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Abstract
Point clouds and polygonal meshes are widely used when
modeling real-world scenarios. Here, point clouds arise,
for instance, from acquisition processes applied in various
surroundings, such as reverse engineering, rapid prototyping,
or cultural preservation. Based on these raw data, polygonal
meshes are created to, for example, run various simulations.
For such applications, the utilized meshes must be of high
quality. This paper presents an algorithm to derive triangle
meshes from unstructured point clouds. The occurring
edges have a close to uniform length and their lengths
are bounded from below. Theoretical results guarantee
the output to be manifold, provided suitable input and
parameter choices. Further, the paper presents several
experiments establishing that the algorithms can compete
with widely used competitors in terms of quality of the
output and timing. Furthermore, the output is stable under
moderate levels of noise.

Supplementary material, an extended preprint, and

implementation details are made available online.

1 Introduction

Point cloud meshing is an important topic present in
different fields of research and in various applications.
Examples include reverse engineering [11], rapid proto-
typing [5], or architecture [20]. A common approach
to enable this raw data for further processing is to cre-
ate a triangle mesh from the point cloud. The quality
of this mesh is, however, affected by outliers, noise, or
non-uniform distribution of the input data. Thus, badly
formed mesh elements can become apparent in the re-
sulting geometric model. They can be long-stretched,
thin triangles, so-called slivers, or topological issues.
These faulty representations have to be repaired before
the meshes are further processed.

While this issue is rather general and inherent to the
workflow, recent research still struggles to circumvent it.
Even when reducing to only a local mesh representation
of a given geometry, established methods, such as
Delaunay triangulations, do not guarantee to create a
manifold mesh of well-shaped triangles [26, Sec. 4.4].
The present paper aims to close this gap.

We aim to reconstruct a surface from a given point
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cloud via a sphere-packing approach [18]. The goal is
to create a manifold output with guaranteed smallest
edge length and with strong consideration of triangle
quality provided by a distribution close to uniformity of
edge lengths. Furthermore, as opposed to other meshing
approaches, our algorithm works directly on the surface
geometry, that is, does not need any parametrization.
Finally, the algorithm performs a greedy disk-growing
approach, which enables the processing of the geometry
in one pass, making further iterations unnecessary. In
summary, the contributions of this paper are:

• introduction of a geometric approach suitable to
mesh point clouds,

• which creates high-quality triangles with edge
lengths close to uniformity and of a guaranteed
minimum length,

• as well as manifold output, provided a suitable
input geometry.

2 Related Work

In the last decades, several attempts were made to re-
construct the ground truth from a given point cloud P.
The resulting reconstruction depends on the quality
of P, which can include noisy points or normals, out-
liers, or be sampled non-uniformly. On top of a re-
construction, the user may ask for guarantees such as
correct topology [1], or convergence to the ground truth
with increasing sampling density [16]. Some algorithms
guarantee local connectedness of their output [2], while
others guarantee their output to stay within the convex
hull of the given input [9]. Other requirements might be,
for instance, a result mesh of high quality, that is, con-
sisting of triangles with edge length close to uniformity
and vertices of degree close to 6. Finally, the recon-
struction should be computed fast. For an overview of
surface reconstruction algorithms, we refer to a recent
survey [13]. The algorithms discussed in the following
were chosen for their wide use in the field and will serve
as a comparison in Section 5.

First, we consider surface reconstruction based on a
Poisson equation [14], implemented in CGAL [25]. An
implicit function framework is built, where the recon-
structed surface appears by extracting an appropriate
isosurface. The output is smooth and robustly approx-
imates noisy data. Additionally, densely sampled re-
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gions allow the reconstruction of sharp features while
sparsely sampled regions are smoothly reconstructed.
In later work, these ideas are further developed to cre-
ate watertight meshes fitting an oriented point cloud by
using adaptive, finite elements multi-grid solver capa-
ble of solving a linear system discretized over a spatial
domain [15], implemented in MeshLab [6].

Second, the scale-space approach [7], implemented
in CGAL [25], aims at topological correctness by choos-
ing triangles based on a confidence-based criterion. This
avoids the accumulation of errors, which is often de-
tected in greedy approaches. The algorithm is interpo-
lating, and can handle sharp features to a certain extent,
but does not come with proven topological correctness.

The advancing front algorithm [8], implemented in
CGAL [25], handles sets of unorganized points without
normal information. It computes a normal field and
meshes the complete point cloud directly, which leads
to a high-level reconstruction of details as well as to
an accurate delineation of holes in the ground truth.
Therefore, a smoothing operator consistent with the
intrinsic heat equation is introduced. By construction,
this approach is almost interpolating and features are
preserved given very low levels of noise.

The robust implicit moving least squares (RIMLS)
algorithm [22], implemented in MeshLab [6], combines
implicit MLS with robust statistics. The MLS ap-
proach [16] is a widely used tool for functional approxi-
mation of irregular data. The development of RIMLS is
based on a surface definition formulated in terms of lin-
ear kernel regression minimization using a robust objec-
tive function which gives a simple and technically sound
implicit formulation of the surface. Thus, RIMLS can
handle noisy data, outliers, and sparse sampling, and
can reconstruct sharp features. The number of itera-
tions needed to achieve a reliable result increases near
sharp features while smooth regions only need a single
iteration. Furthermore, RIMLS belongs to the set of
algorithms producing approximating meshes.

Another approach is based on placing triangles with
regard to the restricted Voronoi diagram of a filtered
input point set [4], available via MeshLab [6]. This
approach has the largest similarity to our algorithm,
as we will also employ Voronoi diagrams, however, only
to filter points on the tangent plane. Another shared
aspect is that both this and our algorithm work on
a set of disks centered at the input points, oriented
orthogonal to a guessed or provided normal direction.

Note that all these algorithms come with different
guarantees regarding the output. However, none of
these algorithms comes with a guarantee on the edge
length, and only some algorithms are guaranteed to
provide a manifold mesh. As we base our surface

reconstruction on a set of touching spheres placed on
the underlying surface [18], we are able to provide
certain theoretical guarantees on the output: given
suitable input and parameter choices, our output is
always manifold. Furthermore, the output of our
algorithm has a guaranteed minimum edge length, while
striving towards uniformity of occurring edge lengths.
In Section 5.1, we will provide a detailed comparison of
our algorithm with the works listed here.

3 Theory and Methodology

Our algorithm aims to reconstruct a manifold M from
a given point cloud P. In order to obtain a manifold
mesh with a guaranteed minimum edge length, we first
present assumptions and theoretical results on both M
and P in Section 3.1. Based on these theoretical results,
we present a geometric approach in Section 3.2, which
consists of creating a sphere packing from which the
output is constructed. Sections 3.3 to 3.7 are devoted
to explaining the different steps in detail.

3.1 Assumptions and Theory Here, we will derive
the assumptions to be made onM and P to ensure that
the constructed surface mesh is manifold. Let M be
an orientable, compact C2-manifold embedded into R3,
which is assumed to be closed and of finite reach

ρ := inf {‖a−m‖ | a ∈ AM ∧ m ∈M} ∈ R>0,

where AM is the medial axis of M consisting of the
points q ∈ R3 satisfying

min
p∈M

|q − p| = |q − p̂| = |q − p̃|

for p̂ 6= p̃ ∈ M. On the manifold M, we define the
geodesic distance dM as follows:

Definition 3.1. Let len(f) =
∫ 1

0
|f ′(t)| dt denote the

length of a curve f ∈ C1([0, 1],M) in M. Then the
geodesic distance dM of m,m′ ∈ M is defined as
inf
{

len(f) | f ∈ C1([0, 1],M) : f(0) = m ∧ f(1) = m′
}

.

Now, for any p, q ∈ M such that ‖p − q‖ < 2ρ, the
following estimation holds [3, Lemma 3]:

‖p− q‖ ≤ dM(p, q) ≤ 2ρ arcsin

(
‖p− q‖

2ρ

)
.(3.1)

Let TpM and TqM denote the tangent planes
at p, q ∈M. Lemma 6 in [3] gives an upper bound for
the angle ^ (TpM, TqM) between them,

^ (TpM, TqM) ≤ dM(p, q)

ρ
.(3.2)
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Hence, Inequalities (3.1) and (3.2) imply for the normal
vectors np at p and nq at q that

ϕ := ^ (np, nq) ≤ 2 arcsin

(
‖p− q‖

2ρ

)
⇒‖p− q‖ ≥ r(ϕ) := 2ρ sin

(ϕ
2

)
.

(3.3)

For a given angle ϕmax ∈
[
0, π2

[
, the second part of

Equation (3.3) implies that there is a constant rmax ∈
R≥0 such that ϕ ≤ ϕmax if ‖p − q‖ < rmax. Denote by
M′ := Brmax

(p) ∩M the part of M that is contained
in M and the ball Brmax

(p) centered at p. Then,
the normals nq of all points q ∈ Brmax

have positive
Euclidean scalar product with np. The assumption that
M is of positive finite reach guarantees that M′ is a
single connected component. Hence, M′ has a parallel
projection to the tangent plane TpM without over-folds
(Figure 1). Furthermore, we have:

Lemma 3.1. Let p ∈ M be a point with normal np.
Then, for r < ρ, the image of Br(p) ∩ M under the
projection π in direction of np to the tangent plane TpM
is a convex set.

Proof. The intersection I of a closed set S ⊂ Rd having
reach ρS > 0 with a closed ball Br(x), r < ρS and
x ∈ Rd, is geodesically convex in S [3, Corollary 1].
That is, the shortest path between any two points
in I lies itself in the intersection. Furthermore, the
intersection M′ of Brmax

and M is a topological disk
as established above [3, Proposition 1].

Here, I is not empty and consists of a surface patch
since p lies on M. Hence, the boundary ∂M′ can be
parameterized by a closed curve γ. As I is geodesically
convex, γ has positive geodesic curvature. The inner
product of the normals np and nq at an arbitrarily
chosen point q ∈ ∂I is positive: 〈np, nq〉 > 0, by
choice of r. Therefore, under projection along Np to the
tangent plane TpM, the sign of curvature is preserved.
Hence, the projection π(γ) is a convex curve.

Finally, let G be a simple graph that can be em-
bedded on M such that the vertices in G connected by
an edge have euclidean distance d. The connected com-
ponents remaining after removing G from M are called
regions, denoted by R. The set of vertices and edges
incident to a region R ∈ R is called its border, denoted
by ∂R. Note that because M is closed, each edge of G
belongs to the border of exactly two regions. Also, each
vertex of G can belong to the borders of several regions
at once. Fix one such region R ∈ R. Lemma 3.1 im-
plies a choice of points q1, . . . , qk ∈ ∂R is mapped to
points π(q1), . . . , π(qk) ∈ TpM in cyclic order, for p ∈ R
arbitrarily chosen. Hence, the regions can be extracted

Figure 1: Illustration of Lemma 3.1. Intersection of a
saddle-shaped surface with a sphere (blue). Six points
on the surface are marked as well as their projections to
the tangent plane belonging to the center of the sphere.

correctly with respect to their topology from the cyclic
order of the edges at each vertex from the local pro-
jection. Given that the reach criterion is satisfied and
given a suitable normal field, we can thus reconstruct a
manifold from the input.

3.2 Methodology Our algorithm extracts a mesh
from the input P by placing touching spheres of a
predefined diameter d across an approximation of the
surface [18]. As the spheres touch, this will guarantee
a minimum edge length of the mesh and by the results
from Section 3, the resulting mesh will be manifold.

We assume to be given unstructured input in form
of a point cloud P = {pi | i = 1, . . . , n} ⊂ R3 with cor-
responding normals N = {npi | i = 1, . . . , n} ⊂ S2. Fur-
thermore, we assume that P is sampling an underlying,
possibly itself unknown, manifold M with the proper-
ties as listed above. To approximate the surface, we
associate to each point p ∈ P a splat Sp in the shape
of a circular disk with radius sp ∈ R>0. Each Sp is
centered at the respective point p and placed such that
the corresponding normal np is orthogonal to Sp. We
assume the radii sp to be chosen sufficiently large such
that the manifold to be reconstructed is covered. Here,
a manifold is said to be covered, if the union of pro-
jections of splats to the ground truth covers it. This is
illustrated in Figure 2a. Note that following Lemma 3.1,
the user has to choose the parameter d with respect to
the reach ρ of the input, which can be estimated for
point clouds [12], to ensure a manifold output. Fur-
thermore, the user also chooses a uniform initial splat
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size s. The individual splat sizes will be derived later as
described in Section 4.3. In the following discussion, we
will refer to elements of the input geometry P as points
and to entities created by the algorithm as vertices.

3.3 Initialization Aside from d and s, the user pro-
vides two starting vertices to initialize the algorithm.
These vertices are chosen from R3 such that the projec-
tions of these vertices onto their closest splats are suffi-
ciently close, that is, the distance between the projected
vertices is in [d, 2d], so a third vertex having distance d
to both of the starting vertices can be placed by the
algorithm. They do not have to be points from the in-
put P. The projected vertices form an initial vertex set
of a graph G that will ultimately provide the manifold
mesh discussed in Section 3.1. They can be manually
provided or automatically created, for instance, around
the maximum z-coordinate of the input. At this stage,
G does not contain any edges. In the following, posi-
tions exactly d away from at least two already existing
vertices are called vertex candidates. The two vertices
that are d away from a candidate are its parents.

3.4 Disk Growing to Add Vertices of G After ini-
tialization, disk growing is performed to create further
vertices and edges of G. A vertex is added from the
list of vertex candidates, connected by edges to the two
vertices distance d away (Figure 5a), and new vertex
candidates are added based on the newly placed vertex
(Figure 5d). Adding edges to G also changes the regions
introduced in Section 3.1: By inserting a new vertex and
its two edges, either one border is split into two borders
or two borders join into one (Figures 3a and 3b).

As shown in Figure 7, there might be regions with
comparably long borders. These lead to visible seams in
both G and its triangulation. To avoid such seams, we
prioritize joining borders over splitting borders. Thus,
we aim to prioritize splits with a bigger combinatorial
distance between the parent vertices along the border
over those with smaller distances. We do so with a
priority assigned to the vertex candidates.

3.5 Prioritizing of Vertex Candidates A vertex
candidate vc is chosen to become a vertex of G according
to the following priorities, given in decreasing order:

1. At least one of the parent vertices has no edges
incident to it. (Note: This parent vertex has to be
a starting vertex from the initialization.)

2. At least one of the parent vertices is a vertex with
only one edge incident to it.

3. Inserting vc and its two edges joins two borders.
4. Inserting vc splits a border—prioritize larger dis-

tance between parents along the common border.

In all cases, ties are broken by the breadth-first strategy.
To determine the priority of the vertex candidate to be
added, it is necessary to know to which of the parent
vertices’ borders the edges to be introduced will connect.
To find the corresponding border, the candidate edge
is projected to the plane defined by the parent vertex
and its normal. Note that because of the results from
Section 3.1, such a projection is possible without over-
folds. Given the prioritization of vertices, these can now
be added to the graph G.

3.6 Creating a New Vertex Once a vertex candi-
date vc has been chosen, it is first determined whether
there is a vertex v in G such that ‖vc − v‖2 < d. If so,
the vertex candidate is discarded.

Next, the priority of vc is checked. In case the
vertex does not satisfy the given priority anymore—for
instance, because it was created with a parent vertex
without any edges incident to it, but the parent vertex
gained an edge by now—the vertex candidate’s priority
is reduced and another vertex candidate is chosen.

Adding vc and the corresponding edges to G bears
one additional problem. In practice, we do not always
know whether the point cloud P fulfills the criteria
listed in Section 3.2. If they are satisfied, the output
is guaranteed to be manifold. However, the user might
have chosen d too large or the input point cloud might
not sample a manifold in the first place. In either of
these cases, all edges created from new vertices still
have an edge length of d, but the edges might create
non-manifold connections. Consider Figures 4a and 4b
for an example of a surface with reach ρ = 0.

In these cases, we still want to prevent such faulty
connections. Therefore, we find an approximated sur-
face normal, which will be discussed in Section 4.1. We
project vc and its prospective edges as well as all edges
already existing in the vicinity of vc along this normal.
For this projection, the vicinity of vc is bounded by d in
normal direction. We discard vc if either of its edges
crosses an already existing edge (Figure 4b). While
the algorithm creates manifold output for suitable input
point clouds and choices of d, this mechanism improves
the output even outside of this regime. If vc has passed
these checks, vc and the two edges connecting it to its
parent vertices are added to G.

3.7 Triangulating the Resulting Regions After
the disk growing process has finished, the graph G
provides a set of regionsR. On average, each vertex of G
is connected to approximately four other vertices [18,
Section 4.2]. Therefore, the average border length is
approximately four. Hence, we are left with the task
of triangulating these regions. In case of surfaces with
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Figure 2: Illustration of uniform splat size (2a), the projection of a point p and its vicinity to the tangent
plane TpM (2b), and the Voronoi cells with the farthest point circled (2c), leading to individual splat sizes (2d).

v → v
v
→

v

(a) Connecting v by two edges to the same border.

v v

(b) Connecting v to two different borders.

Figure 3: Possibilities when creating new vertices and edge connections in the graph G: In 3a, the new vertex v
and its two edges connect elements of the same border. Here, v is created either in the in- or the outside region of
the border. In 3b, the new vertex v is connecting two borders. After introducing v and its edges, the respective
outside regions are still connected, then v and its edges join the borders. However, if the outside regions are split
by v and its edges, new borders are created which induce the corresponding regions.

boundary such as partial scans, we do not want to
close the surface by triangulating the interior of the
boundary. Therefore, we give the user the choice to
specify a maximal border length ∂max that will leave
the region as a hole rather than triangulating it.

A region can be irregular in the sense that the inner
angle of two consecutive edges can be bigger than 180◦.
In such cases, a projection of a single region to a plane is
not necessarily a convex polygon. These inner angles of
the faces are found by projecting the edges onto a plane
given by the vertex normal. Then, we triangulate each
region by iteratively cutting away the smallest angle as
this leads to triangles close to equilateral ones. Not only
have we thereby created a triangulation of the input
surface that has guaranteed minimum edge length d,
but by the results provided in Section 3.1, provided that
the input and the user-chosen parameters satisfy the
restrictions made, the triangulation is also manifold.

4 Implementation

In this section, we will discuss implementation aspects
of the algorithm presented above. In particular, this
contains the introduction of data structures for efficient
access. As stated in Section 3.2, we assume to be given
a point cloud P, its normal field N , user-chosen param-
eters d, s, and in case of a surface with boundary, ∂max.
If P does not come with a normal field, the user has to

estimate one, for instance, via [21]. Furthermore, the
user has to choose the implementation-related parame-
ter w (Section 4.2).

4.1 Box Grid Data Structure When introducing
new vertex candidates (Section 3.4), we need to know
all splats close to a given, newly introduced vertex. In
order to have access to these, we build a box grid data
structure consisting of equal-sized, cubical boxes of side-
length d partitioning the three-dimensional embedding
space. Each box holds a pointer to those input points
and their splats that are at most d away (Figure 5c).
This collection of points associated with box bj is
denoted by Bj .

As preliminary filter step, we compute an average
normal nbj for each box bj by summing up the normals
of all those points that bj has a pointer to, without
normalizing the sum. If

∥∥nbj∥∥2 is smaller than 0.1, we
keep all points in bj . If the length is at least 0.1, we can
assume that enough points agree on a normal direction
in this box. Then, we remove those points p from the
box for which 〈np, nbj 〉 < 0. We choose a value of 0.1
for the length check to filter a small number of points
while maintaining coherent normal information. This
will ensure that the following step can succeed.

For each box bj with at least one associated splat,
we compute a box normal nbj . It will be used for
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Figure 4: An input geometry with a vertex candidate vc (4a), the region projection shows an illegal edge
crossing (4b). Edges to parent vertices are shown dotted. Computation of vertex candidate positions (4c).
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Figure 5: Update steps of the algorithm.

projection steps that will ensure manifold properties
of the resulting mesh. This will provide approximated
surface normals that allow us to work on data which
do not fulfill the requirements listed in Section 3.1
such as the example shown in Figure 4a. To compute
an approximation efficiently, we take a finite sampling
SF ⊂ S2 and derive the box normal nbj as

nbj = arg max
N∈SF

min
pi∈Bj

〈npi , n〉 ≈ arg max
n∈S2

min
pi∈Bj

〈npi , n〉.

That is, we search for the unit normal that maximizes
the smallest scalar product with all point normals
associated to the box bj . For each box bj , the scalar
product 〈npi , nbj 〉 is ideally strictly positive for all
points pi ∈ Bj , even in those cases where we did not
filter the normals. Therefore, it allows for a projection
onto a plane spanned by nbj as normal vector such that
all points remain positively oriented by their normals.
The newly computed box normal is also used as vertex
normal for all vertices lying in bj from now on.

To achieve a fast lookup, we can either build a
uniform grid on the complete bounding box of the input
or create a hash structure to only store those boxes that
are including input points from P. The uniform grid has
faster access, but results in many empty boxes and thus
large memory consumption. The hash structure does
not use as much memory, but the access is slower. In
our experiments, we utilize the uniform grid structure to
be faster as memory consumption can be handled by our
test machine, although the time difference will become
significant only for larger models than used here.

Note that in Section 3, we stated that for creating
new vertex candidates, we need to traverse all splats
that are distance d away from a given point. However,
here we are collecting all splats that are at distance ≤ d
from the box, thus possibly resulting in a higher number
of splats to be considered. That insures that the spheres
from Section 3.2 are inscribed into the volume within d-
distances around the boxes (Figure 5b).

This leads to the question how to choose a good
side-length of the boxes. As stated above, we use side-
length d, that is, their size coincides with the target
edge length for the triangulation. For smaller values,
each splat would be associated to more boxes, hence the
memory demand would grow. For larger boxes, there
will be many splats associated to each box that do not
actually lead to vertex candidates with the currently
considered vertex. Thus, the runtime would grow when
checking all splats being far away from the currently
considered vertex. Finally, for larger boxes, it will also
become more difficult to compute a suitable box normal
for projections. Hence, we advocate for the middle
ground and choose d as the box size.

The last observation regarding the box normals
leads to a heuristic how to check the user’s parameter
choice of d. Namely, a choice of d is considered too large
if there is a box whose box normal has negative scalar
product with any point normal of a point registered in
the box. This provides a mechanism to alert the user
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Figure 6: Different borders and their respective regions: Border of length 0 consisting of a single vertex and
associated to a single, white, surrounding region (6a); border of length 4, going back and forth between v and v′,
associated to a single, white, surrounding region (6b); cycle of k + 1 edges, separating the surface into an inner,
light gray and outer, white region (6c).

that they have chosen the parameter d outside of the
specifications as provided in Section 3.1 and that the
output is thus not guaranteed to be manifold anymore.

4.2 Window Size During the disk growing, we
maintain a data structure representing the regions’ bor-
ders. They consist of oriented half-edge cycles. Note
that this includes degenerate cases, such as a single ver-
tex, interpreted as a border of length 0 (Figure 6a).
Each time a new vertex and the two edges to its parent
vertices are added to G, this creates four new half-edges
which have to be linked to the existing borders. To avoid
traversing very long distances along the borders when
computing priorities of vertex candidates, we introduce
a window size w after which the traversal is stopped. A
window then consists of 2w + 1 vertices on a common
border, running in both directions centered at the ver-
tex currently considered. This provides a considerable
speedup compared to the previous solution [18].

Recall split and join from Section 3.4. Note that
by cutting the traversal at a finite window size, it is
not longer possible to distinguish between a split and
join operation in all cases. Preliminary experiments
showed that window sizes of w ≥ 8 all produced the
same quality output, despite not distinguishing splits
or joins, as shown in the supplementary material.

Furthermore, we experienced that setting the win-
dow size to w = 0 immediately creates noticeable neg-
ative effects on the result of the algorithm. In this
case, our algorithm defaults to the breadth-first strategy
of [18] and thus creates visible seams on the geometry
(Figures 7a to 7d). Starting from window sizes of w = 2
or w = 3, benefits in the quality of the output are ap-
parent as larger visible seams are prevented. Theoreti-
cally, a larger window size will increase the lookup time.
Therefore, in our implementation of the algorithm, we
go for w = 8 as a large enough window size to reap its

benefits, but a small enough one to not impact the al-
gorithm’s run time.

4.3 Discussion of Splat Size In case of non-
uniform sampling density, using a global splat size s
might lead to areas covered multiple times. For more
densely sampled areas, a smaller splat size guarantees
the creation of vertices closer to the sampling points.
In our experiments, we saw that in high-curvature re-
gions, smaller splats have small deviation from the sur-
face, while larger splats deviate from the surface sig-
nificantly. Hence, when looking for vertex candidates
on large splats, the algorithm can place vertices that
are somewhat distant to the input points (Figure 8a).
Therefore, we turn to individual, smaller splat sizes to
reduce the deviation of the vertices with respect to an
underlying surface represented by the input point cloud.

An additional benefit is that for smaller splat sizes,
there are less splats registered per box, which speeds up
the algorithm. However, the individual splats have to
have sizes sufficient to cover the underlying geometry.
To find the specific splat size sp for each point p ∈ P,
we use the box data structure (Figure 2d). We consider
all points pi associated to the box containing p. To
map the points {pi} to TpM, consider the plane N⊥
containing p and pi and being orthogonal to TpM.
For each pi, an auxiliary point π(pi) is determined by
rotating pi around p around the smaller angle in N⊥
until it lies in TpM. Hence, p and π(pi) have the
same distance di as p and pi have. Based on a cyclic
sorting around p, we compute a central triangulation,
connecting all projections to p and connecting them
pairwise according to their angular sorting (Figure 2b).
For the resulting triangulation, we test whether or not
we can flip a central edge to make the incident triangles
Delaunay. Points pi, whose edges are flipped, are
removed from the following consideration. For those
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(a) Longest bor-
der (length 93).

(b) Longest bor-
der (close-up).

(c) Triangulated
regions.

(d) Triangulated
region (close-up).

(e) Longest border
(length 11).

(f) Longest border
(close-up).

Figure 7: Visible seams on the Bottle Shampoo. Figures 7a to 7d show experimental results obtained by inserting
new vertices via pure breadth-first-growing. The seams appear as regions having a high number of border edges
compared to all other regions on the surface. Figures 7e and 7f show results obtained by prioritizing new vertex
candidates. For better visibility, the target edge length d was chosen as 1.

(a) Result with uniform splat sizes.

(b) Result with individual splat sizes.

Figure 8: Running our algorithm on the Bowl Chinese
from [13] with 8a using a global splat size and 8b using
a local spat size. The letter reduces artifacts in high-
curvature regions such as the rim of the bowl.

neighboring points that remain, consider the Voronoi
diagram of their triangulation. We choose the local splat
size sp as distance from p to the farthest Voronoi vertex
(Figure 2c). This ensures that all Delaunay triangles are
still completely covered. By choosing local splat sizes
in this way, the visible deviation from the underlying
geometry is reduced (Figure 8b).

4.4 Processing Vertex Candidates The process-
ing of vertex candidates, following Section 3.4, consists
of the following steps: popping a vertex candidate from
the priority queue, checking feasibility of the candidate,

adding a suitable candidate as well as its edges to G, and
adding new vertex candidates to the priority queue.

Because of the window size w, there is a finite
number of priorities, as given in Section 3.5. Each of
these priorities is handled via its own queue that follows
a strict first-in-first-out strategy, which enables popping
of candidates in constant time [23, Chapter 2.4].

If a vertex still has correct priority, checking for con-
flict with existing vertices and performing the projection
check from Figure 4b both requires access to nearby ver-
tices. This is a constant-time operation because of the
box data structure that holds all relevant vertices. Fur-
thermore, the number of vertices within distance 2d is,
by construction, bounded from above by the densest
sphere packing in space, which is a constant.

Once a new vertex vnew is created, we compute
new vertex candidates having vnew as parent vertex.
Therefore, we need the set of all splats intersecting the
ball of radius d centered at vnew. This is a subset of the
set of those splats associated to the box containing vnew.
To efficiently access potential second parent vertices, we
maintain for each splat S a list of all vertices within
distance d to S (Figures 5b and 5c).

5 Experiments

This section is devoted to different experimental set-
tings. As described in the beginning, we aim for the
reconstruction of real-world scan data. When perform-
ing the comparison of different algorithms, we do so
based on a quantitative analysis of the obtained trian-
gle mesh T . For this, given a triangle t ∈ T , we denote
the lengths of its edges by `t,1, `t,2, and `t,3. The area
of the triangle will be called At.

Following the approach in [19, p. 307, Eq. (13)], we
measure the quality Qt of a single triangle as

Qt =
4
√

3At
`2t,1 + `2t,2 + `2t,3

.

This measure corresponds to a scaled version of the
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Input. Adv. Front. Poisson. Poisson MG. RIMLS. Scale Space. Voronoi. Ours.

Figure 9: Qualitative comparison of named algorithms without remeshing (left) and with meshing (right).

scale-invariant (smooth) conditioning quality measure
discussed by Shewchuk [24, Table 3]. Based on the
local, triangle-based measure Qt, further following [19],
we present a global metric for the entire triangle mesh T
as average over the quality of the triangles, that is

Qavg =
1

|T |
∑
t∈T

Qt.

Note that the factors normalize this quality metric to
be 1 for equilateral triangles and close to 0 for very
narrow slivers. Finally, we compute the root mean
square deviation in percent QRMS as

QRMS =
100

Qavg

√
1

|T |
∑
t∈T

(Qt −Qavg)
2
.

See Section 3 of [24] for a relation of this quality measure
to the stiffness matrix. Furthermore, from the set of
all edges in the triangulation, we consider the average
edge length Eavg as well as the corresponding root mean
square deviation ERMS, also in percent.

In order to demonstrate the quality of the meshes
achieved by our algorithm, we turn to 20 scanned ob-
jects provided as part of a surface reconstruction bench-
mark [13]. Here, we concentrate on high-resolution
scans obtained by an OKIO 5M scanning device, result-
ing in 330k to 2,000k points per surface after 20 shots.
The shots are registered and do come with a normal
field. Out of the 20 point clouds, we used 19 as they
are provided in the repository. The scan of a remote
control had a clear registration artifact, since one of the
buttons of the remote was registered into the remote,
pointing down, not up. This, we corrected manually by
removing the wrongly registered points. Here, we com-
pare our results to those made by various widely used
algorithms from the field. Then, we add different levels
of noise to the data and investigate the stability of our
algorithm.

As mentioned in Section 4, there is a set of param-
eters which has to be chosen by the user. For our ex-
periments, we made the following choices. The sphere
diameter d was set to be 0.2, while the maximal border
length ∂max was equal to 40. For each model, the initial

splat size s was chosen between 0.2 and 0.4 individually,
depending on the considered point cloud.

5.1 Experimental Comparison for Point Cloud
Meshing From the algorithms listed in Section 2, Pois-
son [14], advancing front [7], and scale space [8] are run
with the standard parameters as implemented in [10] ex-
cept for the cleaning steps, which were unnecessary be-
cause of the high-quality input. Multigrid Poisson [15]
and Voronoi reconstruction [4] are run with the stan-
dard parameters as implemented in [17]. RIMLS [22]
is run with the standard parameters from [6], using a
smoothness of 2 and a grid resolution of 1000.

We aim for an algorithm that provides high-quality
triangulations out-of-the-box, right after reconstruc-
tion. However, as the comparison algorithms do not nec-
essarily optimize for a uniform edge length, we take their
respective results and process them with the “Isotropic
Explicit Remeshing” filter of MeshLab [6]. This filter
repeatedly applies edge flip, collapse, relax, and refine
operations. We run three iterations with a target edge
length of 0.2 in absolute world units for the input [13].

In Tables 1 to 4, we report both the results of the
comparison algorithms and the result after these have
been remeshed, indicated by “(Re)”. These tables in-
clude representative models. A full report with data
for all 20 models can be found in the supplementary
material. We chose the Bottle Shampoo and the Bowl
Chinese because of their features, as explored in Fig-
ures 8 and 9. The Cloth Duck is one of two models
where the competing methods had the largest gain on
our algorithm when measured by Eavg (see supplemen-
tary material for the Mug).

A first thing to notice when regarding the results
presented in Tables 1 to 4 is that our algorithm achieves
the best, that is, highest values for Qavg on all models.
This holds consistently across all 20 models from the
repository. That is, our method produces the highest
quality meshes, even when compared with the remeshed
results of the other algorithms. For comparison, we
also add the remeshed version of our algorithm, which
generally improves the quality metrics slightly while
destroying the minimum edge length guarantee. The
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Algorithm |T | Eavg ERMS Qavg QRMS
Adv. Front 1.209,546 0.1799 39.6 0.8247 16.0

Adv. Front (Re) 928,850 0.2028 15.3 0.9416 6.1

Poisson 16,280 1.2946 74.8 0.8760 12.3

Poisson (Re) 498,140 0.2657 38.6 0.9251 7.5

Poisson MG 150,770 0.5318 35.7 0.7204 33.7

Poisson MG (Re) 952,830 0.2015 16.3 0.9330 7.0

RIMLS 1,907,781 0.1499 35.8 0.7055 35.1

RIMLS (Re) 1,054,438 0.1905 19.3 0.9117 11.5

Scale Space 1,209,093 0.1798 39.1 0.8248 16.0

Scale Space (Re) 926,828 0.2028 15.2 0.9417 6.0

Voronoi 1,209,792 0.1799 52.3 0.8241 16.1

Voronoi (Re) 923,476 0.2044 20.8 0.9407 6.8

Ours 840,453 0.2131 11.2 0.9577 4.5

Ours (Re) 854,257 0.2098 10.4 0.9701 3.8

Table 1: Bottle Shampoo (604,903 input points).

Algorithm |T | Eavg ERMS Qavg QRMS
Adv. Front 1,212,636 0.2920 38.2 0.8045 18.6

Adv. Front (Re) 2,407,002 0.2038 15.4 0.9405 6.2

Poisson 13,584 2.3850 63.2 0.8845 11.7

Poisson (Re) 637,488 0.3732 40.8 0.9301 6.9

Poisson MG 503,458 0.4710 39.8 0.7062 37.1

Poisson MG (Re) 2,409,076 0.2050 17.7 0.9223 7.9

RIMLS 6,458,589 0.1331 40.4 0.6877 39.6

RIMLS (Re) 2,441,143 0.2023 15.4 0.9394 6.3

Scale Space 1,093,339 0.2779 34.9 0.8054 18.7

Scale Space (Re) 1,947,592 0.2006 16.1 0.9351 7.3

Voronoi 1,212,636 0.2916 38.4 0.8042 18.7

Voronoi (Re) 2,398,584 0.2039 15.3 0.9405 6.1

Ours 2,137,650 0.2167 14.8 0.9485 6.2

Ours (Re) 2,246,434 0.2093 11.4 0.9665 4.3

Table 2: Bowl Chinese (606,320 input points).

Algorithm |T | Eavg ERMS Qavg QRMS
Adv. Front 2,037,574 0.1839 40.1 0.8143 17.3

Adv. Front (Re) 1,739,214 0.1965 19.4 0.9179 9.5

Poisson 147,940 0.6300 44.3 0.8805 12.0

Poisson (Re) 1,488,112 0.2068 17.5 0.9311 7.2

Poisson MG 419,614 0.4086 38.5 0.7160 36.0

Poisson MG (Re) 1,463,018 0.2093 18.7 0.9154 8.8

RIMLS 5,878,521 0.1154 39.9 0.6919 38.9

RIMLS (Re) 1,728,371 0.1978 20.1 0.9143 12.7

Scale Space 2,036,816 0.1839 40.0 0.8139 17.4

Scale Space (Re) 1,735,814 0.1965 19.3 0.9179 9.5

Voronoi 2,037,270 0.1767 41.8 0.8067 18.1

Voronoi (Re) 1,514,160 0.2027 15.4 0.9407 6.3

Ours 1,435,604 0.2181 15.7 0.9454 6.6

Ours (Re) 1,535,058 0.2089 12.5 0.9592 4.8

Table 3: Cloth Duck (1,018,891 input points).

Algorithm |T | Eavg ERMS Qavg QRMS
Adv. Front 1,214,998 0.1474 36.3 0.8474 13.9

Adv. Front (Re) 629,138 0.2024 15.2 0.9418 6.0

Poisson 20,134 1.0381 54.7 0.8882 11.7

Poisson (Re) 530,374 0.2193 22.8 0.9293 7.3

Poisson MG 432,268 0.2585 39.5 0.2623 37.1

Poisson MG (Re) 629,508 0.2021 15.0 0.9436 6.1

RIMLS 5,548,226 0.0730 40.0 0.6910 39.3

RIMLS (Re) 618,531 0.2049 16.2 0.9322 6.8

Scale Space 1,214,990 0.1474 36.3 0.8474 13.9

Scale Space (Re) 628,848 0.2025 15.2 0.9417 6.0

Voronoi 1,214,996 0.1471 36.5 0.8471 13.9

Voronoi (Re) 616,160 0.2041 15.0 0.9427 5.9

Ours 555,490 0.2159 13.5 0.9499 5.6

Ours (Re) 578,730 0.2096 11.5 0.9657 4.3

Table 4: Toy Bear (607,501 input points).

goal of this paper is not to compare different remeshing
approaches, but to present a method that can provide
high-quality triangle meshes right after reconstruction,
without remeshing. Hence the remeshed version of our
algorithm is set apart in gray and carries bold font if
it causes an improvement on the previously best result.
In this setting, the comparison to the remeshed results
just serves to place our results in a broader setting.

On most of the models, the deviation QRMS has
also the lowest percentages for our algorithm. Notable
exceptions are the Bowl Chinese (Table 2) and the
Cloth Duck (Table 3). However, across all models, the
lowest deviation QRMS is at most 0.6% better than ours,
cf. supplementary material.

Regarding the second metric, note that by con-
struction, all edges produced by our algorithm are of
length ≥ 0.2. Therefore, the average edge length is also
always greater than 0.2, which places the remeshed out-
put of other methods in the lead regarding the met-
ric Eavg. However, the largest average edge length
across all models is 0.2181 for our algorithm, attained
on the Cloth Duck (Table 3), which is still very close to
the target edge length.

Also, for almost all models, the width of the distri-
bution of edge lengths, measured by ERMS, is the lowest
for our algorithm. That is, the triangulations produced
are almost uniform. As a final observation regarding the
quality metrics, note that those comparison algorithms
that provide better metrics on the models do so only
after an additional remeshing step. This shows that our
algorithm does attain the goal of providing high-quality
meshes immediately after reconstruction as it beats all

comparison algorithms in this regard.
When inspecting the models visually, it is clear

that, at least after remeshing, the triangulations are
of high quality (Figure 9). Note how some algorithms
are not able to reproduce small details—for instance,
a number 14 on the Bottle Shampoo. Even in the
remeshed version, line-like artifacts are still visible for
some of the comparison algorithms. Our algorithm
creates a mesh close to uniformity while retaining the
details.

This uniformity can be observed by plotting his-
tograms on the distribution of angles, edge lengths, and
quality measures for a triangulation obtained by our al-
gorithm. See Figure 12 for a corresponding set of plots
for the Bottle Shampoo and find histograms for the other
models in the supplementary material. The histogram
confirms that the angles of the triangles are centered
around 60◦, indicating a strong tendency towards equi-
lateral triangles. Also, we see that the edge lengths are
indeed starting from the set minimum of 0.2, with most
edges actually attain this value. Finally, the histogram
of the triangle quality reveals that there are many equi-
lateral triangles (corresponding to Qt = 1), with the dis-
tribution skewed towards this highest quality value.

Unlike some competitors and the remeshing step,
our algorithm is not iterative but produces the output
in a single sweep over the input. Run times for several
models are given in Figure 11, where the competitors are
reported including the remeshing time. All experiments
were run on a machine with an Intel® CoreTM i7-5600U
CPU 2.60GHz with four cores and 16GB of RAM. Five
of the models did not fit the RAM of this comparison
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Figure 10: Results with various starting vertices. From left to right: The Toy Bear with placements positions for
starting vertex pairs, close up for pairs 1 to 8, showing the area at one eye emphasized in the first image.

Figure 11: Log of the run time of the algorithms
on several models. Ours is additionally split into
initialization and disk growing.

(a) Angle distribution, target=60◦.

(b) Edge lengths distribution, target=0.2.

(c) Distribution of quality Qt, target=1.0.

Figure 12: Distributions of the Bottle Shampoo as
obtained by our algorithm (without remeshing).

machine. Thus, we only provide timings for 15 models,
while the qualitative data for the remaining five was
acquired on another machine. Note that our algorithm
performs similarly to most of the competitors.

5.2 Robustness to User Input As stated in Sec-
tion 3.3, the user is asked to provide two starting ver-
tices to run the algorithm. To investigate whether the
quality of the obtained mesh is independent of the cho-
sen starting vertices, we selected the Toy Bear because
of its various differently curved regions. Further models
promoting this observation are included in the supple-
mentary material. As illustrated in Figure 10, we chose
eight different regions to place the starting vertices in.
The results of these experiments show that the qual-
ity of the output is not sensitive to the choice of start-
ing vertices. For the eight resulting triangle meshes,
the average edge length varies from 0.2158 to 0.2159, as
does the average quality: from 0.9499 to 0.9504. In all
cases, ERMS is equal to 13.5 while QRMS equals 5.6.

Next, we investigate the robustness of surface re-
construction depending on the splat size. As the mod-
els discussed so far are real-world scans, there is no
ground truth to compare the reconstruction with. For
this experiment, we turn to two models that satisfy all
assumptions made in Section 3.1 and that have an ex-
plicit mathematical parametrization to evaluate the re-
construction: the unit-sphere and a torus parametrized
as a unit circle swept around a circle of radius 2. We
sample both models randomly, the sphere with 10,000
and the torus with 60,000 points, resulting in a similar
density on the models. The norm is a direct measure of
the reconstruction quality. For the sphere model, ver-
tices with norm 1 lie directly on the sampled sphere. For
the torus model, we measure the norm as the distance
to the circle of rotation, hence, a vertex with norm 1
lies directly on the sampled torus. In this scenario, the
sphere diameter d was chosen as 0.1 while a global splat
size was chosen between 0.02 and 0.4.

For both models, given too small splat sizes, the
algorithm fails to cover the entire model, resulting in
a very small number of vertices. Once a splat size is
reached for which the entire model is covered, both
the number of vertices and the reconstruction quality
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Figure 13: Measuring the reconstruction quality.

are stable until larger splat sizes are reached, which
causes visible distortion in the reconstructed models
(Figure 13). This shows that for splat sizes, just large
enough to cover the geometry, our algorithm achieves
close to optimal reconstruction results. For the sphere
model, all points created are on or outside the sphere,
placing the closest vertex at a norm of 1 directly on the
sphere. On the torus model, points are lying both in
and outside of the torus. Even for the largest splat size
of 0.4, which creates visible reconstruction artifacts, the
reconstructed models are still manifold, in line with our
guarantees from Section 3.1.

5.3 Robustness to Noise In order to investigate
the robustness of our algorithm with respect to noisy
data, we equip a selection of the high-quality models [13]
with different levels of noise ν ∈ R≥0. Here, we use
those models that allow for placing moderate noise,
for instance, the Bottle Shampoo or the Bowl Chinese,
whereas we ignore those that already have details and
elements that hinder manifold reconstruction even for
tiny levels of noise. Thereby, each input point is moved
by a uniformly distributed random vector of length
smaller or equal to ν. This moves the noisy points
within a bound of ±ν around the ground truth. To

Name \ ν

0
.0

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

Bottle Shampoo 3 3 3 3 3 3 3 3 3 7 7
Bowl Chinese 3 3 3 3 3 3 3 3 3 3 7
Cup 3 3 3 3 3 3 3 3 7 7 7
Flower Pot 2 3 3 3 3 3 3 7 7 7 7 7
Toy Bear 3 3 3 3 3 3 3 3 7 7 7
Toy Duck 3 3 3 3 3 3 3 3 7 7 7

Table 5: Noise levels ν for which the reconstruction
is (3) or is not (7) manifold.

measure the quality of the output, for each level ν of
noise, we computed a triangulation based on the same
parameter choices as above (Section 5). We find that the
level of noise directly influences the number of vertices,
similar to the observations made while increasing the
splat size (Section 5.2). That is, with increasing noise
level, the number of vertices of the output increases
as well. Depending on the model, we experience that
for values ν ∈ [0.06, 0.1], the output begins not to be
manifold anymore. That is, manifoldness is lost from 2ν
between 60% to 100% of d. For the user, this experiment
suggests that for a geometry with known or estimated
noise level ν, choosing d ≥ 2ν yields the best results.

6 Conclusion and Future Work

We have presented a surface reconstruction algorithm
that produces triangulations with edge lengths close
to uniformity, oriented at a user-chosen target edge
length. In experiments with real-world models, the
algorithm can compete with several established state-
of-the-art methods in both quantitative and qualitative
aspects. Furthermore, our implementation proved to
be competitive in a timing comparison. Additionally,
different experiments run on a variety of scan data show
the robustness of the algorithm to both variations in
input parameters and noise in the input geometries.

The algorithm has the potential to be extended in
several directions. First, introducing more than two
starting vertices can be used for feature preservation:
Placing starting vertices in high-curvature regions en-
sures that sampled features persist under the recon-
struction. Second, the algorithm can be run on a mesh
as input and be used for remeshing rather than surface
reconstruction. In this application, the input mesh will
serve as the surface where to place new vertices, replac-
ing the splat approximation. Finally, starting with a
closed surface, the next question is whether the sphere
packing approach can be extended into the interior of
the geometry. Thereby, a sphere packing could not only
provide a surface mesh but also a tetrahedral volume
mesh. These extensions are left as future work.
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