce C1-continuity devia-
tion De ≥ 0 per e ∈ ET

S
, such that De = 0 implies a

C1-smooth join of the triangles incident to e. It is de-
fined as follows:

• p×
1(n−i−1) = γ0p0i+γ1p0(i+1)+γ2p1i (0 ≤ i ≤ n−1), is

the expected position of the control point p′
1(n−i−1).

• de,i = ∥p′1(n−i−1) − p×1(n−i−1)∥2 is the Euclidean dis-

tance between the current position of a control
point and its expected position.

• De aggregates the deviations de,i along e, providing
an indication of how well the current configuration
of edge e aligns with the expected one. Concretely,

(4.1) De = ∑
0≤i≤n−1

de,i.

With this, the total C1-continuity objective term, which
serves as an indicator of the smoothness along the soft
edges ET

S
is expressed as:

(4.2) Es = ∑
e∈ET

S

De.

Note that this term depends on both the shape
mesh T (via p) and the domain mesh T̂ (via γ).

Regularizer To facilitate the formulation of the regu-
larizer over the mesh T = {ti}, we define the following
terms, as illustrated in fig. 9:

• Mij = [aij ,bij] is the matrix formed by control
vectors aij = p(i+1)j − pij and bij = pi(j+1) − pij

at control point pij ,

Figure 9: The transformation function φ, which maps
a triangle t̂ in domain space to a curved triangle t

in shape space, can be considered as composition of
two mappings: φ = ϕ ○ ψ−1. The first mapping, ψ−1,
transforms the domain triangle to the unit triangle,
while the second, ϕ, is a Bézier triangle map. The
indicated vectors 1

n
a, 1

n
b and aij , bij are employed in

formulating our regularizer.

• M̂ = 1
n
[a,b] is the matrix formed by the corre-

sponding control vectors in the linear domain tri-
angle, where a = v̂1 − v̂0 and b = v̂2 − v̂0 represent
two edge vectors of t̂ in their pre-optimization state,

• Rij = ∥Jij∥2F +∥Jij
−1∥2

F
, with Jij =MijM̂

−1, then ef-
fectively measures the local deviation of the shape
triangle control net from the domain triangle con-
trol net, in the style of the symmetric Dirichlet en-
ergy [27, 33].

With this and the area At = 1
2
∥a × b∥2 of t̂, a per-

triangle notion of deviation can be defined as Et

reg =
At∑i+j<nRij . Aggregating this over all triangles ti in
the mesh T provides an overall deviation measure

(4.3) Ereg = ∑
ti∈T

Eti
reg,

which we employ as regularizing objective term.

C1-Constraint for Hard Edges In section 4.1 we
highlighted that the initial triangulation method yields
C1-continuity across the set of hard edges, shared by
linear triangles. To preserve C1-continuity along these
edges throughout the deformation process, we introduce
constraints based on (4.1):

(4.4) de,i = 0 ∀e ∈ ET

H,0 ≤ i ≤ n − 1.

Note that these are satisfied initially by construction.

Distortion Constraint In our approach it is impor-
tant that triangles remain within a specified range of
distortion during the deformation process. To establish
this, we utilize the (pointwise) definition of MIPS distor-

tion [9], defined as ∥Jφ∥2 det(Jφ)−1, where φ is the map
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of a triangle (see fig. 9). Its maximum over triangle t is
bounded from above by

max
(u,v)∈t̂

∥Jφ∥2 / min
(u,v)∈t̂

det(Jφ),

which in turn is bounded from above by g(t) =
maxi ni/mini di, where ni and di are the Bernstein co-

efficients of ∥Jφ∥2 and det(Jφ), respectively, for which
closed form expressions are available [21]. Based on this,
we define distortion bounding constraints as

(4.5) g(t) ≤ αµ ∀t ∈ T.
Here, µ denotes an upper bound of the initial MIPS
distortion, and the factor α > 1 determines the amount
of “wiggle room” provided for deformation. Note that
for any choice α ≥ 1 these constraints are satisfied ini-
tially. These constraints ensure that the mesh elements’
distortion does not exceed αµ throughout the optimiza-
tion process.

4.3 Optimization Strategy Based on the above in-
gredients, objective terms (4.2) and (4.3) and con-
straints (4.4) and (4.5), we formulate the following over-
all optimization problem:

min Es + λregEreg(4.6a)

s.t. g(t) ≤ αµ, ∀t ∈ T(4.6b)

de,i = 0, ∀e ∈ ET
H , i(4.6c)

∂Ω = fixed,(4.6d)

where λreg > 0 is a small prefactor for the regulariz-
ing term. The latter constraint implies that during
the deformation process, the boundary of the shape,
∂Ω, maintains its initial configuration satisfying confor-
mance. To this end the control points along the bound-
ary simply remain fixed.

As pointed out above, achieving ET

s = 0, i.e. a
globally C1 state, can be infeasible, as exceptional
points can be inevitable. We therefore approach the
problem (4.6) in two phases. The overarching goal of the
first phase is to determine a suitable set of exceptional
points. In the second phase these are accepted as given,
and continuity is optimized for only away from them.

1. Phase One: In this phase, problem formulation
(4.6) is used as is. Variables up for optimization
in this phase are:

• V
T̂
, the set of vertex positions of the domain

mesh.

• {pij} ∖ {cij}, the set of all control points of
all triangles, without its subset of boundary
control points {cij}. The latter is effectively
invariable due to constraint (4.6d).

2. Phase Two: Based on the result of phase one,
exceptional points are identified as described below.
Let E′T

S
⊂ ET

S
be the subset of soft edges that are

not incident to exceptional points. In phase two
we employ this subset in place of the full set, so
as to accept that around the exceptional points
only C0-continuity can be asked for. Concretely,
we limit Es in (4.6) to edges in E′T

S
. Furthermore,

the domain mesh is now considered fixed, i.e. the
set of variables in this phase is only {pij} ∖ {cij}.

Exceptional Point Determination Between phases
one and two, we need to identify the exceptional points.
Conceptually, after phase one, the domain mesh typi-
cally exhibits a few corners and otherwise flat boundary
vertices (fig. 5 center). This is because boundary ver-
tices in correspondence with a smooth boundary point
of the shape are implicitly pushed towards a flat state by
the C1-objective (4.2). Vertices in correspondence with
a corner of the shape do not experience this effect and
remain corners—plus possibly a few more because a cer-
tain minimum number is required to even form a valid
polygonal domain, and because the distortion bound
(4.6b) limits deformation.

Due to the numerical nature of the deformation
process, the decision is not always clear-cut, vertices
may be near-flat. We therefore move these near-flat
vertices into a flat state, as illustrated in fig. 10. While
it is often possible to do this by simply projecting
onto straight lines between corners, in general this may
unintentionally introduce degenerate or flipped triangles
in the domain mesh, violating the required properties.
To safely achieve a state with perfectly flat vertices
between corners in any case, we proceed as follows, as
illustrated in fig. 11. We begin by marking only the
sharpest vertices as corners. Then, for each sequence
of boundary vertices between two marked corners, we

Figure 10: The domain mesh resulting from phase
one typically has a piecewise near-straight boundary
(red), here for one of the example input shapes from
section 5.3. The straightened version is shown in blue,
with a blow-up of the region of largest deviation.
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Figure 11: Illustration of exceptional point determina-
tion, on an example exaggerated for clarity. Left: Initial
state between two corners (green). Center: Straight-
ening of the entire sequence causes irregularity (red).
Right: Accepting an additional corner enables straight-
ening of the subsequences.

tentatively move them orthogonally onto the straight
line between the two corners, to make them flat. If
this invalidates the mesh, we restore their positions and
mark the sharpest vertex among them as additional
corner. This is repeated recursively. Upon termination,
each boundary vertex is either marked as a corner, or
is truly flat. Those corners in correspondence with
a smooth boundary point in the shape mesh are the
exceptional points that are then exploited in phase two.

Local vs Global Injectivity The domain mesh defor-
mation may result in global overlaps. In this case, while
the map Φ is still a bijection between the domain mesh
and the shape mesh, it is no longer well-defined over a
subset of the plane, due to multiple t̂ coinciding with a
point (u, v). The optional use of a surrounding scaffold
mesh [13] can prevent the occurrence of such overlaps.

5 Experiments

In this section, we evaluate the effectiveness of an
implementation of the method described. We present
results obtained from executing it on diverse sets of
input shapes, including randomly generated shapes for
stress testing purposes. The polynomial order is n = 3
in these experiments.

5.1 Implementation The implementation we use
for the experiments employs a second-order Newton-
style optimization method with line search to solve
the two variants of optimization problem (4.6) in the
two phases. To facilitate the easy computation of the
required first and second partial derivatives, we employ
TinyAD [31], a library for automatic differentiation
tailored to mesh-based processing.

The distortion bounding inequality constraint
(4.6b) is taken into account by means of a primal log-
barrier [23], adding a barrier function per triangle ti ∈ T:

Eq = ∑
ti∈T

−ρ log (αµ − g(ti)) ,

where ρ is a positive constant. The nonlinear equality
constraint (4.6c) is taken into account by means of the
penalty method [23], with penalty factor λh, adding

Eh = λh ∑
e∈ET

H

De.

The constraint (4.6d), being linear, is incorporated
simply by means of variable elimination.

Parameters For our experiments we make use of the
following default setting of the method’s parameters,
unless stated otherwise.

• λreg is set to 10−6 in phase one, and subsequently
lowered further to 10−8, so as to reduce regular-
ization effects to a minimum. λh is set to 102 by
default. Reduction to 1 in phase two, after the ex-
ceptional points have been fixed, proved to offer
small numerical benefits. These values have been
selected via a grid search parameter sweep over the
example input data reported on below.

• ρ: A value of 0.1 proved to offer a practical bal-
ance between convergence speed and deformation
flexibility.

• α allows a trade-off between the quality of the re-
sulting mesh and parametrization, in terms of dis-
tortion, and the number of exceptional points. A
higher value of α enlarges the search space dur-
ing deformation, allowing for greater flexibility in
achieving flat boundary vertices wherever benefi-
cial. At the same time, this flexibility may lead to
more severe deformations and thereby distortion.
Figure 12 illustrates this effect. A comprehensive
comparison is part of the experiment reported on
in section 5.3. In phase two, the distortion bound is
less crucial; lifting α (e.g. by a factor of 3) proved to
enable slightly improved fine tuning in this phase.

α = 10 α = 50 α = 100

Figure 12: The image on the left shows the initial
domain mesh of an annulus shape (MIPS bound µ = 10),
the others are resulting domain meshes. Note how a
higher value leads to less corners, thus less exceptional
points, but more distorted elements.
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Figure 13: Top: Initial shape mesh and initial domain
mesh of a puzzle piece shape that has four non-smooth
corners (green). Bottom: The shape mesh and domain
mesh resulting from our method, exhibiting global C1-
continuity without any exceptional points.

5.2 Qualitative Analysis Figure 13 shows an ex-
ample shape with piecewise smooth boundary between
four corners. As can be seen, the domain mesh result-
ing from our method is quadrilateral-shaped, with cor-
ner vertices corresponding to the shape’s four corner
points. All the other boundary vertices, corresponding
to smooth boundary points, were successfully brought
into a flat state, enabling a globally C1-continuous
result, i.e. a globally smooth parametrization of the
freeform shape over a polygonal domain.

Figure 15 illustrates an example of smooth spiral-
shaped input. The algorithm effectively straightens
this intricate structure, producing a bar-shaped domain
mesh with only four exceptional points. This example
demonstrates that major large-scale domain deforma-
tions, beyond mere local straightening, can be neces-
sary to avoid surplus exceptional points, and that the
algorithm is able to perform these.

Figure 14 shows another, more complex example,

Figure 14: Example shape and resulting domain mesh.

Figure 15: Top: Initial shape mesh and domain mesh
of a smooth spiral shape. Bottom: The shape mesh and
domain mesh resulting from our method, exhibiting four
exceptional points (green). The graphs illustrate the
progression of the main objective, total C1-deviation
Es, and the distortion g(t) over the optimization iter-
ations. Notice the additional reduction in phase two,
having accepted the exceptional points.

with a mix of curved and straight segments, smooth
and sharp boundary points, and nontrivial topology. A
state without exceptional points is achieved.

Figure 16 illustrates a shape with internal curves,
representing features or interfaces. These can be han-
dled by treating them like boundary curves, not re-
quiring C1-continuity across them, and marking curve
branch points (pink) exceptional from the start.

5.3 Quantitative Analysis For a quantitative anal-
ysis, we make use of a larger-scale evaluation based on
datasets of randomly generated shapes. We created

Figure 16: Final shape and domain mesh of an input
composed of two sub-shapes with internal features.
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Figure 17: Some of the instances of random piecewise
smooth shapes from (top to bottom) set A, set B, set C.
Their resulting higher-order mesh is shown in black.

three sets of 100 shapes each, sets A, B, C (fig. 17). Each
contained shape’s boundary is formed by 10, 20, and 30
curves, respectively. These curves were generated such
that the fraction of their joints that are non-smooth is
uniformly distributed in the range [0%,20%].

Metrics To assess the quality of our method’s results,
we make use of the following indicators:

• Flatness ratio: The proportion of boundary ver-
tices that correspond to smooth shape boundary
points and that the method successfully makes flat,
thereby preventing exceptional points. The higher
and closer this value is to 1, the better. However,
note that the best theoretically achievable value
can be lower than 1. For instance, a completely
smooth simple shape requires at least three excep-
tional points (fig. 5), smooth non-simple shapes can
require even more (fig. 12).

• Continuity deviation: Due to the numerical na-
ture of the approach (and possibly due to non-
convexity), there is a chance for small deviations
from the perfect C1-continuity aimed for. This de-
viation can be assessed directly in terms of the val-
ues de,i, introduced in eq. (4.1). More intuitively,
we also examine the mismatch of gradients of ad-
jacent triangles along their common edge, in terms
of their angle and of their magnitude.

Results Figure 18 presents evaluation statistics for the
method’s results on the random shape sets. We observe:

• The continuity deviation de,i (blue) is concentrated
around 10−6 (relative to the shape’s bounding box
extent). The per shape maximum of these values
(red) is concentrated around 10−5. The tendency is
towards even smaller values as the shapes get more
complex (set A → set B → set C).

• The per-edge maximum of the angular deviation of
the gradient along edges (evaluated at ten equidis-
tant sample points per edge), is always below 0.5○,
with the vast majority way below 0.01○. The max-
imum relative magnitude deviation of the deriva-
tives along edges is always below 0.004, with the
vast majority way below 0.0001.

• The number of exceptional points per shape (red)
shows a dependence on parameter α. For α = 10,
it is concentrated around 5 or 6, while for α = 100,
providing more room for deformation, it is at 3 or 4.
As for the type of shapes used here the theoretical
minimum is known, max(3 − nc,0), where nc is
the number of input boundary corners, also the
number of surplus exceptional points (blue) can be
analyzed. For the α = 100 setting for set A it most
often is 0, for set B 1, and for the most complex set
C most commonly 2 or 3, overall indicating good
performance of the method in this regard.

• The flatness ratio, which is 1 if no exceptional
points remain, is mostly well above 0.9.

• The run time of our current prototype implemen-
tation of the method ranges from around 1 minute
for the simplest shapes up to around 50 minutes for
the most complex outlier instance.

5.4 Post-Processing While deviations from C1-
continuity turn out to be small in the results, it may
be tempting to modify the mesh into a perfectly C1-
state. This can be achieved by projecting the variables
into the solution space of the C1-constraints.

C1-Projection Following the derivation of equation
(4.2), a mesh is C1 across an edge e if

γ0p0i + γ1p0(i+1) + γ2p1i − p′1(n−i−1) = 0 (0 ≤ i ≤ n − 1).

Compiling these equations for all edges from ET

H
∪E′T

S

yields a linear equation system Ap = 0, where A is a
matrix whose rows represent the coefficients of the above
constraints, and p is the vector consisting of the shape
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Figure 18: Histograms of various evaluation metrics over results for the random shape data sets A, B, and C,
for two different settings of α = 10 and α = 100.

mesh variables, i.e. all control points. The matrix

(5.7) P = In −A†A,

where A† is the pseudoinverse of A, performs an orthog-
onal projection into the nullspace of A, thus into the
solution space of Ap = 0. The matrix A†A can be com-
puted [30] via singular value decomposition as VrV

T
r ,

where Vr consists of the first r right-singular vectors of
A and r is the rank of A.

Applying this projection to the control points p

of a mesh, p̄ = Pp, yields a perfectly C1-continuous
mesh defined by control points p̄. The cost of this,
however, is the potential loss of regularity, though the
orthogonality minimizes the deviation from the regular
state p, reducing the risk. Furthermore, as also the
boundary control points are projected, conformance to
the original shape may be affected.

Analyzing the effects of this C1-projection, applied
to the above results reported on in section 5.3 and
fig. 18, we make the following observations:

• Continuity deviation: Figure 19 confirms that,
after projection, the mesh indeed is C1, up to the

numerical accuracy limit. Namely, values de,i are
around 10−14, their maxima typically around 10−13.

• Regularity: No triangle in any mesh became irreg-
ular due to the projection, underlining that the for-
mer C1-deviations could be considered minuscule.

• Conformance: Boundary control points are moved
by the projection commonly in the range 10−6–
10−4, relative to the shape’s bounding box extent.
In this sense conformance is slightly approximate
after the projection. Depending on the use case
this deviation may be preferable in exchange for
exact C1-continuity.

5.5 Improvement through Repetition As a fi-
nal note, further experiments indicate that iterating
the optimization process (section 4.3) twice (i.e. phases
one-two-one-two) yields significant further accuracy im-
provements on a numerical level. Namely, the continuity
deviations reported in fig. 18 are reduced by around two
to three orders of magnitude. This improvement trans-
lates into a similar reduction in conformance deviation
in case the C1-projection is applied. See fig. 20.
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Figure 19: Histograms of various evaluation metrics
over results for the random shape data sets A, B, C,
after applying C1-projection.

6 Limitations and Future Work

We introduced a method for C1-focused higher-order
mesh generation, that can also be viewed as construct-
ing parametrizations of 2D freeform shapes over polyg-
onal domains. The parametrization is expressed in a
piecewise polynomial manner by means of a mesh of
higher-order triangles. Our approach utilizes an opti-
mization strategy, constrained to ensure that mesh ele-
ments are free from inversions while guaranteeing that
the resulting mesh matches the given input without ge-
ometric error. The following limitations and areas for
future work can be highlighted:

• Efficiency Improvement: There is clear potential
for improving the optimization process. This con-
cerns in particular the overall run time, where pre-
computed derivative expressions, parallelization,
and preconditioning could aid. It also concerns the
convergence behavior, affecting the number of sur-
plus exceptional points (due to time limits, getting
trapped in local minima, or stuck due to numerical

issues).

• Bounded C1-Deviation: While our method was
shown to be capable of commonly producing results
with minuscule C1-deviations, there is no guarantee
in this regard. Future research may aim for vari-
ants that allow providing a guarantee of meeting
a prescribed deviation bound, providing stronger
assurances about the smoothness of the generated
meshes. This will likely require an adaptive combi-
natorial mesh modification strategy.

• Adaptive Distortion: Our method allows setting a
distortion bound, and the number of exceptional
points follows. The inverse may also be interesting,
being able to choose the number of exceptional
points, while the distortion is internally adapted
as necessary to achieve this.

• 3D Extension: Our method targets 2D curved
shapes. Extending this approach to 3D volumetric
shapes, based on curved tetrahedral meshes, rep-
resents a worthwhile direction for future research,
expanding the utility of the approach for practical
scenarios. The initial mesh could be obtained us-
ing a recent higher-order tetrahedralization method
[14], the C1-energy and C1-constraint expressions
extend to 3D naturally [16]. More work will be
necessary regarding the exceptional point determi-
nation; in 3D a network of exceptional edges (be-
tween planar regions) needs to be determined, e.g.
by some form of clustering of near-coplanar bound-
ary facets in the domain mesh.
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Figure 20: Repeating the two optimization phases
twice fine-tunes the results, yielding further accuracy
improvements. Left: Continuity deviation as in fig. 18.
Right: conformance deviation as in fig. 19. The former
results are shown light-shaded for comparison.
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Guarding: Boundary-conforming curved tetrahedral

meshing, ACM Trans. Graph., 42 (2023).
[15] P. Khanteimouri, M. Mandad, and M. Campen,
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