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ABSTRACT

We present a proof-of-concept methodology for generating curvilinear polygonal meshes suitable for high-order dis-
cretizations by the Virtual Element Method (VEM). A VEM discretization requires the definition of a set of boundary
and internal points that are used to interpolate the approximation functions and to evaluate integrals by means of
suitable quadratures. The procedure to locate these points on the boundary borrows ideas from previous work on
a posteriori high-order mesh generation in which the geometrical inquiries to a B-rep of the computational domain
are performed via an interface to CAD libraries. Here we describe the steps of the procedure that transforms a
straight-sided polygonal mesh, generated using third-party software, into a curvilinear boundary-conforming mesh.
We discuss criteria for ensuring and verifying the validity of the mesh. Finally, using the Laplace equation with
Dirichlet boundary conditions as a model problem, we show that VEM discretizations on such meshes achieve the
expected rates of convergence as the mesh resolution is increased.
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1. INTRODUCTION

Polytopal meshes, with arbitrarily shaped 2D polygo-
nal or 3D polyhedral computational cells, have been
routinely used for the discretization of partial dif-
ferential equations (PDEs) by finite volume meth-
ods [1]. The main advantages of using unstructured
polytopal meshes are their ability to discretize com-
plex computational domains and their potential to re-
duce the computational complexity of the PDE solver.
Recently, there has been a growing interest in de-
veloping discretisation methods that support polyg-
onal/polyhedral cell shapes meshes with low and high
approximation orders. A literature review of the large
variety of polytopal methods is given in reference [2].

The majority of these methods make use of polytopal
meshes with straight edges and faces that, especially
for high-order methods, can deteriorate the accuracy
of the solution in the presence of curved boundaries
or interfaces. As it is well known from the finite ele-
ment method literature, the representation of the do-
main geometry with planar facets introduces an error
that can stagnate convergence if the order of the ap-
proximation is increased. It is therefore important to
ensure that the curved interfaces and boundaries are
accurately approximated to guarantee the expected or-
der of convergence. To achieve this, one should aim at
defining discrete spaces on curved elements in such
a way that the domain geometry is accurately repre-
sented. Examples of this are the high-order polyno-



mial maps employed in isoparametric finite elements
[3], and the use of a CAD representation of the com-
putational domain in isogeometric analysis [4]. The
Virtual Element Method (VEM) [5] is arguably one
of the very few approaches that permits the definition
of those discrete spaces in the context of curvilinear
polytopal meshes.

To the best of our knowledge, very few methods exist
for the generation of boundary-conforming curvilinear
polytopal meshes. One exception is reference [6] that
adopts a NURBS-enhanced VEM strategy where the
edges on boundaries and interfaces are NURBS curves,
each defined to exactly match the CAD description of
the boundary. The approach that we propose here
differs for that in reference [6] in that the geometri-
cal information required by the VEM discretization
is obtained through an application programming in-
terface (API) that performs all the required geomet-
rical enquiries on a standard CAD representation of
the boundary which eliminates the need to define an
individual NURBS representation of each edge that
matches the CAD definition. This is more general, em-
ploys similar procedures to those employed by current
state-of-the-art curvilinear high-order mesh generators
[7, 8], and thus facilitates the extension of the method-
ology to 3D problems. However, we will present the
main ideas using a 2D proof-of-concept in the following
sections.

2. HIGH-ORDER VEM BASICS

This section describes the basics of the virtual ele-
ment method for the discretization of PDEs in two-
dimensional domains with curved boundaries or inter-
faces. More specifically, we will focus on the infor-
mation required to proceed with the workflow of the
VEM curvilinear mesh generation pipeline, see Fig-
ure 8. A more detailed description of the VEM with
curved edges can be found in [5, 9].

In the remainder of the paper we will use the Laplace
equation with Dirichlet boundary conditions, i.e. find
u(x, y) in such that

− ∆u = f in Ω; u = u∗ in ∂Ω, (1)

as the model problem to illustrate the main features
of the VEM discretization and identify the geometrical
operations required to formulate it.

We will firstly recall how to formulate a VEM dis-
cretization on a straight-sided polygonal mesh [10] and
then proceed to describe how this approach can be
modified to deal with curved edges.

Let E be a polygon with all straight edges, we define

the space

V k
h (E) :=

{
v ∈ H1(E) s.t. v|∂E ∈ C0(∂E) ,

∆v ∈ Pk−2(E),

v|e ∈ Pk(e) ∀e ⊂ ∂E
}
. (2)

where Ps(O) denotes the set of polynomials of order s
on the set O.

A function v ∈ V k
h (E) is uniquely determined by the

following degrees of freedom, see Figure 1(a):

D1: value of v at the vertices;

D2: k − 1 values of v on the edge nodes;

D3: k(k + 1)/2 moments

∫

E

v pk−2 dE.

Such values are the only ingredients you need to set the
virtual element method, that is to create projection
operators, assemble the global matrix and compute the
solution [11]. Note that the function v is not known
a priori ; indeed there is no need to have the explicit
expression of v ∈ V k

h (E). For this reason we denote v
as virtual : it will never be computed explicitly, and it
is known only via its degrees of freedom.
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Figure 1: Degrees of freedom for the straight case (a)
and for the curved case (b) with polynomial order k = 2.
The mapping γ(t) (0 ≤ t ≤ 1) is used to define the
curved edge.

Before describing how the VEM deals with curved
elements, we recall the definition of the Π∇

k projec-
tion operator, which is an essential tool to assem-
ble the global linear system arising from a VEM dis-
cretization. Given a function v ∈ V k

h (E), we define
Π∇

k : V k
h (E) → Pk(E) as





∫

E

∇Π∇

k v · ∇pk dE =

∫

E

∇v · ∇pk dE

∫

∂E

Π∇

k v ds =

∫

∂E

v ds

(3)

where pk denotes any polynomial of order k. The
left-hand sides are polynomials so, if an integration
quadrature rule for polygons is available, they are



computable. The right-hand side of the second equa-
tion is an edge-wise continuous polynomial since v|e ∈
Pk(e) ∀e ∈ ∂E. Such polynomials are uniquely deter-
mined by the degrees of freedom D1 and D2 so they
are also computable. In this framework we are able to
compute also the right hand side of the first equation
as follows. Integrating by parts we get

∫

E

∇v ·∇pk dE = −

∫

E

v∆pk dE +

∫

∂E

(n ·∇pk) v ds ,

where n is the outward normal. The value of the bulk
integral is known since it uses the internal degrees of
freedom of v, i.e., D3. Finally, we can compute the
boundary contribution. As a consequence, we observe
that although v is not explicitly known, we are able
to get its Π∇

k −projection directly form the degrees of
freedom.

2.1 Extension to curved edges

To deal with polygons characterized by curved edges,
the idea is to put geometry information within V k

h (E).

Given a polygon E, we denote by ∂E and ∂̃E the set
of straight and curved edges, respectively. Then, we
define a new space

Vk
h(E) :=

{
v ∈ H1(E) s.t. v|

∂E∪∂̃E
∈ C0(∂E ∪ ∂̃E) ,

∆v ∈ Pk−2(E),

v|e ∈ Pk(e) ∀e ⊂ ∂E ,

v|e ∈ P̃k(e) ∀e ⊂ ∂̃E
}
. (4)

The key point is the definition of P̃k(e), as a polyno-
mial space of degree k in the one variable parameter
space of the curved edge, i.e.,

P̃k(e) := Pk([0, 1]) ◦ γ ,

where γ is a sufficiently regular map that describes the
curved edge of the polygon (see Figure 1 (b)). Then,
to uniquely determine a function v ∈ Vk

h(E), we need
the following degrees of freedom:

D1: value at the vertices;

D2: k − 1 values on straight edges;

D̃2: k− 1 values on the parameter space [0, 1] associ-
ated with the curved edge e;

D3: k(k + 1)/2 moments

∫

E

v pk−2 dE.

Comparing the definition of the spaces V k
h (E) and

Vk
h(E), given by equations (2) and (4), we appreciate

that the curved space is an extension of the straight

one. Indeed, if a polygon E does not have any curved
edges, equations (2) and (4) yield identical spaces. A
further proof about this fact are the degrees of free-
dom: these two spaces share the degrees of freedom
D1, D2 and D3, but Vk

h(E) has the additional degrees
of freedom D̃2 that allows the presence of polygons
with curved edges.

The fact that Vk
h(E) is an extension of V k

h (E) also
gives same benefits from a more practical point of
view. Indeed, if we are able to compute integrals on
polygons with curved edges and on curved edges them-
selves, the virtual element framework stays the same.
Consider for instance the computation of the Π∇

k pro-
jection. If we have a quadrature rule to integrate poly-
nomials on curved domains, the left-hand side of the
first equation can be computed. Then, if we are able
to integrate polynomials over curved edges, all the in-
tegrals over the boundary of E can also be computed.

As a result, the high-order VEM discretization for do-
mains characterized by curved boundaries or interfaces
requires the following geometrical information:

1. The coordinates of a set of points on the vertices
and edges of the polygonal mesh which are used
to interpolate the numerical solution v.

2. The coordinates of a set of quadrature points and
their corresponding weights for evaluating inte-
grals over:

(a) curved edges, and

(b) polygons characterized by curved edges.

3. The mapping γ(t) defining the curved edge which
is used to compute tangent and normal vectors
appearing in some of the integrals.

The numerical integration over curved edges uses the
standard quadrature rules on the parameter space
which require the evaluation of the Jacobian of the
map γ. Figure 2 depicts the location of the quadra-
ture points on the edges of the mesh.

The integration within curved polygons follows the
quadrature approach described in reference [5]. In
brief and following the notation of Figure 2, a reference
line (e.g. a diagonal of the element) is defined to trace
perpendicular lines through the quadrature points of
the edges. In each these lines, standard quadrature
points are located on the segment within the edge
quadrature point and the intersection point with the
reference line. The process is repeated for each edge of
the element and the resulting set of quadrature points
is used for the approximation of the integrals. In prac-
tice the reference line is chosen so that no quadra-
ture points may fall outside of the polygon. To reduce



the number of quadrature points whilst retaining ac-
curacy, reference [5] proposes the use of a compression
procedure. Note that the evaluation of integrals over
curved polygonal cells is an area of ongoing research.

Figure 2: VEM quadrature points: The edge quadra-
ture points are shown as large dots on the edges of the
polygon. The generation of internal quadrature points
is illustrated for the curved edge (in red) only. Here we
define a reference line and trace perpendicular lines to it
passing through the edge quadrature points. On the per-
pendicular lines, standard quadrature points (small dots)
are located on the segment within the edge quadrature
point and the intersection point with the reference line.

The following sections describe how this geometrical
information is processed as part of the mesh generation
procedure.

3. “A POSTERIORI” HIGH-ORDER
VEM MESH GENERATION

We seek to generate meshes suitable for high-order
VEM discretizations that conform to a computational
domain boundary defined in terms of a standard CAD
boundary representation (B-rep) [12]. We follow es-
sentially an a posteriori high-order mesh generation
approach where we modify a straight-sided polygonal
mesh and transform it into a curvilinear mesh that
conforms to the boundary. This process is illustrated
in Figure 3.

The methodology aims to be completely detached from
the VEM solver and to support every user-defined geo-
metrical order. All this is made possible by extending
the current capabilities of the open-source high-order
mesh generator NekMesh [13] and its application pro-
gramming interface (API) for geometrical inquiries to
external CAD libraries such as Open Cascade [14] and
CADfix [15]. In the following we will refer to these
libraries as the CAD engine or the API.

As in the classical a posteriori high-order mesh gen-
eration pipelines, it is necessary to generate a valid

Figure 3: The a posteriori approach to high-order VEM
mesh generation. From top to bottom: CAD B-Rep defi-
nition of the domain, straight-sided polygonal mesh, and
curvilinear high-order mesh.



straight-sided mesh first, and then use high-order tools
to curve the boundary and interface mesh edges whilst
ensuring the new boundary-conforming elements are
valid and of high quality. A graphical illustration of
this process is given in Figure 3. We follow an ap-
proach where the straight-sided polytopal mesh is gen-
erated using a third-party software, in our case STAR-
CCM+ [16]. Then we perform a posteriori connectiv-
ity identification between the linear polygonal vertices,
edges and the corresponding CAD-objects. We con-
struct and project the high-order nodes on the CAD
as specified by a particular combination of quadrature
rules. Finally, using these projected nodal points, we
use the CAD API to retrieve all the geometrical infor-
mation relevant to the VEM solver.

3.1 Generation of the straight-sided
polygonal mesh

Two main strategies could be employed to generate
the straight-sided polygonal mesh. First is the clas-
sical bottom-up strategy, where the vertices are in-
serted directly onto CAD objects (B-Splines, NURBS,
etc.) inside NekMesh. Then one can generate seed
points and perform Voronoi tesselations, including re-
finements, as described in reference [6]. This ensures
CAD conformity and would allow direct use of the
isogeometric VEM without any further mesh manipu-
lations.

To detach the geometrical information from the nu-
merical discretization, so that the interaction with the
CAD B-rep is not handled by the VEM solver, we start
the generation process from a straight-sided polytopal
mesh created using a third-party software. Following
the existing NekMesh pipeline for unstructured tri-
angular and quadrilateral meshes, we choose STAR-
CCM+[16], which has a robust commercial polyhe-
dral mesh generator. It can read CAD information
directly and can be combined with multiple fine con-
trol features, including anisotropic prism/quad layers,
curvature refinement, maximum edge deviation from
the CAD, vertex projection on CAD surfaces, multi-
surface proximity mesh control and separate patch
(curve and surface) control.

The main requirements on the user side for this step
are ensuring boundary conformity of the polygonal
vertices and a CAD deviation distance within the min-
imum edge length. Additionally, the user should en-
sure that the first layer of elements is thick enough
to accommodate the edge projection on the CAD. In
the following, and for simplicity, we will use a circular
ring domain to illustrate some of these features. An
example of a straight-sided polygonal mesh generated
using STAR-CCM+ is depicted in Figure 4.

Once created in STAR-CCM+, the straight-sided

Figure 4: A coarse uniform linear mesh of a ring with
interior radius R1 = 0.2 and exterior radius R2 = 1.

mesh is exported to a .ccm file and it is read by
NekMesh through the CCM OpenFoam importer [17].
More specific details about the implementation are
given in section 3.5. This input process populates the
classical NekMesh data structure of elements, edges
and vertices. These also include topological informa-
tion, for instance the connectivity between the mesh
entities, and potential boundary flags set by the user
in STAR-CCM+. However these do not contain the
CAD information at this stage.

3.2 API to a CAD engine for geometrical
queries

In order to use any of the high-order tools avail-
able, one needs to first obtain the CAD information
and then link the boundary mesh entities with the
corresponding CAD objects. NekMesh achieves that
through an API that links to CAD engines. At this
moment, NekMesh supports OpenCascade Commu-
nity Edition(OCE) [14] and ITI CADFix [15]. This
API can read geometrical objects such as points, lines,
and topological information from a standard STEP file
format [18] which can be created using state-of-the-art
CAD software. Moreover, the API is responsible for
calculating the necessary geometrical information re-
lated to the CAD for the following functions:

• mapping parametric location t on a CAD curve
to its Cartesian location x,

• mapping Cartesian locations x to parametric co-
ordinates t,

• calculating the closest distance d to a CAD curve
given a coordinate x, and



• evaluating normal N and tangent vectors T =
x′(t) to the curve.

At this point, both the linear mesh and the CAD ob-
jects are available and we can connect the entities by
shortlisting the edges, boundary vertices and bound-
ary elements from the edge boundary flags.

Due to the tendency of STAR-CCM+ polygonal mesh
generator to place vertices further away from the CAD
curve, one cannot just use these boundary flags, but
needs to identify the closest curve to every vertex. In
order to do this, NekMesh creates a thin bounding box
in Cartesian space around every CAD curve, within
a geometrical tolerance in the range of 0.001 to 0.01
times the maximum length of the box, and stores it
in a k-D tree data structure [19]. Then exploiting
this k-D tree, we shortlist only several potential CAD
curve candidates for every vertex. For these, we calcu-
late the distance of the vertex to the parametric CAD
curves with the help of the API. If the shortest one
is further away than a small distance, this vertex and
the corresponding edge are left straight to avoid mesh
entanglement. Otherwise, the vertex is projected to
the CAD curve with its corresponding parametric lo-
cation, t.

The extension for edges is straightforward. If the two
vertices belong to the same CAD curve, then this edge
is clearly part of this CAD object, and it is marked as
such. An important exception is when the two edge
vertices have no common CAD object. This could
happen in the junction between two connected CAD
curves, where STAR-CCM+ inserts an edge. As will
be discussed later, this rare case requires a special
curving technique.

This strategy has also been used extensively for 3D el-
ement tetrahedral, hexahedral and prismatic elements.
Therefore, the extension to a 3D polyhedral one is rela-
tively straightforward, but with the API now perform-
ing geometrical queries on 3D CAD objects: curves
and surfaces.

3.3 CAD projection of additional points

The main difficulty in curving the edges occurs when
the two vertices of an edge lie on the same CAD object.
Here NekMesh employs the CAD curve and the API
to parametrically create the high-order edge-nodes ac-
cording to a quadrature rule, defined on the reference
segment [−1, 1], which is typically a form of Gaussian
quadrature. To evaluate their positions on the curve,
we utilise the mapping γ(t) which defines the edge in
the region 0 ≤ t1 ≤ t ≤ t2 ≤ 1. We therefore construct
a mapping between the intervals [−1, 1] and [t1, t2],
then apply γ(t) to locate the points in Cartesian space
along with their parametric coordinates tj . Finally,

we calculate the distance, dj , between the quadrature
points on the straight edge and the corresponding one
on the curve. In an unlikely scenario that the distance
dj is larger than the edge length, a projection error
could have occurred in the CAD engine, and there-
fore, the edge is linearised. This process ensures ex-
act parametric projection to the CAD curves, mesh
boundary conformity and easy access with the API to
the necessary geometrical information for output.

t

0 1

Quadrature Rule [-1:1]

Map Quadrature 

OCE Projection

y
x

CAD Curve

Figure 5: Parametric projection for an edge with a single
CAD curve.

A rare exception to this process happens when STAR-
CCM+ generates an element that spans two CAD ob-
jects. In this case, the edge is located across two CAD
curves, so the previous approach cannot be applied.
Therefore, we generate the quadrature points on the
straight edge first. Then we project the edge node j to
the closest cartesian location of the two CAD objects.
Note that this introduces a small error in the location
of the quadrature points but, if the curves are smooth,
it has a negligible effect on the solution accuracy. A
schematic of the two processes can be seen in Figure
6.

0 1
Quadrature Rule [-1:1]

y
x

CAD Curve

OCE Projection to the  
Closest CAD 

Figure 6: Projection for a straight edge with 2 CAD
curves.



The projection of points employs the geometrical pro-
cedures available in the API. These procedures rely
upon third-party implementations such as OpenCas-
cade which are reasonably robust in general. However,
their applicability may be limited in some instances
such as, for instance, when the curve edges exhibit
inflections or very rapid changes in curvature.

Following these steps, NekMesh can produce curved
meshes with arbitrary user-defined order. Moreover,
the mesh generator is completely detached from the
VEM solver, it is based on the user’s requirements, and
supports any combinations of classical 1D quadrature
rules such as Gauss, Gauss-Lobbato, Gauss-Radau,
etc. However, the construction of the quadrature
points within the polygonal element is left to the solver
side, due to the variety of techniques adopted by the
different VEM solvers.

3.4 Ensuring mesh validity

In regions with high curvature, it is possible to gen-
erate tangled polygonal elements after the edge pro-
jection step, where the addition of curvature causes
the element to self-intersect. Therefore, in the legacy
NekMesh pipeline with standard element shapes such
as triangles and quadrilaterals, we calculate the distor-
tion of each element using the Jacobian of the map-
ping from the standard reference space [20]. A neg-
ative value indicates an invalid tangled element and
hence this element needs to be either linearized or re-
fined. This approach is not easily applicable to ar-
bitrary polygons in the VEM due to the difficulty in
defining such mapping. In 2D domains a visual in-
spection of the mesh often helps identifying invalid
elements, however this is not feasible in 3D. One can
devise a method to detect the presence of invalid ele-
ments by calculating the signed area of a polygon as
an integral over its boundary. If the area of the com-
putational domain, its boundary viewed as a polygon,
differs from the sum of the areas of the polygonal el-
ements calculated in the same fashion, then there are
tangled elements in the mesh. These elements can
then be identified (in 2D) by calculating the winding
number of the polygon, which will be different from
zero if self-intersection occurs.

An alternative method for imposing mesh validity is to
construct a single sufficiently thick boundary layer in
the regions of concern which accommodates the curv-
ing of the mesh effected by the CAD projection. It
has been shown in the literature [3] that this mini-
mum thickness δmin for a quadrilateral element can be
found using the relationship

δmin

R
≥

c2

8R2
(5)

where R is the radius of curvature and c the length of

the straight-sided edge. This value can also be used
as a conservative estimate of the mesh size required
to ensure validity for convex polygonal elements with
four edges or more. Figure 7 illustrates the application
of this criterion in the case of a mesh with a layer of
quadrilateral cells near the boundary with values of
δ above and below δmin, with the later leading to an
invalid mesh.

It is worth noting that techniques currently employed
in high-order meshing for deforming a straight-sided
mesh to accommodate boundary curvature, see for in-
stance [7, 8], could also be implemented using a VEM
formulation and applied in this context. However,
such VEM implementation is left for future work.

(a) (b)

Figure 7: A mesh with a layer of stretched quadrilater-
als: (a) A layer thickness below the value δmin given by
equation (5) leads to self-intersection and thus invalid el-
ements; (b) A valid mesh is obtained with a value above
the minimum thickness.

3.5 Implementation

The various steps of the mesh generation method de-
scribed in previous sections have been implemented
within the open-source code NekMesh. A schematic
flowchart of the implementation is presented in Figure
8.

Note that the implementation performs all the re-
quired geometrical queries via the API to the CAD
engine, and that the communication with the VEM
solver is via a simple file-based interface system. The
solver is asked to read the information defining the
linear mesh (.mesh) and the high-order geometrical
information on the curved edges (.nmg).

The .mesh file includes only information about the lin-
ear mesh: the vertices and their cartesian coordinates,
the edges with the IDs of the two vertices, and an
additional flag showing the corresponding boundary
condition. Finally, for the polygonal elements, we first
indicate the number of vertices of the polygon and
their IDs.

The .nmg file, on the other hand, does not have any
connectivity details or elements. Instead, it commu-
nicates only a minimal amount of geometrical infor-
mation about the previously populated curved edges.



Begin

.step

Create a CAD Geometry

.ccm

Generate a Linear Mesh

Convert 3rd party linear mesh

Load CAD Module

Associate CAD objects with Boundary  
Vertices & Edges  

Generate Quadrature Points

Project Quadrature Edge Nodes to CAD

No

Yes

Valid?

.mesh .nmg

Run VEM Output Module

End / Run VEM Solver

Figure 8: The workflow of the proposed pipeline form
the CAD definition to the curvilinear high-order mesh.

NekMesh first provides the ID of the curved edge and
the data from the .mesh file. Then, for every quadra-
ture point xj , determines and writes to the file the
following geometrical information with the help of the
CAD engine:

• location inside the standard element: 0 ≤ tj ≤ 1,

• Cartesian location: x,

• unit normal to the CAD curve: N (pointing in-
side the curvature), and

• tangent to the CAD curve: x′(t).

Considering the test ring geometry from Figure 12 and
the VEM solver by [9] at order k = 2, NekMesh con-
structs the combination of quadrature rules automat-
ically as required by the solver: a Gauss-Lobatto rule
with n = 3, and Gauss rules with n = 2, 3. The geo-
metrical information evaluated on the inner circle from
the .nmg file is displayed in Figure 9.
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D1
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Figure 9: Visualization of the high-order geometrical in-
formation (with k = 2) communicated to the VEM solver
via the .nmg file.

Our choice of using a simple file-based interface sys-
tem is informed by the need to provide state-of-the-art
VEM solvers with easy and robust access to the high-
order curvilinear information without the need to in-
teract with the B-rep of the computational domain.

4. VERIFICATION AND EXAMPLE OF
APPLICATION

4.1 VEM Verification

This section aims at illustrating the validity of the
meshes generated by the proposed methodology. It
will show that the VEM discretizations of the Laplace
equation in a simple domain, a circular ring, achieve
the expected rate of convergence in both straight-sided
and curvilinear meshes.

From the numerical analysis approximate curved
boundaries may corrupt the numerical approximation
of the discrete solution. Indeed, the error in a numeri-
cal solution, ε, can be split in two main contributions:

ε = εf + εg ,

where the error εf arises due to the discretization of
the functional spaces and the involved (bilinear) forms,
and the εg represents the error on the solution that
stems from the approximation of the geometry of the
computational domain.

When we are dealing with domains with straight
boundaries the contribution of εg is negligible since a
piece-wise straight segments perfectly match a straight



boundary. Therefore the error of a numerical solution
is only εf due to the discrete functional spaces used.

However, when the domain is curved and we approx-
imate curved boundaries with piecewise straight seg-
ments εg ≈ h2 where h is the size of the mesh [9]. As
a consequence, improving the approximation provided
by the discrete functional spaces may not decrease the
whole numerical error we have.

In the following we will perform numerical experiments
to verify these claims. Moreover, we will see that the
high-order meshes generated by NekMesh combined
with the curved virtual element spaces reviewed in Sec-
tion 2 overcome this issue.

Let Ω denote a domain consisting of a circle of radius
1 centred at the origin, with a circular hole removed
at the origin with radius 0.2. We define the right-
hand side and the boundary conditions in such a way
that the solution of a Laplacian problem on Ω is the
function

u(x, y) = log(x2 + y2) .

We discretize the computational domain Ω in two
ways: one with straight-sided edges, referred to as
noGeo, and one with curved edges, denoted withGeo.
For each of these mesh types, we construct a sequence
of four meshes with decreasing mesh size. Figure 14
shows an example of a withGeo mesh.

The VEM approach reviewed in Section 2 with k = 2
is then used to solve this problem. For each of these
meshes we compute the errors in the L2 norm and the
H1 semi-norm.

The trend of these error is depicted in Figure 11. We
begin by analysing the error in the L2 norm. For the
straight-sided case we know that

εf ≈ h3 and εg ≈ h2 .

The geometrical error is dominant, and so we observe
a decay of order two of the error. However, when we
consider curved meshes using the exact geometry, the
error in approximating the geometry decreases as h →
0. For instance, assuming regularity of the domain, a
second-order curved edge approximation leads to an
error εg = O(h3). Furthermore we have εf ≈ h3 and,
as a consequence, the trend of the error is not affected
by the geometrical approximation error and we observe
an error decay of order 3.

In the case of the H1 semi-norm error, we obtain
the expected error decay of order 2 for both type of
meshes, but the absolute value of the error computed
with the curved mesh is smaller. Also the better con-
vergence trend observed using the withGeo meshes is
due to the better approximation of the geometry. In-
deed, the total error in the noGeo mesh have two con-

Figure 10: A curvilinear high-order polygonal mesh of
the domain Ω. The mesh of the domain only displays
the edges of the polygonal elements. An enlargement
of the mesh near the boundary illustrates the additional
degrees-of-freedom required for the high-order discretiza-
tion. The top window shows the locations of the quadra-
ture points on the edges (blue) and on the interior (red)
of the polygonal cells. The bottom window shows the
locations of the points used for interpolation.

tributions with the same order in the H1 norm, namely

εf ≈ h2 and εg ≈ h2 .

Consequently the error trend is not corrupted but its
value is affected by two contributions. While in the
withGeo approach the error due to the geometry is
null, the final error is only influenced by εf and, as a
consequence, it is smaller.
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Figure 11: Mesh convergence of the high-order VEM
discretization: (a) error in the L2 norm; and (b) error in
the H1 semi-norm.

4.2 A Practical 2D Geometry

This section illustrates the application of the high-
order mesh generation procedure to a computational
domain for an automotive aerofoil geometry exhibit-
ing variable curvature along its length. The geometry
of the aerofoil is defined by four NURBS curves.

The linear polygonal mesh generated by STAR-CCM+
is depicted in Figure 13. The mesh resolution has been
purposely increased in the regions near the leading and
trailing edges of the aerofoil.

Figure 14 shows the the edges of the polygonal mesh

Figure 12: High-order VEM solution (k = 2) of
the Laplace equation with Dirichlet boundary conditions
computed on a curvilinear mesh (withGeo).

Figure 13: A straight-sided linear mesh of an automotive
aerofoil.

together with two enlargements showing the location
of the interpolation and quadrature points used in the
high-order discretization.

5. CONCLUSIONS AND FURTHER
WORK

We have proposed a proof-of-concept for a polygonal
high-order curvilinear mesh generator for the Virtual
Element Method (VEM) for arbitrary geometries de-
fined through a standard CAD B-rep of the domain.
The realisation is that the interpolation and integra-
tion of functions within a VEM discretization only re-
quires the definition of a set of boundary, interface and
internal points. This allows us to interpret the prob-
lem of finding the location of these interpolation and
integration points as geometrical inquiries to a B-rep
of the computational domain, performed via an inter-
face to CAD libraries.

As a consequence, we can adopt an a posteriori ap-



Figure 14: A curvilinear high-order polygonal mesh of
an automotive aerofoil. The mesh of the domain only
displays the edges of the polygonal elements. An en-
largement of the mesh near the boundary illustrates the
additional degrees-of-freedom required for the high-order
discretization. The top window shows the locations of
the quadrature points on the edges (blue) and on the
interior (red) of the polygonal cells. The bottom window
shows the locations of the points used for interpolation.

proach to high-order curvilinear mesh generation for
the VEM. The starting point of the process is the
generation of a straight-sided mesh in STAR-CCM+.
The next step is to use the CAD API implemented
in NekMesh for reconstructing the CAD information
from STEP files and, according to the user-defined
order and quadrature rules, parametrically projecting
the quadrature nodes on the curved geometry. Finally,
NekMesh communicates with the VEM solver through
a two-file interface system: one for the linear mesh
with its connectivity and a second for the geometrical
information at the quadrature nodes. Using an exact
solution of the Laplace equation on a ring geometry we
show that the generated high-order curvilinear meshes

for the VEM are valid, accurately reproduce the ana-
lytical solution, and converge at the expected rate as
the mesh size is decreased.

Although we have discussed strategies for assessing the
validity of the mesh, we have made no attempt to eval-
uate mesh quality. This is a topic that has received
little attention in the VEM literature until recently
[21, 22], but it is of significant importance for VEM-
based simulation and adaptation [23] and thus de-
serves further investigation. Most of the current mesh
quality criteria for high-order meshing rely on the eval-
uation of the Jacobian of a mapping from a reference
element, usually a regular polytope, as a measure of
its deformation. Even tough such mappings have been
proposed for convex straight-sided polygons, e.g. us-
ing barycentric coordinates [24], such mappings are, to
the best of our knowledge, not available for non-convex
curvilinear polytopes.

We believe that this work has laid a strong foundation
for the extension of the methodology to the generation
of curvilinear polyhedral meshes. However, devising
quadrature rules suitable for curvilinear polyhedral is
an area of current active development. This represents
a technical bottleneck that must be addressed before
we can extend the proposed methodology to 3D.
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