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Abstract
This work proposes a novel algorithm to eliminate the self-
overlapping based on conformal welding theory, to improve
the robustness of the surface remeshing algorithm. The
proposed algorithm constructs a planar annulus with a high-
quality triangulation, then weld the input surface with the
annulus along their corresponding boundary components.
The welded surface has a well-defined Riemannian metric
and can be conformally mapped onto a convex planar
domain by using the dynamic discrete surface Ricci flow
method. This method guarantees the conformal mapping
restricted on the input surface is a global embedding, and
resolves the problem of self-intersections in the neighborhood
of the boundary. The conformal welding method has been
tested to remesh real car models. The experimental results
demonstrate the method is highly effective in practice and
greatly improves the robustness of the remeshing algorithm
based on conformal uniformization.

1 Introduction

Surface mesh generation plays a fundamental role in
CAD/CAE fields. Planar mesh generation methods
are relatively mature, such as the Delaunay refinement
method [2], and the centroidal Voronoi diagram method
[6]. Surface meshing is much more challenging.

Recently, Si et. al. [15] introduced a novel algo-
rithm for generating high quality triangulations on sur-
faces with complicated topologies based on conformal
uniformization. The original CAD model is converted
to a low-quality triangle mesh, obtained by triangula-
tion on the parameter domain and refined by necessary
preprocessing steps, such that the mesh is a water-tight
manifold. The key idea is to flatten the input trian-
gle mesh onto a planar domain by an angle-preserving
(conformal) map, then a high quality planar mesh is
generated and pulled back to the 3D surface. Since
the mapping is angle-preserving, the Delaunay property
is preserved in the surface triangulation. Furthermore,
the planar sampling density is adaptive to the surface
area element and the curvature, this ensures the surface
meshing quality. Fig. 1 shows one example of remeshing
a car chassis model based on conformal uniformization:
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frame (a) shows the 3D car chassis model; frame (b)
illustrates the surface is flattened by a conformal map-
ping; frame (c) demonstrates the conformality of the
mapping by checkerboard texture mapping, all the right
corner angles of the checkers are well preserved; the pla-
nar image is triangulated using Delaunay refinement al-
gorithm, the pull back triangulation on the surface has
high qualities as shown in frame (d).

In most scenarios, the quality of the input triangle
mesh is often low, posing a significant risk to the sta-
bility and convergence of standard conformal mapping
algorithms. We choose the dynamic surface Ricci flow
method [11, 10] to compute the parameterization be-
cause it has a theoretic guarantee to produce the unique
Riemannian metric, conformal to the initial metric and
inducing the prescribed curvature. Furthermore, dy-
namic surface Ricci flow is capable of handling low-
quality input meshes and automatically improves the
triangulation to remain Delaunay with final Rieman-
nian metric.

However, the parameterization result depends on
the input geometry and the target curvature, it is pos-
sible that the final mapping is only a local embed-
ding, namely the mapping restricted to the neighbor-
hood of each vertex is injective and surjective, but
globally the image of the whole input mesh may have
self-intersections. Especially, if the surface has con-
cave boundaries, the image of the neighborhood of the
boundary may have overlaps. This causes great diffi-
culties for the downstream planar Delaunay refinement
algorithm. As shown in Fig. 2, frame (a) shows a shield
of a car tire model, frame (b) illustrates the conformal
parameterization result, and the self-intersections can
be found in the neighborhood of the boundary.

To tackle this challenge, this work proposes a novel
algorithm to improve the robustness of surface remesh-
ing based on conformal welding technnique [9, 17]. Sup-
pose the input surface M is a topological poly-annulus,
namely a genus zero surface with multiple boundary
components {γ1, . . . , γk}, We can seamlessly merge M
with a topological annulus A having boundaries τ1
and τ2, aligning them correspondingly with γ1 and τ1,
φ : γ1 → τ1. The merged surface S ←M ∪φA is a topo-
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(a) 3D chassis model (b) conformal flattening (c) texture mapping (d) remeshing result

Figure 1: Remeshing a whole car chassis model based on conformal uniformization.

logical poly-annulus having boundaries τ2, γ2, . . . , γn.
We treat τ2 as the exterior boundary component, and
γ2, . . . , γn as the interior boundary components, and use
the dynamic Ricci flow to map S onto a planar domain,
such that the image of the exterior boundary τ2 is con-
vex (or nearly convex), so the mapping is an embedding,
the input surface M is conformally flattened without
any self-intersection. This conformal welding technique
can greatly improve the robustness of the algorithm. As
shown in Fig. 2, the input surface is welded with a topo-
logical annulus and the welded surface is conformally
flattened in frame (c), the mapping restricted to the
input surface has no overlap. Frame (d) shows confor-
mality of the parameterization by checkerboard texture
mapping.

1.1 Contribution This work proposes a novel algo-
rithm to improve the robustness of surface remeshing
based on conformal welding method. Suppose the in-
put surface is a poly-annulus, we construct a topological
cylinder with high quality triangulation and weld the in-
put surface with the annulus along one boundary loop.
By using dynamic discrete surface Ricci flow, the welded
surface is conformally flattened onto a near convex do-
main on the plane. This method guarantees the confor-
mal mapping restricted to the input surface is an em-
bedding, and resolves the problem of self-intersections
in the neighborhood of the boundary. In our experi-
ments, we use the conformal welding method to remesh
real car models, which shows the method is rigorous
and practical, and significantly improves the robustness
of the remeshing algorithm.

2 Previous Work

The objective of surface triangle mesh generation is to
tessellate a given 3D surface into triangles, creating
a discrete representation suitable for various applica-
tions, such as finite element analysis. Over the years,
researchers have developed numerous algorithms and
methods to address this challenge efficiently and accu-

rately. This literature review highlights some prominent
contributions in the field.
Delaunay-Based Approaches Delaunay triangu-
lation is a widely used technique for surface mesh
generation [2]. Shewchuk’s Triangle [22] is a popular
tool for computing Delaunay triangulations of planar
straight-line graphs and is often used as a building
block in surface meshing algorithms. In 3D, adaptive
refinement techniques, such as Bowyer-Watson and
incremental insertion [3], are employed to generate
high-quality triangle meshes from point clouds or
surfaces. Centroidal voronoi tessellation is also a pop-
ular method for high quality planar mesh generation [6].

Constrained Delaunay Triangulation Handling
constraints, such as sharp edges and features, is crucial
in surface meshing. Recent developments include the
CGAL library, which provides efficient algorithms for
constrained Delaunay triangulation and mesh genera-
tion [20]. These advancements enable the preservation
of geometric features in the generated meshes.

Surface Reconstruction Methods Surface recon-
struction aims to recover a continuous surface from
point clouds or scattered data. Poisson surface recon-
struction [16] is a notable technique that combines
surface reconstruction and mesh generation. It lever-
ages the Poisson equation to create a smooth surface
representation and subsequently generates triangle
meshes.

Variational Approaches Variational methods, such
as surface fairing and optimization-based meshing,
have gained attention. Garland and Heckbert’s surface
simplification algorithm [8] is a classic example. It
iteratively collapses edges to create simplified triangle
meshes while preserving important geometric charac-
teristics.

Multi-resolution Techniques Multi-resolution
representations are valuable for adaptive meshing.
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(a). wheel housing model (b). conformal flattening (c). conformal flattening (d). conformal texture mapping
with self intersections of the welded model

Figure 2: Robust conformal parameterization of a shield of the car tire model. The conformal welding method
eliminates the self-intersections.

The work of Alliez et al. on Progressive Meshes [1]
introduced a framework for constructing levels of detail
in triangle meshes. This concept has applications in
real-time graphics and efficient transmission of 3D
models.

Conformal Uniformization Based Method Re-
cently, Si et. al. [15] introduced a novel algorithm for
generating high quality triangulations on surfaces with
complicated topologies based on conformal uniformiza-
tion. The key idea is to flatten the input surface onto a
planar domain by an angle-preserving (conformal) map,
then a high quality planar mesh is generated and pulled
back to the 3D surface. Since the mapping is angle-
preserving, the Delaunay property is preserved to the
surface triangulation. Furthermore, the planar sam-
pling density is adaptive to the surface area element
and the curvature, this guarantees the surface meshing
quality.

However, for surfaces with complicated topologies,
conformal parameterization algorithms can only guar-
antee the mapping is locally embedding, and globally
immersion. Namely, they may produce self-intersections
for concave boundary images. This will cause intrinsic
difficulty for the planar Delaunay refinement algorithm
since it always assumes the input has no self overlap-
ping. The current work proposes to use the conformal
welding method to glue the input surface with a topo-
logical annulus and map the glued surface onto a planar
domain with convex boundary condition so that the re-
striction of the mapping on the initial surface is injec-
tive. This will greatly improve the robustness of the
remeshing algorithm.

3 Theoretic Foundation

This section briefly introduces the theoretic background
for surface conformal geometry and surface Ricci flow.
For more details, we refer readers to [12, 13, 11, 10] for

more thorough treatments.

3.1 Riemann Surface

Definition 3.0.1. (Holomorphic Function) A
complex function f : C → C, f(x + iy) = u + iv,
satisfies the following Cauchy-Riemann equation

∂u

∂x
=

∂v

∂y
,

∂u

∂y
= −∂v

∂x
,

then f is called a holomorphic function. If the inverse
function f−1 exists and is also holomorphic, then f is
called a bi-holomorphic function.

Given a topological surface S with an atlas A =
{(Uα, φα)}, where Uα is an open set, φα : Uα → C
is a homeomorphism, (Uα, φα) is a local chart. if
Uα ∩ Uβ ̸= ∅, then the transition map is defined as

φαβ : φα(Uα ∩ Uβ)→ φβ(Uα ∩ Uβ), φαβ = φβ ◦ φα.

If all the transition maps are bi-holomorphic, then A is
called a conformal structure.

Definition 3.0.2. (Riemann Surface) A topolog-
ical surface with a conformal structure is called a
Riemann surface.

Definition 3.0.3. (Isothermal parameter)
Suppose (S,g) is an oriented metric surface, and U is
a neighborhood U ⊂ S with the local coordinates (u, v)),
such that the Riemannian metric has a special form

g(u, v) = e2λ(u,v)(du2 + dv2),

then (u, v) are called the isothermal parameter on U
and λ : U → R is called the conformal factor function.

According to classicial surface differential geometry, for
any point p ∈ S, one can always find an neighborhood
of p, Up, such that on Up, one can define isothermal
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coordinates φp : Up → C. The union of isothermal co-
ordinate charts {(Up, φp)} form a conformal structure,
hence S is a Riemann surface.

Under the isothermal parameter, the Gaussian cur-
vature of the surface can be computed as

K(x, y) = −∆gλ(x, y) = −
1

e2λ(x,y)
∆λ(x, y).

The total Gaussian curvature is a topological invariant.

Theorem 3.1. (Gauss-Bonnet) Suppose (S,g) is
surface with a Riemannia metric, then∫

S

KdA+

∫
∂S

kgds = 2πχ(S),

where χ(S) is the Euler characteristic number of S.

3.2 Smooth Surface Ricci Flow

Definition 3.1.1. (Pull Back Metric) Suppose
(S,g) and (T,h) are two surfaces with Riemannian
metrics, the local parameters of them are (x, y) and
(u, v) respectively. The local representation of the
metric tensor h is

h(u, v) =

(
h11 h12

h21 h22

)
(u, v)

A C1 mapping φ : S → T has a local representation,

(x, y) 7→ (u(x, y), v(x, y)).

The pull back metric on S induced by φ is defined as

φ∗h(x, y) = DφThDφ,

where Dφ is the Jacobi matrix of the mapping φ. φ∗h
has the local representation

φ∗h =

(
ux uy

vx vy

)T (
h11 h12

h21 h22

)(
ux uy

vx vy

)
.

Definition 3.1.2. (Conformal Mapping) Suppose
(S,g) and (T,h) are surfaces with Riemannian metrics.
A C1 mapping φ : S → T is conformal, if

(3.1) φ∗h = e2λg,

where λ is the conformal factor function, λ : S → R.

A conformal mapping between two surfaces preserves
local shapes and angles.

Suppose we conformally deform the surface Rie-
mannian metric, g → ḡ = e2λg, then the Gaussian
curvature changes according to the Yamabe equation,

K̄ =
1

e2λ
(K −∆gλ) .

If we set K̄ to be constant, then we obtain the famous
Koebe-Poincaré uniformization theorem.

Theorem 3.2. (Koebe-Poincaré Uniformization)
Suppose (S,g) is an orientable closed surface, then
there is a scalar function λ : S → R, such that ḡ = e2λg
induces constant Gaussian curvature K̄, where K̄
equals one of {+1, 0,−1} according to χ(S) > 0,
χ(S) = 0 and χ(S) < 0.

The constant curvature metric is called the uniformiza-
tion metric of the surface. Yamabe equation can be
solved using Hamilton’s Ricci flow, which has been used
for the proof of Poincaré’s conjecture [18, 19].

Definition 3.2.1. (Hamilton’s Ricci Flow)
Suppose (S,g) is a closed orientable metric surface, the
normalized Ricci flow is defined as

∂tg(p, t) = 2

(
2πχ(S)

A(0)
−K(p, t)

)
g(p, t).

Hamilton [14] and Chow [5] proved the convergence of
surface Ricci flow.

3.3 Discrete Surface Ricci Flow Smooth surface
Ricci flow theory can be generalized to the discrete
polyhedral surfaces. A smooth surfaces is approximated
by a polyhedral surface S with vertex set V . We call
(S, V ) amarked surface. Given a marked surface, we can
define different triangulations. A discrete Riemannian
metric for a marked surface (S, V ) with a triangulation
T can be represented as edge lengths d : E → R+,
satisfying the triangle inequality, namely on each face
[vi, vj , vk],

d(vi, vj) + d(vj , vk) > d(vi, vk).

The discrete Riemannian metric determines the corner
angles, by the cosine law

(3.2) cos θjki =
d2(vi, vj) + d2(vk, vi)− d2(vj , vk)

2d(vi, vj)d(vk, vi)
.

where θjki is the corner angle at vi in the face [vi, vj , vk].
Fix a discrete Riemannian metric, there are many
triangulations, among them, the Delaunay triangulation
is highly preferred.

Definition 3.2.2. (Delaunay Triangulation)
Given a closed marked surface (S, V ) with a discrete
Riemannian metric d, a triangulation T is called
Delaunay, if for any edge [vi, vj ] shared by two faces
[vi, vj , vk] and [vj , vi, vl], the condition

(3.3) θijk + θjil ≤ π

always holds.
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Definition 3.2.3. (Edge Flip Operator) Given a
closed marked surface (S, V ) with a discrete Rieman-
nian metric d and a triangulation T , an edge [vi, vj ]
shared by two faces [vi, vj , vk] and [vj , vi, vl]. The
edge flip operator swaps the edge [vi, vj ] to [vk, vl], and
changes the triangles to [vi, vl, vk] and [vj , vk, vl].

It is well known that we can modify a triangulation to
be Delaunay by a sequence edge flip operators, such that
a diagonal, for which the sum of its opposite angles is
greater than π, is replaced by another diagonal.

The discrete Gaussian curvature is defined as the
angle deficit,

(3.4) K(vi) =

{
2π −

∑
jk θ

jk
i vi ̸∈ ∂M

π −
∑

jk θ
jk
i vi ∈ ∂M

The total discrete Gaussian curvature also satisfies the
Gauss-Bonnet theorem,∑

vi∈∂M

K(vi) +
∑

vi ̸∈∂M

K(vi) = 2πχ(M).

The conformal deformation is defined analogously

Definition 3.2.4. (Vertex Scaling) Suppose M =
(V,E, F ) is a triangulated polyhedral surface, with a
discrete metric d : E → R+. λ : V → R is the discrete
conformal factor function defined on the vertex set V ,
the vertex scaling operator is defined as follows:

(3.5) d(vi, vj) 7→ euid(vi, vj)e
uj , ∀ [vi, vj ] ∈ E.

The discrete conformal equivalence can be defined as
follows: suppose d and d′ are two polyhedral metrics of
the marked surface (S, V ), if there exists a sequence of
triangulations Ti’s and discrete metrics di’s,

T1, T2, . . . , Tn, d = d1, d2, . . . , dn = d′,

such that

1. Ti is Delaunay with respect to di;

2. if Ti ̸= Ti+1 then they differ by an edge flip and
di = di+1;

3. if di ̸= di+1 then they differ by a vertex scaling and
Ti = Ti+1.

Definition 3.2.5. (Discrete Conformal) Two
triangulated polyhedral metrics d and d′ on a closed
marked surface (S, V ) are discrete conformal, if they
are related by a sequence of two types of moves: vertex
scaling and edge flip preserving Delaunay property.

The discrete surface Ricci flow is defined similar to the
smooth one.

Definition 3.2.6. (Discrete Surface Ricci Flow)
Given a marked surface (S, V ) with a polyhedral metric
d and a triangulation T , suppose the target Gaussian
curvature K̄ : T → R is given, then the Ricci flow is
defined as

dλ(vi, t)

dt
= K̄(vi)−K(vi, t),

during the flow, the triangulation is updated to preserve
the Delaunay property.

The discrete surface Ricci flow is the gradient flow of
the following convex Ricci energy:

(3.6) E(λ) :=

∫ λ n∑
i=1

(K̄(vi)−K(vi))dλi.

The Hessian matrix of the Ricci energy can be rep-
resented by the cotangent edge weight, for each edge
[vi, vj ],

(3.7) wij = cot θijk + cotjil ,

and the Hessain matrix is H = (hij)

(3.8) hij =

{ ∑
k ̸=i wik i = j

−wij i ̸= j

The existence and the uniqueness of the solution to
the discrete surface Ricci flow is shown in the following
theorem, the detail of the proof is in [11].

Theorem 3.3. (Discrete Surface Flow [11])
Given a polyhedral metric d on a closed marked surface
(S, V ), and target curvature K̄ : V → (−∞, 2π),
such that K̄ satisfies the Gauss-Bonnet condition∑

K(v) = 2πχ(S), there is a d̄ discrete conformal to
d, and d̄ realized the curvature k̄. d̄ is unique update to
a scaling, and can be obtained by the discrete surface
Ricci flow.

3.4 Conformal Welding Suppose (S1,g1) and
(S2,g2) are two oriented compact surfaces with Rie-
mannian metrics. Suppose γ1 ⊂ ∂S1 is a connected
component on the boundary of S1, γ2 ⊂ ∂S2 a con-
nected component on the boundary of S2. Without loss
of generality, we can assume the total lengths of γ1 and
γ2 are equal, otherwise we can perform a scaling. Fur-
thermore, γ1 and γ2 are smooth curves. Let φ : γ1 → γ2
is an isometric map between the two loops. We weld
the two surfaces using φ as follows: each point p ∈ γ1 is
equivalent to its image φ(p) ∈ γ2, the glued surface is

S := S1

⋃
p∼φ(p)

S2.
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Let U1(p) be a neighborhood of p, φ1 : U1(p) → D2

be a local conformal chart mapping U1(p) to the upper
half disk of D2; U2(p) be a neighborhood of φ(p),
φ2 : U2(p) → D2 be a local conformal chart mapping
U2(p) to the lower half disk of D2. φ maps γ1|U1 to
γ2|U2 . By Schwartz reflection principle, φ1 and φ2 can
be glued to a conformal map from

φ1 ∪ φ2 : U1(p) ∪ U2(φ(p))→ D2.

This means S is a Riemann surface with well defined
conformal structure.

4 Computational Algorithms

4.1 Overview The algorithmic pipeline is illustrated
in Fig. 3. For a complex surface, the initial step involves
segmenting it into several parts, each constituting a
topological disk with or without holes. In the second
step, for every part, each hole is filled by simply adding
a vertex at the midpoint of the hole and connecting it
to the edges along the boundary; thereafter, conformal
welding is performed. The third step employs the
discrete surface Ricci flow algorithm to compute the
parameterization of the welded surface, with subsequent
recovery of all boundaries. In the fourth step, planar
Delaunay refinement is applied to the parameterization
domain of the surface. Finally, in the last step, the
remeshing result on the planar domain is pulled back
onto the surface to obtain the final result.

Figure 3: Pipeline of the algorithm.

4.2 Surface Segmentation Suppose the input sur-
face is a genus g closed surface, we need to either manu-
ally or automatically decompose it into genus zero sur-
face with multiple boundaries. This can be achieved
using persistent homology method [7] to compute the
handle loops and tunnel loops, and cut the surface along
these loops. Another method is pants decomposition.

Given a triangle mesh M , we compute its Poincaré
dual mesh M̄ , each vertex v, edge e and face f on M is
dual to a face v̄, edge ē and vertex f̄ on M̄ . We treat
M̄ as a graph of vertices and compute a spanning tree
T̄ , then the cut graph Γ is defined as

Γ := {e ∈ | ē ̸∈ T̄}.

We slice M along Γ to obtain M̄ , for each vertex
v ∈ Γ, there are v+, v− ∈ ∂M̄ , the shortest path γ̄

Algorithm 1 Shortest homotopically non-trivial loop

Require: A connected triangle mesh M ;
Ensure: The shortest loop γ that is homotopically non-
trivial;
Compute the cut graph Γ of M ;
Prune valence one edges from Γ;
Slice M along γ to obtain sliced mesh M̄ ;
γ∗ ← ∅, L∗ ←∞;
for each v ∈ Γ do

Find the corresponding vertices v+, v− ∈ ∂M̄ ;
Compute the shortest path γ from v+ to v−;
if L∗ > length(γ) then
γ∗ ← γ, L∗ ← length(γ);

end if
end for

on M̄ corresponds to a loop γ on M . Furthermore, γ
transversely intersects Γ, therefore γ is non-trivial in the
homotopy group of the original mesh π1(M,p). We slice
the surface along γ to reduce the topological complexity.
By repeating this procedure, we eventually decompose
the surface input 3g − 3 pairs of pants. Each pair of
pants is a genus zero surface. The algorithmic details
can be found in Alg. 1 and 2.

Algorithm 2 Pants Decomposition

Require: A closed triangle mesh M with genus g;
Ensure: Decompose M into 3g − 3 pairs of pants;

updated← true;
while updated do
updated← false;
for each connected component Mi of M do
Compute the shortest loop γi of Mi using Alg. 1;

if γi is not empty then
Slice Mi along γi;
updated← true

end if
end for

end while

In the following steps, we remesh each surface
patch with boundary constraints and eventually glue
the remeshed patches together with consistent boundary
conditions.

4.3 Conformal Welding Suppose M1 is a triangle
mesh with boundary components, suppose γ1 ∈ ∂M1.
We trace γ1 to collect an ordered sequence of oriented
edges denoted as {e11, e12, . . . , e1n}. After scaling, we can
assume the total length of γ1 is 2π. We construct a pla-
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nar annulus M2, with exterior boundary γ2 represented
as an ordered sequence of oriented edges {e12, e22, . . . , e2n},
such that the length of e1k equals to the length of e2k.
The inner boundary loop is on a smaller circle centered
at the origin with radius δ, 0 < δ < 1. We use De-
launay refinement algorithm to generate a high quality
triangulation of the interior of the annulus to obtain the
triangle mesh M2. We glue M1 with M2, such that e1k
is glued with e2k isometrically, the union is denoted as
M . Please note that the vertex positions of M is not
well defined. Suppose v1k ∈ γ1 corresponding to v2k ∈ γ2,
they have different coordinates in M1 and M2 respec-
tively. However, the edge lengths on M are well defined.
The discrete surface Ricci flow only requires the edge
lengths, hence M is appropriate for our purpose. The
algorithmic details can be found in Alg. 3.

Algorithm 3 Conformal Welding

Require: A triangle mesh M1 with a boundary com-
ponent γ1;

Ensure: M1 is glued with a planar annulus M2;
Trace γ1 to obtain an ordered sequence of oriented
edges e11, e

1
2, . . . , e

1
n;

Normalize M1 such that the total length of γ1 is 1;
Decompose the unit circle γ2 to e21, e

2
2, . . . , e

2
n, such

that the arc length of e2k equals to the length of e1k;
Construct an inner circle γ3 centered at the origin
with radius δ < 1;
Generate a planar triangulation bounded by γ2 and
γ3 using Delaunay refinement algorithm to obtain a
triangle mesh M2;
Glue M1 and M2 by identifying e1k ∈ γ1 and e2k ∈ γ2,
the result mesh is M with well defined edge length;
return the welded triangle mesh M .

4.4 Discrete Uniformization First, we compute
the discrete conformal metric by setting the target cur-
vature satisfying the Gauss-Bonnet condition. The tar-
get curvatures for interior vertices are zeros. Suppose
∂M = γ0−γ1−· · ·−γn, for an interior boundary compo-
nent γi with ni vertices, we set the target curvature for
each vertex on γi as −2π/ni. For the exterior boundary
component γ0 with n0 vertices, we set the target vertex
on γ0 as 2π/n0, this will ensure the planar image of M
is a convex domain with inner holes. We use Alg. 4 to
compute the desired metric.

Once the target metric is obtained, we can isomet-
rically embed the whole mesh on the plane face by face.

4.5 Planar Delaunay Refinement The input ob-
ject is a two-dimensional polygonal domain Ω, possibly
with holes and constraining edges and vertices inside

Algorithm 4 Discrete Surface Ricci Flow

Require: Triangle mesh M , target curvature K̄
Ensure: Discrete Conformal Factor λ

Initialize λi ← 0, for all vi ∈ V
while true do

Update edge length using vertex scaling Eqn. (3.5)

Update triangulation to be Delauny by edge flips
Update corner angles using Eqn. (3.2)
Update vertex curvature using Eqn. (3.4)
if max |K̄i −Ki| < ε then
Return λ

end if
Compute the gradient ∇E = (K̄i −Ki)
Compute the Hessian matrix H Eqn. (3.8)
Solve linear system Hµ = ∇E
Update the conformal factor λ← λ− µ

end while

the domain. The boundary ∂Ω is a set of vertices and
edges which separates the interior of Ω from its exte-
rior. ∂Ω is a planar straight line graph (PSLG). We
want to generate a mesh T of Ω, such that T contains
good quality triangles. In order to obtain a good quality
mesh, it is necessary for T to include additional points,
called Steiner points, vertices of the mesh that are not
vertices of the input PSLG. We want the total number
of Steiner points to be as small as possible.

Various approaches have been developed for this
purpose, such as advancing-front methods, quadtree
methods, Delaunay-based methods, [4, 21], and the
combinations of them. Most of them work well in
practice but come with no guarantee on the quality
and size of the generated mesh. The algorithm we
use is Delaunay refinement proposed by Chew [4] and
Ruppert [21]. It is a simple technique to incrementally
placing Steiner points at the circumcenters of bad-
quality Delaunay triangles.

A circumcenter of a triangle may lie outside the
domain. When it happens, at least a boundary edge
(segment) is very close to some existing vertices. Call
a vertex encroaches upon a segment if it lies inside its
diametrical circumcircle. The algorithic details is given
in the Alg. 5.

5 Experimental Results

All algorithms have been developed using generic C++
under Visual Studio 2022 on the Windows platform. All
the experiments are conducted on a laptop with Intel(R)
Core(TM) i7-10750H CPU @2.60GHz with 6 cores and
64GB of memory.

We have tested our proposed method in real car
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Figure 4: The whole remeshed car model. Left: front view, right: back view.

Algorithm 5 Delaunay Refinement (Ω, θmin)

Require: A 2d polygonal domain Ω; the desired mini-
mal angle of output triangles θmin

Ensure: A mesh T of Ω
Construct an initial Delaunay mesh T of ∂Ω;
while ∃τ ∈ T and MinAngle(τ) > θmin do
let c be the circumcenter of τ ;
if c encroaches upon any segment of T then

split an encroached segment;
else
insert c into the Delaunay mesh T ;

end if
end while

models for fluid dynamics simulation. As shown in
Fig. 4, the initial CAD model is converted to a triangle
mesh, after hole filling, defeaturing and other prepro-
cessing steps, the input mesh is a water-tight manifold
with 15, 013k faces. By surface remeshing, the surface
triangulation quality has been improved prominently
and the number of faces is reduced to 3, 398k. As shown
in Fig. 4, the sampling density is adapted to the geome-
try of the model and the requirement of the simulation.
For example, the back surface of the mirror is highly
curved, hence the sampling is denser. The triangula-
tions of regions of the body fascia front, the handles
and the wheel rims are refined since they are more im-
portant for CFD simulation. Experiments show that
with the same level of accuracy, the number of cells in
the tetrahedral final mesh is reduced by 43.56%, and
the volumetric mesh generation is 3.29 times faster, the
CFD simulation is 3.47 times faster.

Fig. 5 shows the topological and geometric complex-
ities of the car model. Some mechanical parts have very

high genus, and some geometric structures are highly
refined and almost self-intersecting. Our proposed algo-
rithm can partition high genus surfaces into poly-annuli
automatically, preserve sharp geometric features, and
avoid self-intersections.

Fig. 7 shows parts of the suspension system: in
the first row, the left frame displays the original model
and the right frame shows the planar image of the
welded surface under the conformal mapping; in the
second row, the right frame shows the planar image of
the model with the welded annulus removed, the left
frame demonstrates the conformality of the mapping by
checkerboard texture mapping; the third row compares
the initial low mesh quality (left frame) and the high
mesh quality of the remeshing result (right frame).
Similarly, Fig. 8 and Fig. 6 show the remeshing process
of the radiator shell and part of the chassis (of a different
car) respectively.

Figure 5: The remeshed car model (the bottom view).
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Fig. 9 demonstrates a challenging case. The genus
of the input brake surface is 83, the conventional surface
segmentation algorithm will decompose it input 246
pairs of pants, and each patch is relatively small, hence
the whole processing in inefficient. In this case, we
compute the mid-plane of the model, which cut through
all the handles and divide the surface into two halves,
each half is a genus zero surface with 84 boundary
components. The dynamic Ricci flow combined with
the conformal welding technique can handle this type of
poly-annulus without any difficulty. The first row right
frame shows the image of conformal parameterization
of the welded model. The second row right frame shows
the planar image of the brake model only, the left frame
shows the conformality of the mapping by checkerboard
texture mapping. The third row compares the original
meshing (left frame) and the remeshed result (right
frame). This example shows the proposed method can
handle surfaces with complicated topologies.

Table 1 summarizes the statistics of our experi-
ments. We selected some representative mechanical
parts of the car body, and give the running time for con-
formal parameterization step and the remeshing step.
The table also gives the comparison between the geo-
metric complexity of the original mesh and the remeshed
mesh in terms of the numbers of vertices and faces.

Finally, we evaluate the mesh quality based on
angles and skewness. The skewness here refers to the
measure of the deformation of individual triangles in
a mesh. In general, low skewness values indicate well-
shaped elements that are closer to ideal shapes, while
high skewness values suggest distorted elements.

Figure 6: One part of the car chassis.

Figure 7: The car suspension part.

Model #Vertices #Faces Param. Remesh
Suspension 7 87k/23k 173k/43k 3m40s 6s

Shield 2 134k/59k 263k/113k 6m39s 18s
Shell 8 263k/69k 524k/137k 8m15s 36s

Chassis 6 338k/81k 673k/158k 11m21s 25s
Brake 9 804k/175k 1572k/315k 34m48s 5m31s

Table 1: Runtimes of the parameterization step and
remeshing step on the selective parts of a car model, the
numbers before and after slash represent the numbers
of the cells in original model and remeshed model
respectively.
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Figure 8: One part of the radiator shell.
Figure 9: The brake block of the car.

Fig. 10 displays a histogram illustrating mesh qual-
ity in terms of angles and skewness of the original and
remeshed car models. The vertical axis represents the
proportion rather than the quantity, offering a quan-
titative insight into the distribution. The remeshed
mesh exhibits superior quality compared to the original
mesh, characterized by a higher concentration of angles
near 60 degrees and a greater prevalence of triangles
approaching the ideal regular triangle.
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(a). angle evaluation

(b). skewness evaluation

Figure 10: The comparison of mesh quality before and
after remeshing for the car model. Blue: the result of
original surface; Orange: the result of remeshing result.

6 Conclusion

This work proposal a practical algorithm to improve
the robustness of surface remeshing based on conformal
welding technique. The input surface is a topological
annulus, it is welded with a topological cylinder along
one of its boundary component, and flattened onto a
convex planar domain. This guarantees the conformal
parameterization of the input surface is an embedding,
so that the planar image can be triangulated using clas-
sical planar Delaunay refinement algorithm, the planar
triangulation is pulled back to the original surface to
produce high quality surface triangulation. Our experi-
ments on real car models demonstrate the effectiveness
of the proposed method.

In the future, we will explore further to generalize
the method to surfaces with more complicated topolo-
gies.
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