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Abstract

This work develops a framework to create meshes with user-

specified homology from potentially dirty geometry by cou-

pling background grids, persistent homology, and a general-

ization of volume fractions. For a mesh with fixed grid size,

the topology of the output mesh changes predictably and

monotonically as its volume-fraction threshold decreases.

Topological anti-aliasing methods are introduced to resolve

pinch points and disconnected regions that are artifacts of

user choice of grid size and orientation, making the output

meshes suitable for downstream processes including analysis.

The methodology is demonstrated on geographical, mechan-

ical, and graphics models in 2D and 3D using a custom-made

software called Tusqh. The work demonstrates that the pro-

posed framework is viable for generating meshes on topo-

logically invalid geometries and for automatic defeaturing of

small geometric artifacts. Finally, the work shows that al-

though subdividing the background grid frequently improves

the topological and geometrical fidelity of the output mesh,

there are simple 2D examples for which the topology does

not converge under refinement for volume-fraction codes.

1 Introduction

Getting geometry that is suitable for mesh generation is
often more difficult and time consuming than creating
a mesh from that geometry. “Ugly” geometry is ubiq-
uitous “in the wild.” Industrial and commercial CAD
data are often hand-designed “blueprints” to guide as-
sembly, and do not represent the as-built part. Data
from imaging and segmentation may have topological
inconsistencies. Even in cases with valid geometry and
topology, analysts must carefully review, modify, and
defeature models based on the intended purpose of the
mesh because typical techniques generate meshes whose
topology and geometry match the input models. Com-
mon issues in “ugly” geometry are gaps and overlaps,
features smaller than the desired mesh size, topological
complexities such as small holes, and small angles and
thin regions that would produce poor-quality elements.
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However, the mesh is a discrete approximation to
the geometry. Why require a higher fidelity in the
input than is aspired to in the output? Indeed, the
community is developing tools to mesh ugly geometry,
robustly producing meshes that are topologically correct
and have high-quality elements despite topological and
geometrical defects and small features in the input.

Sculpt [22, 24, 25] is one such tool, achieving a hexa-
hedral mesh of reasonable quality, but reconstructing an
approximation of the input geometry and topology. In-
exact reconstruction is a benefit in the case of gaps, over-
laps, and small features. The Sculpt algorithm starts
with a background grid overlaying the input geometry.
The fraction of each grid cell that lies inside the geome-
try of an input material is its volume fraction. Cells with
volume fractions above a threshold (e.g., one-half) are
retained; the rest are discarded. Heuristics remove un-
desirable topology such as pinch points and components
consisting of only a few cells. Retained cells are then
snapped to the geometry, and mesh quality is achieved
through pillowing [18, 30, 31], smoothing [15], and other
changes to mesh topology and node positions. Similarly,
Morph [20, 29] is a parallel tet mesher using a back-
ground grid that snaps nodes to geometry based on di-
mension, proximity, and how other nodes are snapped.
When no suitable node snap is found, Morph adds new
nodes at the intersections with the geometry to pro-
duce nodes on the geometry boundary. In both Sculpt
and Morph, the size of the background grid indirectly
determines the geometric fidelity of the output to the
input. TetWild [10, 11] uses a Delaunay triangulation
rather than a background grid. Triangles representing
the geometry are incrementally inserted and the mesh
is refined. Edge length and geometric proximity param-
eters control the mesh resolution and geometric fidelity.

Though these tools always produce meshes with
valid topology, there is no a priori knowledge of what
the homology of the output will be, nor how it will com-
pare to the input topology or the desired topology. For
some downstream operations, small holes and features
play a critical role in final results, while for others, these
same holes and features are extraneous, may lead to
overly dense meshes, and must be (manually) removed.
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Figure 1: The key steps of Tusqh are illustrated over an example of the Chesapeake Bay. First (a), a background
grid is prescribed, after which volume fractions are calculated (b). Next, a special subdivision of the background
grid is computed (c), which transfers volumetric data for persistent homology computations (d). The user selects
the desired mesh topology from (d), and finally the base (e) and anti-aliasing (f) mesh elements are generated.

In sum, a single model may require multiple representa-
tions depending on its intended purpose, each with vary-
ing mesh sizes and topological needs. However, tools
with control over how to select the appropriate topol-
ogy of the mesh for its intended purpose are in short
supply, meaning that much of this work is deferred to
time-consuming manual manipulation by engineers.

Herein, we explore how to robustly predict and
achieve the desired mesh topology for algorithms based
on background grids and volume fractions (including
Sculpt) through the use of persistent homology and
generalized winding numbers.

To accomplish this goal, Tusqh—a prototype
mesher now available on GitHub [27]—was developed in
Rhinoceros 3D. It is a testbed for research and demon-
strates that our techniques are effective. Tusqh mim-
ics the initial steps of Sculpt, using a background grid
and volume fractions to decide which grid cells to re-
tain. As with TetWild, it uses generalized winding num-
bers [2, 12] to define the “interior” for valid and invalid
geometries. We explore the topological structure of po-
tential meshes under different volume-fraction thresh-
olds using persistent homology [7, 21]. Local connec-
tivity decisions based on sub-sampling volume-fractions
mitigate the effects of the arbitrary orientation and off-
set of the background grid. This enables the analyst
to measure and select the desired mesh topology, which
then informs which volume-fraction threshold to select.
The user may also adjust the volume-fraction threshold
on a sliding scale and visualize the choice of meshes.
These meshes can serve as input for subsequent steps to
improve geometric fidelity, such as Sculpt’s snapping,
pillowing, and smoothing. A schematic illustrating the
key steps in the Tusqh framework is shown in fig. 1.
Concluding theoretical results demonstrate that obvi-
ous applications of grid-based volume-fraction methods
cannot guarantee consistent topological output.

2 Background Material

The proposed method, which selects which cells of a
background grid to retain, is related to the computer
graphics problem of rasterization [14]. Consequently, we
first introduce background information about rasteriza-
tion and anti-aliasing, after which fundamentals about
tools employed in this work are introduced, including
homology, persistent homology, and winding numbers.

Rasterization. Rasterization is the process of
converting an arbitrary geometry into a grid-based rep-
resentation. In traditional computer graphics, the back-
ground grid is screen pixels, and the objects are triangles
embedded in floating point R

2. The problem is to se-
lect which color and intensity to display in each pixel.
Aliasing [5, 17] is a significant problem in rasterization:
pixel values are sensitive to the offset, rotation, and size
of the objects, as well as which locations within a pixel
are sampled. Consider a non axis-aligned edge shared
by a blue and a red triangle. For a given pixel, if we
choose red or blue we get increased contrast but also
stair-step patterns called “jaggies.” If we choose a pur-
ple mixture the image appears smoother, but shading
can produce Moiré patterns. Both patterns are glaring
to human eyes. For small triangles, the pixel topology
may not match the triangle topology; see fig. 2. Such
topological errors may be visually insignificant, but they
can lead to significant errors in simulation results.

Topological Anti-aliasing. As in graphics,
volume-fraction meshing is sensitive to the offset and
rotation of objects, as well as the grid size (analogous to
pixel density in graphics). An axis-aligned gap is closed
or open depending on its size and position relative to
the grid; see fig. 3. A gap smaller than half the grid
size is always closed. A gap larger than the grid size is
always open. Between these, shifting the grid left will
cause the mesh to alternate between closed and open.

In figs. 4 and 5 we see the aliasing effects of
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Figure 2: Rasterization of triangles into pixels for
computer graphics. Note the pinches from the two left
cyan triangles, the archipelago from the lower right pink
triangle, and the multitude of additional topological
errors in the lower right. Image courtesy Wikipedia
https://en.wikipedia.org/wiki/Rasterisation

rotations, where the feature is not aligned with the grid.
In fig. 4 the gap is a fixed width, but about the size
of the grid cells, leading to the gap being inconsistently
resolved as open or closed, with separate sides connected
by pinch points. In fig. 5 we see a similar inconsistency,
but exacerbated because the gap width varies. The
boundary lines meet at a sharp angle, so fewer cells are
retained as the apex is approached, leading to a chain of
small disjoint mesh islands which we call an archipelago.

To address these undesirable local topological fea-
tures, a topological anti-aliasing method is defined and
coupled with introducing/removing various templated
cells, as described in section 3. The first undesirable
feature is pinches, where exactly two grid cells meet at a
vertex with no shared edge, or exactly two 3D grid cells
meet at an edge with no shared faces. These must be
removed because the mesh is required to be locally con-
nected face-to-face or disjoint. (The complement is also
connected face-to-face or disjoint.) All other ways in
which a mesh can be non-manifold do not occur, because
we form the mesh from the union of some cells of a struc-
tured grid. Pinches are either separated into different
components by removing small elements, or thickened
into meeting face-to-face by adding small elements using
data from the anti-aliasing framework. These small ele-
ments come from templates that split background grid

gap<grid/2
closed

gap>grid
open

gap ∈ [ 1
2
, 1] grid

depends

Figure 3: Small grid-aligned gaps are closed, large gaps
are open, and intermediate gaps depend on their offset.

(a) raw geometry (b) filled cells

Figure 4: This unaligned gap is resolved inconsistently.

Figure 5: Rotational aliasing may cause stair-step
patterns, and archipelagos of isolated islands near where
two lines meet at a sharp angle. Bold-outlined cells are
filled, thin are open.

cells and perform swaps. The second undesirable feature
is archipelagos. Our anti-aliasing technique joins some
islands with template elements around connecting edges
and quads, and removes any small islands that remain.
For comparison, Sculpt resolves pinches by adding or re-
moving entire grid cells, and resolves small components
by removing them [23].

For simplicity we only discuss domains with a single
material and only discuss the retained cells. In principle
our anti-aliasing could be extended and applied to
multi-material volume-fraction meshing [31, 23].

Homology. The topology of a mesh should con-
tain the significant features of a domain for its intended
computational analysis. Herein, we shall study mesh
topology using a cellular complex: nodes are zero-cells,
edges are one-cells, faces are two-cells, and volumes are
three-cells. Specifically, we will make use of simplicial
and cubical complexes, in which two-cells are triangles
and quadrilaterals, and three-cells are tetrahedra and
hexahedra, respectively. Homology [8] is a mathemati-
cal tool that distinguishes cell complexes using certain
algebraic quotient groups. The Betti numbers Bi count
the rank of these groups. Specifically, B0 equals the
number of connected components, B1 is the number of
holes, and B2 is the number of cavities or voids. For
planar domains B2 will always be zero.

Persistent homology [7, 21] describes homology
changes as objects are added and connections are made.
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A filtration has a “persistence parameter” which defines
when a cell enters the complex. A filtration is mono-
tonic, so no cell may ever leave the complex after en-
tering. However, the homology has both additions and
removals because adding a cell could, e.g., create a new
connected component, or combine two components into
one. The parameter value at which a group generator
is created is called its “birth,” while the value it disap-
pears is called its “death.” Birth and death coordinates
are plotted in a persistence diagram such as fig. 1 (d).
This not only counts Betti numbers, but tracks individ-
ual components and holes.

This work studies the persistent homology of cubi-
cal background grids using volume fractions as the per-
sistence parameter. (In other work the signed distance
to a domain boundary was the parameter [19].) Alter-
natively, zigzag persistence, which does not require a
monotonic filtration [4, 6], could be used, but doing so
would increase complexity and computational expense.

Winding Numbers. Volume fractions may be
estimated by sampling points and counting the fraction
of them inside the geometry. However, for “ugly”
geometry, what is “inside” may be poorly defined.
The generalized winding number [2, 12] overcomes this
obstacle; see fig. 6. It gives answers identical to ray
shooting for watertight domains, and gives answers that
humans find both reasonable and intuitive for other
domains. In its traditional form, the winding number
at a point with respect to a closed curve describes the
net number of times the curve encircles the point in
the counter-clockwise direction, with negative numbers
indicating clockwise encirclement. The winding number
is the integral of the angle of the ray from the point to
the curve as it is traversed. The generalized winding
number extends this definition to sets of open curves. It
yields a continuous value where 0 indicates outside and 1
is inside. For geometry with gaps, the winding number
near a gap is typically between 0 and 1. In extreme
cases, such as overlapping domain boundaries, invalid
geometries may give values beyond [0, 1]. In 3D, the
winding number integrates the solid angles seen from
a point, e.g., for a volume defined by a triangle soup.
Which normal direction is outward-facing determines
the sign of the solid-angle contribution.
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Figure 6: Winding number point and field values,
courtesy Jacobson et al. [12] Figures 4 and 6. Used with
permission of the Association for Computing Machinery,
conveyed through Copyright Clearance Center, Inc.

3 Methodology

Volume Fractions. Herein we study both 2D and
3D domains. We define a regular background grid,
e.g. by subdividing an axis-aligned bounding box. This
grid is a cubical quadrilateral or hexahedral complex,
depending on the domain dimension. The volume
fraction of each maximal-dimension cell is computed
as the average of the winding numbers of its sample
points. Sample points lie in an sd array, as shown in
fig. 8. (Recall we calculate persistent homology based
on volume fractions, with the goal that the user may
select the volume fraction that achieves their desired
mesh topology.)

Volume-Fraction Persistence Parameter. The
persistence parameter used herein is the volume-fraction
threshold, ordered from 1 down to 0 (i.e. by decreas-
ing value). By defining volume fractions only for cells
of maximal dimension, a mesh is defined by including
all cells with volume fraction greater than or equal to
the chosen threshold, and removing all others. The or-
der that cells are added to the mesh as a function of
the persistence parameter is demonstrated on a topo-
logically invalid representation of the Chesapeake Bay
in fig. 7. The persistent homology diagram is displayed
in fig. 1 (d). These images illustrate significant topo-
logical aliasing, which limits the utility of these meshes.
In what follows, we aim to mitigate these rasterization
effects.

Sub-cell Volume Fractions. To assist in topo-
logical anti-aliasing, we also define volume fractions for
all lower-dimensional grid cells. For any such n-cell, its
sample points are those in a (fictitious) grid cell cen-
tered at that n-cell; see fig. 8. We use only even num-
bers s of sample points because these samples do not
lie on cell boundaries. Volume fractions for these lower-
dimensional cells are computed as averages of winding
numbers associated with sample points contained in the
fictitious grid cell, in a manner analogous to cells of
maximal dimension. As before, only cells with volume
fraction greater than or equal to a prescribed threshold
will remain in the cell complex. All others are omitted.
Omitted cells are called “exterior” cells, while remain-
ing cells are called “interior” cells. We call this sampling
process “subgrid sampling.”

Anti-aliasing. To address the undesirable raster-
ization effects introduced by our background grid (in-
cluding pinch and archipelago removal), we employ sub-
grid sampling as an anti-aliasing method.

In 2D, the only possible pinch is two quads meeting
at a pinch vertex, whereas in 3D there are 11 possible
configurations of pinched edges and vertices. These
are shown in fig. 9. To find pinches, we consider each
vertex and the neighborhood of cells containing it, i.e.,
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(a) Vol. Frac.: 50%; B0 = 4;B1 = 2 (b) Vol. Frac.: 15%; B0 = 1;B1 = 7 (c) Vol. Frac.: 1%; B0 = 1;B1 = 12

Figure 7: Chesapeake Bay meshes and their Betti numbers change as the volume-fraction threshold is lowered.
The model contains deliberate errors: gaps, overlaps, and offsets. As a result of these errors, the winding numbers
of sampled points may be positive in regions that are clearly inland, as in the lower-left region of the rightmost
figure. Also note how rasterization affects the thin bays and peninsulas, where here we have skipped anti-aliasing.

(a) Vertex, even (b) Vertex, odd (c) Edge, even (d) Edge, odd

Figure 8: Sample s × s arrays are shown. Samples
contained by the red dashed lines define vertex and edge
volume fractions in 2D. We use only even sample arrays.

2 × 2 quads in 2D and 2 × 2 × 2 hexes in 3D. If the
neighborhood corresponds to a pinch case, the pinch
vertices and edges are queued. Each pinch in the
queue is processed in a way that is compatible with
processing nearby pinches. The pinches are connected
if the subcells (vertices or edges) are interior, and
disconnected if they are exterior. Each pinch is repaired
by splitting cells (either mesh cells or their complement)
using predefined splits, and discarding or adding some
of the split cells. The splits are shown in fig. 10. In 2D,
the template is a one-to-five split. In 3D, pinch edges
are repaired before vertices. The edge-repair template is
a one-to-seven split. For pinch vertices, we follow with a
two-to-six split of any pairs of hexes from two different
one-to-seven splits that share a face; see fig. 10c.

To separate cells, splits are performed on the cells
of the mesh itself, and child cells that contain pinch
vertices or edges are removed, as shown in fig. 11. To
connect cells, splits are performed on the complement of

the mesh, and child cells that contain pinches are added
to the mesh, as illustrated in fig. 12. A single mesh
can use both separations and connections in different
regions. However, we require that all adjacent pinches
must be resolved in the same way to ensure validity of
the resulting mesh. Two sets of pinches separated by
cells without pinches can be resolved in opposite ways.
Our rules occasionally indicate that adjacent pinches
should be resolved in opposite ways. We pre-select
whether we connect or separate these cases, see fig. 13.

When separating pinches, the configuration in
fig. 9d is the only exception to the rule of removing
all the child cells that share the pinch edge. The one-
to-seven split is performed on the hexahedra sharing the
pinch edge, and all the child hexahedra that contain that
edge are removed. This turns the central vertex into a
pinch. To prevent that, one additional child hexahedron
is removed. In the orientation of fig. 9d, the removed
hex is the rightmost child of the top hex, which contains
the central vertex; see fig. 11d.

For resolving archipelagos, all the connected com-
ponents of the mesh are identified. For any pair
of connected components, if the edges that connect
them are interior to the geometry, the components are
joined using templates along those edges. The remain-
ing connected components that contain fewer than a
user-defined number of highest-dimensional cells are re-
moved. This process is demonstrated in fig. 14. In
figs. 15 and 16 the utility of the anti-aliasing algorithm
is demonstrated on the unaligned gap and sharp angle

Copyright © 2025 by SIAM
Unauthorized reproduction of this article is prohibited



(a) 2D vertex (b) 1 vertex (c) 1 edge

(d) 1 edge (e) 3 edges (f) 2 edges

(g) 2 edges (h)2 edges,1vertex (i) 1 edge

(j) 3 edges (k) 1 edge (l) 1 vertex

Figure 9: All possible pinches in 2D and 3D are shown.

(a) 2D 1–5 (b) 3D 1–7 (c) 3D 2–6

Figure 10: Templates for fixing pinches are depicted.

of figs. 4 and 5 respectively.
Transferring Persistent Parameters to Sim-

plices. Having a framework by which topological anti-
aliasing can be performed on the mesh by use of sub-
grid sampling and templates, we now turn our attention
to ensuring that the topological anti-aliasing defined
above is accurately represented in persistent homology
calculations. Because most open-source persistent ho-
mology software employs simplicial complexes, we first

(a) 2D vertex (b) 1 vertex (c) 1 edge

(d) 1 edge (e) 3 edges (f) 2 edges

(g) 2 edges (h)2 edges,1vertex (i) 1 edge

(j) 3 edges (k) 1 edge (l) 1 vertex

Figure 11: Pinch shrinking templates are shown.
Pinches on the boundary of the neighborhoods (non-
centered vertices) are resolved by neighborhoods cen-
tered on them.

transform the cubical filtration into a topologically-
equivalent simplicial filtration. In what follows, we pri-
oritize consistent pinch resolution, over archipelago res-
olution. As a result, we make the assumption in 2D
that an edge shared by two interior quadrilaterals will
also be interior, and that an edge shared by two interior
vertices must also be interior. Similarly, in 3D, a face
shared by two interior hexahedra will be interior, as will
a face bounded by four interior edges and vertices. We
first focus on the 2D framework, followed by 3D.

In 2D, a primal vertex induces a dual 2-cell, and
a primal edge induces a dual edge, and a primal quad
induces a dual vertex. Each dual vertex is assigned the
filtration value of its corresponding primal face’s volume
fraction. The dual mesh is then further subdivided into
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(a) 2D vertex (b) 1 vertex (c) 1 edge

(d) 1 edge (e) 3 edges (f) 2 edges

(g) 2 edges (h)2 edges,1vertex (i) 1 edge

(j) 3 edges (k) 1 edge (l) 1 vertex

Figure 12: Pinch growing templates are shown.

a simplicial mesh. To create the simplicial mesh, an ad-
ditional simplicial vertex is introduced at the centroid of
each dual 2-cell. Simplices are then formed as the join of
each dual face’s edge with the simplicial centroid vertex.
This simplicial vertex corresponds to a vertex on the
primal mesh, and takes the filtration value of the cor-
responding primal vertex’s volume fraction. However,
to preclude the introduction of spurious topological ar-
tifacts (and consistent with previous computations), we
also require that this volume fraction be between the
maximal and minimal volume fraction of the surround-
ing four vertices. The filtration value of this simpli-
cial vertex then informs whether two primal faces con-
nected with a pinch should be topologically separated or
connected. Having thus defined filtration values for all
vertices of the induced simplicial complex, we then use
a Vietoris–Rips complex to calculate persistent homol-
ogy, meaning that at persistence value k ∈ R, all ver-

(a) Mesh (b) Separated

(c) Connected (d) Both

Figure 13: Adjacent pinches must be resolved the same
way. Here the resolved mesh is shown for different
configurations of “inside” vertices (red).

(a) Vol. Frac.: 1.0 (b) Vol. Frac.: 0.75

(c) Vol. Frac.: 0.5 (d) Vol. Frac.: 0.25

Figure 14: Faces are connected using templates when
“inside” edges (red) create a continuous bridge between
components.

tices with persistence parameter value greater than or
equal to k are added to the filtration, then all edges be-
tween already-added vertices, then all triangles formed
by already-added edges.

In 3D, a primal vertex induces a dual volume cell,
and a primal edge induces a dual face, a primal face in-
duces a dual edge, and a primal volume induces a dual
vertex. As in 2D, each dual vertex is assigned the filtra-
tion value of its primal volume. To generate a simplicial
mesh from the dual mesh, each dual face is subdivided
into four triangles with a new vertex introduced, as in
2D. Here, the additional vertex corresponds to a pri-
mal edge and will take the filtration value of the vol-
ume fraction of this primal edge, subject to constraints
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(a) Subcells

(b) Anti-aliased

Figure 15: Subgrid sampling and anti-aliasing per-
formed on fig. 5.

(a) Subcells (b) Anti-aliased

Figure 16: Subgrid sampling and anti-aliasing are per-
formed on fig. 4.

keeping the filtration value between the maximal and
minimal values of the surrounding four simplices of the
dual face. Each dual volume is then subdivided into 24
tetrahedra by introducing a single simplicial vertex at
the centroid of the dual volume and taking the join of
this vertex with each of the 24 triangles defined on the
(subdivided) faces of the dual volume. Again, this new
simplicial vertex will correspond to a vertex on the pri-
mal mesh, and consequently takes a filtration value of
the volume fraction of this primal mesh vertex (again
subject to the constraint that the filtration value must
be between the maximal and minimal values of the 26
surrounding vertices). The filtration values of the sim-
plicial vertices corresponding to primal vertices and pri-
mal edges is then locally consistent with the procedures
performed resolve pinch points, and will have identical
persistent homology. This conversion process, from a
cubical primal cell complex into a simplicial one with
an identical filtration is illustrated in figs. 17 and 18.

For the sake of completeness, we also note that
similar primal-to-dual-to-simplicial operations could be
performed on unstructured background meshes. In the
2D case, each dual cell of maximal dimension and with
k sides would be subdivided into k triangles. In 3D,
each dual cell of maximal dimension and with ℓ faces,
with the ith face having ki sides, would subdivide into∑ℓ

i=1 ki tetrahedra.
Finally, we note that for a truly general framework,

a vertex in the above-defined simplicial complexes would
need to be defined for each cell in the primal complex.
Particularly, in 2D we currently introduce vertices cor-
responding to primal faces and vertices, but not for pri-
mal edges. This would require splitting every dual face
into 8 simplices, rather than 4. In 3D, we introduce
vertices for all cells except for primal faces, and would
require splitting every dual volume into 48 tetrahedra,
rather than 24. Given the challenges of navigating this
topological space in a meaningful way (as well as the
additional computational expense incurred by such a
navigation), we leave this for future work.

4 Results

4.1 Computational Results. Tusqh was developed
and evaluated using a custom plugin to Rhinoceros 3D
and Grasshopper. Winding numbers were computed
using libigl [13]. Persistent homology was computed
using Aleph [26], which is based on PHAT [3].

The framework is tested on a 2D model of Chesa-
peake Bay1 with boundary errors, a 3D model of me-
chanical bearings 2, and a 3D graphics model of The

Bronco Buster3. Snapshots of meshes given com-
puted volume fractions are shown in figs. 7, 19 and 20.
Model errors for the Chesapeake Bay include overlap-
ping edges, repeated/offset edges, and numerous gaps.
Despite the “interior” of the bay being ill-defined, the
proposed method still captures the intended geographic
domain with respect to both the continent and to is-
lands. A complete view of the homological structure
based on varying the volume fraction for the Chesa-
peake Bay is shown in fig. 1 (d), while similar persis-
tence diagrams for the volumetric models are shown
in fig. 21. Results demonstrate that a mesh with the
desired homological structure could be extracted from
the background grid by selecting the correct threshold.
These figures are primarily for illustrative purposes: we
purposely chose a coarse grid size to generate the topo-
logical issues we are addressing. In practice, a finer grid

1Model derived from https://vecta.io/symbols/281/

ecosystems-maps/93/usa-md-va-chesapeake-bay-line-map
2Model provided at https://ten-thousand-models.appspot.

com/detail.html?file_id=1716283
3Model provided at https://tinyurl.com/4cmrptev
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(a) Primal volume fractions (b) Dual volume fractions

(c) Connected simplices (d) Disconnected simplices

Figure 17: An example of converting 2D cell volume
fractions into a filtration of a simplicial complex. Num-
bers are proportional to volume fraction. Figure 17a
shows the ordering of grid cells from high to low. Fig-
ure 17b shows the dual grid with vertex values trans-
ferred from grid cells. In figs. 17c and 17d the dual
complex is subdivided into a simplicial complex and the
threshold is set so that all cells with value 4 or more
are added. The choice of volume fraction for the in-
troduced vertices (in bold) determines the connectivity
near pinches.

Figure 18: The conversion process taking two adjacent
3D hexes into a tetrahedral simplicial complex with an
equivalent filtration is shown.

would better capture local behavior.
Anti-aliasing. Figure 22 demonstrates the anti-

aliasing technique on a mesh of the Chesapeake Bay to

(a)Bearings (b)Vol. Frac.: 12.5% (c)Vol. Frac.: 25%

(d)Vol. Frac.: 37.5% (e)Vol. Frac.: 50% (f)Vol. Frac.: 62.5%

(g)Vol. Frac.: 75% (h)Vol. Frac.: 87.5% (i)Vol. Frac.: 100%

Figure 19: Meshes of bearings are shown.

(a)TheBroncoBuster (b)Vol. Frac.: 12.5% (c)Vol. Frac.: 25%

(d)Vol. Frac.: 37.5% (e)Vol. Frac.: 50% (f)Vol. Frac.: 62.5%

(g)Vol. Frac.: 75% (h)Vol. Frac.: 87.5% (i)Vol. Frac.: 100%

Figure 20: Meshes of The Bronco Buster are shown.

resolve both pinches and archipelagos. The anti-aliased
mesh is analysis suitable, which is illustrated through a
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(a) Bearings (b) The Bronco Buster

Figure 21: Persistence diagrams for the volumetric
meshes are shown, with paramerter 1 minus the volume
fraction.

Figure 22: Meshes of Chesapeake bay with subcells
and anti-aliasing are shown. Interior vertices and edges
are shown as blue outlined circles and purple lines
respectively, while removed faces are shown in black
(left). Connecting and separating templates are in red
(right).

simulation of contaminant propagation, e.g. an oil spill,
on a refined version of the Chesapeake Bay in fig. 23.
Simulations were performed using MFEM [1, 16].

Comparisons with Alternative Methods. A
table comparing Tusqh against alternative meshing
methods is presented in table 1. Here, an “X” indi-
cates software capacity, while “(X)” indicates limited
capacity. Particularly, TriWild allows for interior holes
to be removed, but these must be explicitly specified
and must be within appropriate input tolerance bounds
to prevent unexpected results. In these regards, Tusqh
is competitive with alternative meshing software.

However, Tusqh’s capacity to select homology given
persistence data makes it more apt to represent desired
mesh topology. For instance, when The Bronco Buster

is immersed in a background grid of 40 × 80 × 80 hex-
ahedral elements, and meshes of comparable element

(a) Time step: 0 (b) Time step: 50 (c) Time step: 100

(d) Time step: 200 (e) Time step: 400 (f) Time step: 800

Figure 23: A finite element solution of contaminant pro-
pogation is displayed on a Tusqh mesh of the Chesa-
peake Bay.

sizes are requested for TetWild, Morph, and Sculpt,
only Tusqh successfully defines a mesh of a single con-
nected component, and that only with volume fraction
selection of 12.5% (as opposed to alternative volume
fractions). However, all other methods presented in ta-
ble 1 have higher geometric fidelity than Tusqh because
of Tusqh’s ability to only yield voxel output currently.
Furthermore, because Tusqh was developed as a pro-
totype plug-in for Rhinoceros 3D primarily using C#
(with a wrapper around portions of libigl’s C++ code),
it is currently much less competitive computationally.

4.2 Anti-aliasing Guarantees and Limitations.

As noted in Section 2, one of the primary difficulties
with volume fraction-based meshing methods is miti-
gating the effects of rasterization (i.e. choice of orienta-
tion and sample size) through topological anti-aliasing.
The following theoretical result holds regarding the suc-
cess of the proposed anti-aliasing methods in mitigating
topological rasterization. A proof of the result can be
found in the appendix of the preprint version of this
document on arXiv [28].

Theorem 4.1. Given a rectangular lattice in R
2 with

characteristic length ℓ overlaying two parallel half-spaces

separated by a length of L, topological rasterization may

occur when ℓ(
√
2−1) < L ≤ ℓ. For the subgrid sampling

scheme proposed in this text, topological rasterization

may only occur when ℓ(
√
2 − 1) < L <

√

2ℓ
2

. Finally,
topological rasterization due to changes in orientation

cannot be resolved for L such that ℓ(
√
2− 1) < L < ℓ

2
.
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Table 1: Comparisons Between Meshers Capable of Operating on Dirty Geometry

Invalid Geometry Manifold Output
Method 2D 3D Type Input (if Desired) Homology Control
TriWild [9] X Simplicial X (X)
TetWild [10, 11] X Simplicial X X
Morph [20, 29] X Simplicial X
Sculpt [22, 24, 25] X Cubical X X
Tusqh X X Cubical X X X

4.3 Topological Effects of Grid Refinement. To
conclude the results section, we demonstrate that topo-
logical pathologies may arise when naively using per-
sistent homology to find an appropriate grid size to
achieve a desired topology. When features are isolated
or globally the same scale, grid refinement has intuitive
and predictable topological effects. However, general in-
puts may not demonstrate monotonic filtration behav-
ior with grid refinement. Counterexamples show non-
monotonic filtration behavior by grid size. Discretiza-
tion by grid cells and their alignment with input features
strongly effects topological behavior. Thus algorithm
parameters of when to refine the background grid may
have unexpected effects on mesh topology.

Convergence. For many inputs, as the grid is re-
fined, topological features of the input are resolved and
the output mesh topology becomes stable. However, for
some inputs, the topology never converges and no filtra-
tion is possible. For some inputs it may be possible to
define a filtration, with simplices only appearing, never
disappearing. If simplices appear and disappear, zig-zag
persistence could computationally predict topology.

In figs. 4 and 5 a feature is inconsistently resolved
due to aliasing effects of unaligned grids. For the
constant-width gap in fig. 4, refining or coarsening the
grid makes the gap resolved consistently as open or
closed. However, for the variable-sized gap in fig. 5,
global uniform refinement may merely move where the
problem occurs. The example is a wedge of material
bounded by two lines meeting at a small angle α at
an apex. In locations where the grid size is about the
same as the local width, whether a cell is included or
excluded can change every few grid cells, leading to
many separate connected grid components. For any
small grid size, there will be some portion of the wedge
where the lines are about that size apart, specifically
in the range [ 1

2
, 1] cotα squares away from the apex.

The geometry is undesirable because the islands move
location. The grid topology may be constant over
refinement, but that topology differs from the topology
of the underlying object and is undesirable.

Non-convergence. In each of the examples in
fig. 24 the output mesh topology does not converge un-
der refinement. That is, there is no grid size below which
the output mesh topology does not change. The back-
ground grid is uniform, but we only draw some of the
relevant cells at each level of refinement. Blue (closure)
cells are mostly material and thus included in the out-
put mesh. Red (gap) cells are unfilled and excluded.
Under refinement, the meshes alternate between one
and two connected components ad infinitum. The grid
squares containing the corner alternate between filled
and open, because of the corner’s relative position in-
side its square. The descriptions of the geometries are
finite, just two triangular blocks. It is simple, plausible,
and without sharp angles. The only unusual feature is
the blocks touch at a single pinch point.

The upper and lower examples in fig. 24 have
alternate sizes of when they are open and closed. If
an input has both of these pinch features between two
material blocks, then exactly one of the pinches will
be closed, giving a mesh with the homology of a disk.
It is converged in the sense that the homology does not
change under refinement, but the local connectivity does
change. Hence, even if we were to use zigzag homology
it would not distinguish between this case and a single
solid block of material.

The analytic description of the geometries in fig. 24
is two triangular blocks of material with slopes −3 and 1
meeting at a corner. In the upper example, the corner’s
coordinate is ( 2

3
, 0), and in the lower it is ( 1

3
, 0). If we

start with a unit grid with a vertex at the origin, then
under refinement the grid square containing the corner
alternates between having the corner 2/3 of the way
along the bottom edge (blue), and 1/3 of the way (red).
Such blue squares have volume fraction 10/18 and the
red squares 7/18. This construction is not tight. The
slopes may be different. The corner may lie at some
other coordinate, and a grid vertex will never lie on it
if its x-coordinate is not k/2m for some {k,m} ∈ Z.
Thus more complicated sequences than alternating may
be constructed.
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Figure 24: In these counterexamples to convergence, the
grid topology alternates between one and two connected
components ad infinitum under refinement. The alter-
nations of the upper and lower examples are opposite.

5 Conclusion

In this work, a mesh generation framework is devel-
oped to facilitate the creation of meshes on potentially
dirty geometry based on user-specified needs through
the use of persistent homology. The framework is built
on a volume-fraction based meshing method, similar to
Sculpt, in which mesh elements are considered “in” or
“out” of the given geometry depending on whether they
have volume fraction above a cutoff range; the most de-
sirable mesh can then be selected based on the appropri-
ate homological structure induced by this volume frac-
tion. These volume-fraction based algorithms, including
Sculpt, behave quite differently than boundary-fitted al-
gorithms, such as Delaunay Refinement, when the local
mesh size is decreased. For boundary-fitted algorithms,
reducing the mesh size to the local feature size or less
allows the mesh to have good quality and recover the in-
put topology exactly. For the family of volume-fraction
codes, the mesh quality is good regardless of the local
feature size, but in some cases the topology does not
converge as the mesh size decreases by subdividing the
background grid. However, for a fixed grid, we may
predict the resulting mesh topology, measure how that
changes as we vary the volume-fraction threshold using
persistent homology, and select an appropriate topol-
ogy for the mesh’s intended purpose. When the back-

ground grid is about the same size as gaps and thin-
region features, the alignment and orientation of the
background grid with respect to the features can create
aliasing artifacts in the mesh. There may be spurious
pinches and archipelagos. A gap or thin region may be
resolved inconsistently in different locations. Subgrid
sampling provides guidance on whether to connect, sep-
arate, or remove components. These connections and
separations can be achieved using templates of small
elements. We have demonstrated theoretically and ex-
perimentally that subgrid sampling can mitigate the ef-
fects of aliasing, making connections more consistent.
The software, Tusqh, demonstrates the potential of the
meshing framework in both two and three dimensions,
and is planned for open source release. As a coun-
terpoint we have theoretical analysis showing that for
any volume-fraction threshold we choose, there are cases
where aliasing artifacts will still arise.

There are a number of avenues for future work to
build on and improve this framework. First, it may
be valuable to have adaptive, non-uniform background
grids and volume fraction thresholds to mesh more inter-
esting geometries at reduced expense. However, doing
this may require the use of zigzag persistence to accu-
rately capture mesh topology, particularly when refine-
ment does not converge on separation or closure of local
mesh features. Further work should also better utilize
fitting algorithms, such as those present in Sculpt, to
more accurately fit to the geometric input data that
Tusqh approximates. To do this more flexibly, addi-
tional research should generalize these methods to un-
structured cubical complexes. Finally, it is anticipated
that for this framework to be usable in practice, it would
need to be redeveloped using C++.
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