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Abstract

Triangle meshes often suffer from defects like intersect-
ing triangles and low-quality elements. Existing inter-
section resolution methods either lack robustness due
to floating-point inaccuracies or incur high computa-
tional costs by processing meshes globally. We pro-
pose a robust and efficient method for repairing meshes
with intersecting triangles that combines localized pro-
cessing with rational number computations. Our ap-
proach begins with a preprocessing step that refines the
mesh and localizes intersection issues by separating in-
tersecting and non-intersecting regions. For each inter-
secting region, we ensure the robustness of intersection
calculations by using rational numbers. Subsequently,
the intersection results are stably converted from ratio-
nal to floating-point representation using a constrained
boundary volumetric mesh optimization method. The
repaired local meshes are then stitched back into the
non-intersecting mesh, followed by a remeshing step to
enhance overall mesh quality. Experimental results on
complex models demonstrate that our method signifi-
cantly reduces computational overhead while producing
high-quality, non-intersecting meshes suitable for down-
stream applications.

1 Introduction

Triangle meshes are one of the fundamental geomet-
ric representations in computer graphics, widely utilized
in areas such as 3D modeling, simulation, and anima-
tion. However, triangle meshes generated from vari-
ous sources often contain defects, such as intersecting
triangles and low-quality elements. These defects im-
pede downstream applications, notably constrained De-
launay tetrahedrization [11], which is essential in com-
puter graphics and engineering for tasks such as solving
partial differential equations [24] and algorithms requir-
ing explicit volume discretization [9, 20]. However, ad-
dressing mesh intersection issues poses significant chal-
lenges to algorithmic robustness due to the limitations
of floating-point precision. Consequently, developing ef-
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ficient and robust methods to resolve intersections and
generate high-quality surface meshes represented with
floating-point numbers has become a critical challenge.

Existing intersection resolution methods can be pri-
marily categorized into two types. The first category
performs intersection detection directly on the surface
mesh [1, 10, 7, 14]. To mitigate the impact of floating-
point precision errors, some researchers employ indirect
predicates to represent intersection points. Although
this approach can efficiently produce meshes that do
not intersect when using indirect predicate represen-
tations, converting them to floating-point numbers for
downstream applications often introduces new intersec-
tions due to floating-point inaccuracies.

The second strategy reformulates the triangle inter-
section computation as a boundary-conforming tetrahe-
dral meshing problem [27, 18, 17]. Originally proposed
by Xiao et al. [27], this approach aims to improve the
efficiency of intersection calculations. However, due to
inherent floating-point errors, the robustness of the al-
gorithm cannot be fully guaranteed. To address this is-
sue, Hu et al. [18] introduced rational numbers for con-
formal boundary recovery, mitigating the limitations of
floating-point precision. Subsequently, to enable stable
conversion of rational numbers to floating-point repre-
sentations during volumetric mesh optimization, it is
essential to ensure that no negative-volume tetrahedra
are generated. However, this method requires process-
ing all surface meshes uniformly, significantly increasing
computational costs, as intersection operations are per-
formed even in intersection-free regions.

To address this, we propose a method that com-
bines local processing with rational number computa-
tion, aiming to balance intersection efficiency with the
accuracy of floating-point results, thus achieving robust
and efficient intersection results in floating-point repre-
sentation. Specifically, we localize the intersection prob-
lem through a preprocessing step and extract local in-
tersecting regions. For each local intersecting region,
we introduce a constrained edge-based fast intersection
method grounded in rational numbers, combined with
volumetric mesh optimization to stably convert ratio-
nal numbers to floating-point representations, thereby
obtaining repaired local meshes. These repaired local
meshes are then stitched with non-intersecting, correct
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meshes, followed by intersection-free remeshing to im-
prove overall mesh quality. The final output is a high-
quality, non-intersecting surface mesh suitable for down-
stream applications.

Our main contributions can be summarized as
follows:

1. Proposed a Fast and Robust Intersection Repair
Framework: We introduce a framework that takes
low-quality, intersecting surface meshes as input
and outputs high-quality, non-intersecting surface
meshes. The core of the framework lies in the
development of a robust and fast local intersection
method based on rational numbers, which can
effectively obtain intersection results represented in
floating-point numbers.

2. Developed a Preprocessing Strategy to Localize
Intersection Issues: By employing a connected
component-based separation strategy, we efficiently
segregate intersecting and non-intersecting meshes,
reducing computational overhead and facilitating
subsequent localized processing, thereby improving
the overall efficiency of the algorithm.

2 Relate work

Resolving intersection issues in meshes is a fundamental
challenge in computer graphics and geometric modeling.
Over recent years, a variety of methods have been
introduced to solve this problem. In this section, we
provide an overview of the key approaches for addressing
mesh intersections and remeshing.

Xiao et al. [27] proposed a novel algorithm that re-
formulates Boolean operations on triangulated solids as
a boundary conforming tetrahedral meshing problem.
However, the method encounters robustness issues due
to floating-point errors. To address this, Hu et al.[18]
introduced rational numbers to achieve precise intersec-
tion calculations. However, this approach suffers from
low efficiency. To address these issues, Hu et al.[17]
proposed an improved method known as Fast-TetWild.
This method enhances computational speed by avoid-
ing rational number operations and employing paral-
lelization strategies. Nonetheless, Fast-TetWild still re-
quires global boundary recovery and volumetric mesh
optimization to improve mesh quality, resulting in con-
siderable time overhead. Diazzi et al.[10] adopted a sim-
ilar approach to that of Hu et al., but introduced indi-
rect predicates[1] for boundary recovery in volumetric
meshes. While this improved computational efficiency,
it failed to robustly produce accurate results in floating-
point representations. Skorkovská et al. [25] proposed
a method that achieves high precision by carefully clas-
sifying all possible situations that could lead to impre-

cise floating-point calculations. Conor et al. [21] pro-
poses a robust intersection algorithm for 2D planes us-
ing floating-point arithmetic. Portaneri et al.[23] in-
troduced the Wrapping technique to resolve various in-
tersection problems, but its capability to preserve geo-
metric features is limited. Pion et al. [22] proposes a
generic lazy evaluation scheme for exact geometric com-
putations, which uses interval arithmetic to optimize
the computation process and improve efficiency. The
following methods introduced rely on this lazy evalu-
ation. Cherchi et al.[6] proposed an innovative inter-
section method that does not explicitly compute in-
tersection points but instead represents them using ex-
tended indirect predicates. While this approach yields
valid intersection results under indirect predicates, it
introduces new intersection issues when transitioning
to floating-point numbers due to floating-point preci-
sion. Cherchi et al.[7] later improved this method to
enhance computational efficiency, achieving real-time
interactive Boolean operations. Similarly, Guo et al.
[14] proposes a new geometric predicate, indirect offset
predicate, and develops localization and dimension re-
duction techniques to boost efficiency and parallelism
while maintaining accuracy. However, the problem of
valid mesh representation in a floating-point represen-
tation remains unresolved. In summary, developing an
efficient method to address model intersection problems
in a floating-point representation remains a significant
challenge.

Edge-based remeshing methods[15, 4] typically in-
volve four local operations: edge splitting, edge collaps-
ing, edge swapping, and vertex smoothing. Over the
years, various adaptations of these methods have been
developed to suit different remeshing applications by in-
troducing constraints and optimizing strategies. Dun-
yach et al.[12] proposed a curvature-adaptive isotropic
remeshing algorithm, which has demonstrated high ef-
ficiency in real-time applications. Dapogny et al.[8]
introduced an adaptive remeshing algorithm for im-
plicit geometries, which operates on constructed cu-
bic Bézier surfaces and efficiently adapts to complex
boundary changes. However, if the initial mesh qual-
ity is poor, issues such as folding and severe deforma-
tions may arise during the construction of these cubic
Bézier surfaces. Hu et al.[16] proposed an error-bounded
edge-based remeshing method that utilizes local oper-
ators to enhance mesh quality and reduce the number
of elements while maintaining approximation error con-
straints. Cheng et al.[5] developed an improved error-
bounded remeshing method that permits temporary vi-
olations of approximation error constraints during the
remeshing process and ensures compliance by detecting
and refining meshes that violate the constraints. Guo et
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al.[13] applied edge-based remeshing techniques to dis-
cretize CAD models, while Wang et al.[26] introduced
a method that eliminates large and small angles in sur-
face meshes. Zhang et al.[28] presented a simple yet ef-
fective edge-based remeshing method that incorporates
hard constraints for greater control over the remeshing
process.

3 Method

We present a robust and efficient method for repairing
meshes with intersecting triangles, consisting of five
main steps as illustrated in Figure 1.

3.1 Preprocessing The input mesh M may contain
numerous sliver or oversized triangles that self-intersect,
thereby increasing the computational cost of intersec-
tion algorithms. To simplify these calculations, we first
preprocess the input mesh, yielding the refined mesh
Mp. This preprocessing not only reduces the compu-
tational cost of intersection but also improves the lo-
cality of intersecting triangles, facilitating local repairs.
We adopt an edge-based remeshing algorithm during
preprocessing, which adjusts the input mesh under the
guidance of a constant sizing field and the constraints
of a surface envelope. The constant sizing field ensures
mesh uniformity, while the surface envelope maintains
geometric fidelity during remeshing. Additionally, dur-
ing the preprocessing stage, we will address issues such
as hole and gap repairs to ensure the input mesh be-
comes watertight.

The constraint of the surface envelope refers to the
requirement in the remeshing algorithm that the modi-
fied triangles must lie within the surface envelope. How-
ever, precise calculations are computationally expensive
[2]. Therefore, an approximate method is used for the
envelope test, where the position of the modified tri-
angle is determined by checking if sampled points lie
within the surface envelope. The specific sampling and
judgment methods are based on the envelope testing
strategy proposed by Hu et al [18].

A constant sizing field h specifies a uniform desired
edge length for all meshes. The default value of h is
set to 1% of the length of the diagonal of the model’s
axis-aligned bounding box.

To preserve the geometric fidelity during remeshing,
we introduce a surface envelope constraint. The surface
envelope E defines a tolerance region centered around
the original surface with a thickness of δ, as follows:

(3.1) E = {x ∈ R
3 | ∃y ∈ S, ∥x− y∥ ≤ δ}

where S is the original surface and δ is a predefined
tolerance threshold.

The core idea of the edge-based remeshing algo-
rithm is to iteratively adjust the mesh structure by per-
forming a series of edge split, edge collapse, edge swap,
and vertex smooth operations on the mesh edges, so
that the mesh gradually meets the preset size and qual-
ity requirements [12].

These local operations are iteratively applied un-
der the constraint of the surface envelope until a pre-
set number of iterations is reached. Through this al-
gorithm, we improve mesh quality while maintaining
geometric accuracy, simplify intersection computations,
and provide a solid foundation for subsequent local re-
pair operations, as illustrated in Figure 1.

Additionally, to ensure the mesh is watertight, we
employ the method proposed by Botsch et al. [3]
to repair gaps and holes following mesh remeshing.
Any intersections arising during this process are swiftly
handled locally in subsequent steps.

3.2 Partition of Intersecting Triangles In this
section, our objective is to identify all intersecting
triangles within a given preprocessed mesh Mp and
organize them into multiple connected components,
while also categorizing the non-intersecting triangles
into a separate set. To achieve this, we follow the
procedure outlined below.

Let Mp denote the preprocessed triangular mesh,
consisting of a set of triangles:

(3.2) Mp = {Ti | i = 1, 2, . . . , N},

where N is the total number of triangles. Mesh Mp

represents the preprocessed version of the original mesh,
prepared for further analysis and intersection detection.

Based on the geometric information of mesh Mp, we
construct an octree O. Each leaf node ℓ of the octree O
contains a subset of triangles from Mp, denoted as:

(3.3) Tℓ = {Ti ∈ Mp | Ti is contained in leaf node ℓ}.

For each leaf node ℓ, we perform pairwise intersec-
tion tests among all possible pairs of triangles (Tj , Tk)
within the triangle set Tℓ. These intersection tests are
executed in parallel across different leaf nodes to en-
hance computational efficiency.

We define the set of all intersecting triangle pairs I
as:

(3.4) I =
⋃

ℓ

{(Tj , Tk) | Tj , Tk ∈ Tℓ, Tj intersects Tk}.

We then define the set of all triangles involved in
intersections G as:
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Figure 1: Pipeline of our method.

(3.5) G = {Ti ∈ Mp | ∃ Tj ∈ Mp, (Ti, Tj) ∈ I}.

In other words, G comprises all triangles in the
preprocessed mesh Mp that intersect with at least one
other triangle.

We construct an undirected graph G = (V,E),
where, V = {vi | Ti ∈ G}, with each vertex vi
corresponding to an intersecting triangle Ti. E =
{(vi, vj) | (Ti, Tj) ∈ I}, where an edge (vi, vj) indicates
that triangles Ti and Tj intersect.

By performing connected component analysis on
graph G, we obtain K connected components (i.e.,
subgraphs):

(3.6) G =

K
⋃

k=1

Gk,

where each connected component Gk = (Vk, Ek)
satisfies:

� Vk ⊂ V and Ek ⊂ E,

� Any two vertices within Vk are connected by a path
in Gk.

For each connected component Gk, we define the
corresponding set of triangles Sk

int as:

(3.7) Sk
int = {Ti ∈ G | vi ∈ Vk}, k = 1, 2, . . . ,K.

Each set Sk
int contains all intersecting triangles

within the connected component Gk.
We define the set of non-intersecting triangles Snon

as:

(3.8) Snon = Mp \ G = {Ti ∈ Mp | Ti /∈ G}.

Thus, Snon comprises all triangles in the prepro-
cessed mesh Mp that do not intersect with any other
triangle.

Ultimately, we obtain a collection of sets:

(3.9) {Snon, S
1
int, S

2
int, . . . , S

K
int},

where:

� Snon is the set of all non-intersecting triangles.

� Each Sk
int for k ∈ K is a connected component

consisting of intersecting triangles.

For both the non-intersecting set Snon and each
intersecting set Sk

int, we can define the corresponding
vertex sets and edge sets as follows:

Vertex Sets: The vertex set Vnon of Snon and V k
int

of Sk
int represent all the distinct vertices of the triangles

in each set:

(3.10) Vnon =
⋃

Ti∈Snon

{vi1 , vi2 , vi3},
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(3.11) V k
int =

⋃

Ti∈Sk

int

{vi1 , vi2 , vi3},

where vi1 , vi2 , vi3 are the vertices of triangle Ti.
Edge Sets: The edge set Enon of Snon and Ek

int of
Sk
int represent all the edges of the triangles in each set:

(3.12) Enon =
⋃

Ti∈Snon

{(vi1 , vi2), (vi2 , vi3), (vi3 , vi1)},

(3.13) Ek
int =

⋃

Ti∈Sk

int

{(vi1 , vi2), (vi2 , vi3), (vi3 , vi1)}.

This framework effectively organizes the triangles in
the preprocessed mesh Mp into sets of intersecting and
non-intersecting triangles. By constructing an octree
and employing graph-based connected component anal-
ysis, our method efficiently identifies and categorizes
intersecting triangles into multiple connected domains.
This partition establishes a foundation for subsequent
geometric processing and mesh repair operations.

3.3 Intersection Algorithm To ensure the robust-
ness of intersection operations, inspired by the TetWild
method proposed by Hu et al.[18], we present a fast and
robust intersection algorithm based on rational num-
bers that supports constrained edges. The pipeline of
our algorithm is depicted in Figure 2, where we use a
2D example for clear illustration. In this visualization,
the segments represent mesh facets, and their endpoints
correspond to mesh edges. The algorithm begins by
classifying input segments into non-intersecting (green)
and intersecting (yellow) parts. This algorithm aims to
quickly resolve intersection issues without considering
mesh quality initially, and its results are represented
using floating-point numbers. The inclusion of con-
strained edges ensures that the constrained boundaries
of the repaired mesh are preserved, facilitating subse-
quent stitching with the non-intersecting set Snon.

Our method first computes the bounding box of
the intersecting part Si

int, and generates eight virtual
vertices by slightly expanding the minimum and max-
imum points of the bounding box. These vertices are
then added to the point set V i

int. Based on V i
int, we

construct the initial tetrahedral mesh MTet using the
Bowyer-Watson algorithm. This is demonstrated in the
Delaunay triangulation step of Figure 2.

We sequentially insert the triangles in Si
int intoM

i
Tet

to perform conforming boundary recovery, obtaining a
conforming tetrahedral mesh M i′

Tet. The insertion pro-
cess utilizes a Binary Space Partitioning (BSP) tree,
with all operations performed using rational arithmetic.
During this stage, as illustrated in Figure 2, intersec-
tion points (red) are represented using rational num-
bers, while constrained points (blue) and other vertices

(black) are represented in floating-point format. Since
the intersection point is calculated using rational num-
bers, robustness is ensured.

Next, we attempt to convert the rational coordi-
nates of the tetrahedral mesh M i′

Tet into floating-point
numbers, ensuring that the volume of the tetrahedra re-
mains positive throughout. As shown in Figure 2, this
involves decomposing the convex polygon by connecting
its centroid to all vertices, followed by local mesh op-
timization. If all conversions are successful, the inter-
section algorithm terminates, and we extract the sur-
face mesh from the conforming volumetric mesh, as in-
dicated by the green arrow in Figure 1.

If the conversion is not entirely successful, we pro-
ceed to perform constrained volumetric mesh optimiza-
tion. We define the set of constrained edges Ei

con as
the intersection of Ei

int and Enon, as shown by the red

edges in Figure 1. The volumetric mesh M i′

Tet is opti-
mized under the constraints of Ei

con and the minimal
surface envelope to improve mesh quality. This opti-
mization ensures a stable transition from rational num-
bers to floating-point representations while maintain-
ing consistently positive mesh element volumes. The
Ei

con constraint facilitates subsequent stitching with the
non-intersecting mesh Snon, whereas the minimal sur-
face envelope constraint prevents intersections between
the repaired Si

int and Snon. By default, the tolerance
δ for the minimal surface envelope is set to 1 × 10−6

times the diagonal length of the axis-aligned bounding
box of Si

int. Once all rational numbers are successfully
converted, the intersection process concludes.

During the optimization process, we track and mark
the triangles that belong to the input surface, similar to
the yellow segments shown in the final step of Figure 2.
Once all points are successfully converted to floating-
point numbers, we extract the marked surface as the
final result of the mesh intersection.

Volume mesh optimization is performed by itera-
tively applying four local operations to improve mesh
quality, as illustrated in Figure 3. During volumet-
ric mesh optimization, only three types of operations
are allowed on the constrained edges Ei

con: inserting a
point on a constrained edge, merging two adjacent ver-
tices on a constrained edge, and merging a point from a
non-constrained edge onto a constrained edge, as illus-
trated in Figure 4. The overall process of our intersec-
tion method is outlined in Algorithm 3.1.

Algorithm 3.1. (Robust Fast Intersection)
Based on Rational Numbers

Require: Intersecting set Si
int

Ensure: Non-intersecting Surface mesh Si
fix

1: function Robust-Fast-Intersection(Si
int)
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Figure 2: Pipeline of our intersection handling algorithm in 2D. The process includes: input segments classification
(green: non-intersecting, yellow: intersecting), Delaunay triangulation of intersecting segments, BSP tree
construction for intersection computation, polygon decomposition, mesh quality optimization, and final segment
extraction.

Figure 3: Four local operations.

Figure 4: Diagram of optimization operations on con-
strained edges during volume mesh optimization. Blue
points and edges represent segments of constrained
edges. Green points indicate points inserted along the
constrained edges. Purple edges are those being pre-
pared for collapsing, while yellow points lie outside the
constrained edges.

2: Compute bounding box of Sk
int, expand the

minimum and maximum points slightly, and add the
8 virtual corner points to V i

int

3: Construct tetrahedral mesh MTet using Bowyer-
Watson on V i

int

4: for each triangle t ∈ Si
int do

5: Insert t into MTet for boundary recovery
6: end for

7: Obtain conforming tetrahedral mesh M ′

Tet

8: if Conversion of M ′

Tet to floating-point is suc-
cessful then

9: Extract surface mesh from M ′

Tet

10: return Surface mesh Si
fix

11: else

12: Define constrained edges Ei
con = Ei

int ∩ Enon

13: Define the surface envelope E of Si
int

14: repeat

15: Optimize M ′

Tet subject to Ei
con and E

16: Convert rational coordinates to floating-
point

17: until Conversion complete
18: Extract surface mesh from optimized mesh
19: return Surface mesh Si

fix

20: end if

21: end function

3.4 Stitching Since vertices were inserted into the
constraint edge Ei

con during the volumetric mesh op-
timization, we need to insert corresponding points on
the edges Ei

non in Snon during the stitching process to
ensure successful merging. As shown in Figure 5, the
red edges and blue points constitute Ei

non. The green
points are the vertices inserted onto the constraint edges
during the volumetric mesh optimization, and the red
points are the vertices inserted on Snon for the purpose
of stitching.

Figure 5: Alignment of inserted points prior to stitching.

Each Si
int is stitched with Snon, forming the repaired

surface mesh Mfix.

3.5 Remeshing While the repair process corrected
geometric errors, it did not effectively improve the mesh
quality. To improve the mesh quality, we perform an
edge-based mesh remeshing that consists of two main
steps: initializing the size field and remeshing the mesh
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guided by this size field.
The size field L(x) determines the desired edge

lengths across the mesh, controlling mesh density. We
initialize L(x) based on the discrete curvature at each
vertex. Specifically, for a vertex vi, we compute the
maximum absolute curvature κi using the principal
curvatures κmax,i and κmin,i:

(3.14) κi = max {|κmax,i| , |κmin,i|} .

Given an approximation tolerance ϵ, the size at vertex
vi is calculated as [12]:

(3.15) L(vi) =

√

6ϵ

κi

− 3ϵ2,

To reduce the impact of noise and ensure smooth
transitions in the size field, we apply Laplacian smooth-
ing to the size values at non-feature vertices. This pro-
cess helps eliminate local irregularities that could lead
to poor mesh quality.

After the construction of the size field, we itera-
tively improve the mesh quality using the four local op-
erations described in Section 3.1. It is important to
perform intersection checks to prevent the creation of
new intersections during the remeshing process.

4 Experiments

Our approach was developed using standard C++ in
Visual Studio 2022 on the Windows platform. The
experiments were conducted on a desktop computer
equipped with an AMD Ryzen 7 7840H processor and
32 GB of memory.

We selected the Ford Engine Block (#114029)
model from the Thingi10K dataset [29] (as shown in
Figure 6) and the Oil Pump Jack1 model from the Mesh-
ing Contest (as shown in Figure 12). These models
contain a large number of geometric errors and were
used to verify the effectiveness of our method (see Sec-
tion 4.1). We compared our method with the state-
of-the-art Fast-TetWild [17] to validate its superiority
(see Section 4.2). To ensure geometric fidelity, we set
both the surface envelope tolerance δ during the mesh
preprocessing phase and the approximation tolerance ϵ
in the remeshing phase to 10−4 times the length of the
diagonal of the model’s axis-aligned bounding box.

4.1 Evaluation In this section, we use the Ford
Engine Block model to verify the effectiveness of each
algorithm step, demonstrating that each step plays a
significant role in the overall processing. The Ford
Engine Block model, as shown in Figure 6, contains
numerous intersections, gaps and sliver triangles.

1https://grabcad.com/library/oil-pumpjack-1

Figure 6: The Ford Engine Block model. This model
contains 490 intersecting triangles and several gaps. In
the right image, we set the model’s transparency to 0.1
to highlight the gaps and intersecting triangles.

First, we present the results of the model prepro-
cessing, as shown in Figure 7. After preprocessing, the
model is watertight and contains only 61 intersecting
triangles. The number of mesh intersections is signifi-
cantly reduced. Furthermore, in regions where the mesh
topology was correct but the geometry was erroneous,
intersection issues were resolved after remeshing. This
improvement is attributed to local operations such as
smoothing during preprocessing, which performed un-
tangling. Consequently, meshes that were originally in-
tersecting became non-intersecting after remeshing, as
indicated by the yellow box in the left image of Figure 7.
These results verify the effectiveness of our preprocess-
ing method.

Figure 7: The model after preprocessing. In the
right image, we set the model’s transparency to 0.1 to
highlight the intersecting triangles.

After preprocessing, we divide the model into dif-
ferent sets based on the partition algorithm introduced
in Section 3.2. For each intersecting set, we introduced
robust intersection operations based on rational num-
bers and utilized volumetric mesh optimization to grad-
ually convert rational numbers to floating-point num-
bers. This process is valid as long as the tetrahedral
mesh has positive volume. As shown in Figure 8, we
demonstrate the partition results and the bounding box
elements constructed for each intersecting set. A total
of 11 intersecting sets were identified.

We display the non-intersecting surface mesh after
repairing the intersecting sets and stitching them with
the non-intersecting sets in Figure 9. We successfully
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Figure 8: The local repair process. The left image shows
multiple bounding box volumetric meshes constructed
during local repair. In the right image, we set the
model’s transparency to 0.1 to highlight a repaired
intersecting set.

generated the volumetric mesh using TetGen [24]. The
three processes of partition, repair, and stitching were
executed serially, taking only 4.04 seconds to complete
the repair of the entire model. This demonstrates
the advantage of our proposed local method, which
significantly reduces the problem size.

Figure 9: The repaired mesh. The left image shows
the repaired surface mesh by our approach, and the
right image shows a cross-section of the volumetric mesh
generated using TetGen.

Finally, we employed remeshing to improve the
mesh quality to meet the requirements of simulation
analysis. The result of the remeshing is shown in
Figure 10.

Figure 10: The surface mesh of the Ford Engine Block
model generated by our method, and the volumetric
mesh generated using TetGen.

To verify the robustness of our method, we further
tested it using a more complex model, the Oil Pump
Jack, as shown in Figure 12. This model consists of

Figure 11: The surface mesh of the Oil Pump Jack
model generated by our method, and the volumetric
mesh generated using TetGen.

114,524 triangles, with 48,528 triangles having intersec-
tion errors making it highly challenging.

Figure 12: The Oil Pump Jack model. This model
contains 48,528 intersecting triangles. In the right
image, we set the model’s transparency to 0.1; red
triangles represent triangles with intersection errors.

After preprocessing and partition, 25 intersecting
sets were generated, as shown in Figure 13. The num-
ber of intersecting triangles was reduced to 38,111, ap-
proximately 10,000 fewer than the initial mesh, further
verifying the effectiveness of our preprocessing step.

The final surface mesh generated by our method
is shown in Figure 11, along with the volumetric mesh
generated using TetGen. This verifies that the surface
mesh produced by our method can successfully generate
volumetric meshes.

Figure 14 presents a histogram illustrating the mesh
quality in terms of skewness [19] for both the original
model and the repaired model. The vertical axis rep-
resents the proportion, providing a quantitative insight
into the distribution. Compared to the original mesh,
the repaired mesh demonstrates superior quality, char-
acterized by a higher prevalence of triangles approach-
ing the ideal equilateral shape.
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Figure 13: Schematic of intersecting sets after partition
of the Oil Pump Jack model.

(a) Ford Engine Block (b) Oil Pump Jack

Figure 14: The comparison of mesh quality before and
after remeshing for the Ford Engine Block and Oil
Pump Jack model. Green: the result of original surface;
Yellow: the repaired result by our method. The X-axis
shows skewness values from 0.0 to 1.0 in intervals of
0.1, while the Y-axis shows the percentage of triangles
in each interval.

4.2 Comparison We compared our method with
Fast-TetWild [17], an improved version of TetWild
[18] proposed by Hu et al. We chose Fast-TetWild
as our comparison baseline because it represents the
state-of-the-art method that achieves a balance between
computational efficiency and result validity in floating-
point representation, while other existing methods ei-
ther struggle with floating-point accuracy or computa-
tional efficiency. We set the tolerance to 1× 10−4 times
the length of the model’s bounding box diagonal, con-
sistent with our method. Since Fast-TetWild with the
default number of iterations results in excessively long
computation times, causing it to remain in the optimiza-
tion loop, we set its maximum number of iterations to
30. We present the results of Fast-TetWild processing
the Ford Engine Block and Oil Pump Jack models in
Figure 15.

We conducted comparisons focusing on local details,
as illustrated in Figures 16 and 17. The Fast-TetWild

Figure 15: Results generated using the Fast-TetWild
method.

exhibits local over-refinement, resulting from continuous
refinement to improve quality. Our method only per-
form volumetric mesh optimization on locations with
intersection, converting rational numbers to floating-
point representations, and then use remeshing to im-
prove mesh quality. This process can identify and pre-
serve feature edges. In contrast, Fast-TetWild converts
the entire model into a volumetric mesh for optimiza-
tion, spending a significant amount of time on boundary
recovery even in regions without intersection. There-
fore, our method balances efficiency, robustness, mesh
quality, and geometric fidelity.

(a) Fast-TetWild

(b) Our method

Figure 16: Comparison of results on the Oil Pump Jack
model between our method and Fast-TetWild.

We compared the running times of our method and
Fast-TetWild in Table 1. Our method, executed serially,
is still an order of magnitude faster than Fast-TetWild,
demonstrating its high efficiency. It can be seen that
the preprocessing time of our method on the Oil Pump
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(a) Fast-TetWild

(b) Our method

Figure 17: Comparison of results on the Ford Engine
Block model between our method and Fast-TetWild.

Table 1: Performance comparison between our method
and Fast-TetWild

Model Method
Mesh Stats. Timing (s)

#Vert. #Faces Prep. Inter. Remesh Total

Engine
Ours 916,773 1,834,123 51.76 4.04 107.52 163.32

Fast-TetWild 387,006 774,452 – – – 9,858.09

Oil
Ours 517,517 1,073,913 17.74 537.14 128.46 683.34

Fast-TetWild 497,239 1,038,747 – – – 7,114.36

Jack model is much shorter than on the Ford Engine
Block model, because most of the mesh in the Oil Pump
Jack model is located on planes, resulting in higher
preprocessing efficiency.

Additionally, for the Ford Engine Block model,
due to its fewer intersection errors and high locality
(as shown in Figure 6), the intersection stage is very
efficient, taking only 4.04 seconds. However, when
processing the Oil Pump Jack model, the intersection
algorithm required a significant amount of time due
to the large number of intersections and their poor
spatial locality. Despite this, it remained an order of
magnitude faster than Fast-TetWild. We employed the
method for fast and robust mesh arrangements using
floating-point arithmetic, as proposed by Cherchi et al.
[6], to handle intersections. Although the intersection
is efficient, the result for the Oil Pump Jack model
under floating-point representation still contains many
intersecting triangles. Therefore, we believe that this
intersection time is worthwhile to improve algorithm
robustness.

4.3 Additional Validation on Diverse Geome-

tries While the above analysis demonstrates the effec-
tiveness of our method on complex CAD models, we
further validate our approach on a broader range of ge-
ometries from the Thingi10K dataset [29]. In addition
to the previously analyzed Engine, we randomly selected
six more models with self-intersection defects to pro-
vide a comprehensive evaluation. For fair comparison,
we maintained consistent parameter configurations as in
the previous experiments.

Detailed visual results and comparisons can be
found in Figure 19, which presents the processing
results on these representative models: Gear (#34783),
Yoda (#37861), Dragon (#39507), Turbine (#43149),
Lamp (#61258), and Machine (#117682). Our method
successfully handles these complex geometries while
preserving geometric features. To verify the validity
of our results, we use the processed surface meshes as
boundary constraints to generate tetrahedral meshes,
with cross-sections shown in pink to reveal the internal
tetrahedral structure.

The quantitative evaluation further supports our
previous findings. The angle distribution analysis (Fig-
ure 18) demonstrates that our method achieves superior
mesh quality. The computational efficiency comparison
(Table 2) consistently shows that our method signifi-
cantly outperforms Fast-TetWild in processing speed,
reinforcing our earlier observations.

The consistent performance across both CAD mod-
els and diverse examples from the Thingi10K dataset
demonstrates the robustness and generality of our
method in handling various types of self-intersection de-
fects while maintaining high efficiency and mesh quality.

Table 2: Performance comparison between our method
and Fast-TetWild

Model Method
Mesh Statistics Timing (s)

#Vert. #Faces Prep. Inter. Remesh Total

Gear
Ours 165,602 331,204 8.30 0.54 13.31 22.15

Fast-TetWild 74,234 148,468 - - - 2532.50

Yoda
Ours 176,857 354,588 16.22 2.25 41.94 60.41

Fast-TetWild 56,155 113,397 - - - 1070.93

Dragon
Ours 138,405 277,352 104.29 4.67 129.99 238.95

Fast-TetWild 112,208 224,804 - - - 2075.04

Turbine
Ours 169,059 338,150 6.55 1.95 18.77 27.27

Fast-TetWild 94,801 189,682 - - - 2923.17

Lamp
Ours 382,857 767,330 24.14 4.10 60.59 88.83

Fast-TetWild 147,248 296,112 - - - 6838.84

Machine
Ours 309,837 694,389 13.22 217.02 280.68 510.92

Fast-TetWild 76,437 156,621 - - - 3920.32

5 Conclusion

In this paper, we present a robust and efficient method
for repairing triangle meshes with intersecting triangles
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(a) Gear (b) Yoda

(c) Dragon (d) Turbine

(e) Lamp (f) Machine

Figure 18: Dihedral angle distributions of triangular
meshes for different models generated by Ours and Fast-
TetWild.

by combining localized processing with rational number
computations. The process begins with a preprocessing
step to improve the input mesh quality and enhance the
locality of intersection calculations. Additionally, holes
and gaps are repaired to ensure watertightness. We par-
tition the mesh into intersecting and non-intersecting
regions using octree-based spatial subdivision and con-
nected component analysis. For intersecting regions, in-
tersection calculations are made robust through the use
of rational numbers. These results are then stably con-
verted to floating-point representation via a constrained
edge volumetric mesh optimization method. Finally, the
repaired local meshes are seamlessly stitched into the
non-intersecting mesh, followed by the application of an
edge-based remeshing technique, guided by a curvature-
adaptive sizing field, to improve overall mesh quality
while avoiding intersections.

Experimental results on complex models such as the
Ford Engine Block and Oil Pump Jack demonstrate
that our method significantly reduces computational
overhead while producing high-quality, intersection-free
meshes suitable for downstream applications like finite
element analysis. The localized nature of our method al-
lows for significant time savings by avoiding unnecessary
global processing, and the use of rational arithmetic en-
sures robustness against floating-point precision errors.

While our method demonstrates significant advan-

tages in handling local intersections, it has certain lim-
itations. In scenarios where dense intersections occur
globally throughout the model, lacking locality char-
acteristics, our method would need to repair the en-
tire model and perform volumetric optimization, which
could impact computational efficiency. Although such
globally dense intersection scenarios are rare in practical
applications. Additionally, our method relies on param-
eter settings, including mesh size for initial remeshing
and surface envelope tolerance for tetrahedral optimiza-
tion. While the default parameters work well for most
cases, they may need adjustment for specific scenarios.
Future work will focus on reducing parameter depen-
dency and developing more automated parameter deter-
mination methods to improve the method’s generality.

In the future, one potential direction is to extend
our method by parallelizing the intersection repair pro-
cess, as the repair of each intersecting region is con-
ducted independently. Additionally, during the geome-
try repair process, we could consider incorporating de-
featuring functionality to eliminate features that are ir-
relevant to simulation, thereby creating a more compre-
hensive mesh repair pipeline.
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