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ABSTRACT

This paper presents Coupe, a mesh partitioning platform. It provides solutions to solve different variants of the mesh
partitioning problem, mainly in the context of load-balancing parallel mesh-based applications. From partitioning
weights ensuring balance to topological partitioning that minimizes communication metrics through geometric meth-
ods, Coupe offers a large panel of algorithms to fit user-specific problems. Coupe exploits shared memory parallelism,
is written in Rust, and consists of an open-source library and command line tools. Experimenting with different
algorithms and parameters is easy. The code is available on Github:
https://github.com/LIHPC-Computational-Geometry/coupe.

Keywords: mesh partitioning, multi-threading, geometric partitioning, component-based program-
ming

1. INTRODUCTION

For numerical simulation-based analysis, High-
Performance Computing (HPC) solutions are nowa-
days a standard. Numerous solvers run in parallel,
and large multi-physics codes are built to take advan-
tage of HPC cluster architectures. Large-scale numer-
ical simulations that run on large-scale parallel com-
puters require the simulation data to be distributed
across the computing units (GPU, CPU, or any type
of core) to exploit these architectures efficiently. Each
unit must process a fair share of the work according to
its computing capability. The straightforward way to
achieve a ”good” load balance is to model each job by
its cost and to partition all the jobs between the com-
puting units relatively. The problem with two identi-
cal computing units is relative to the classical number
partitioning problem [1].

A large category of simulation codes is based on dis-
crete numerical models that rely on the Finite Element
Methods or the Finite Volume Methods. In both cases,
the geometrical study domain noted Ω must be spa-

tially split into a set of simple atomic elements, called
cells, that geometrically partition Ω. This set of cells
is called a mesh. Depending on the numerical meth-
ods, those meshes will be very structured, like an en-
tirely regular grid of cubes, mainly structured or fully
unstructured. In the latter case, cells are generally
simplices (triangles in 2D and tetrahedra in 3D) or
generic polyhedra.

The mesh and the numerical and physical data at-
tached to the mesh cells must be partitioned between
the different computing units. The goal of the par-
titioning stage can drastically differ between applica-
tions. For load balancing simulations, several tools ex-
ist [2, 3, 4, 5] and solve complex graph or hyper-graph
partitioning problems[6, 7, 8].

Among the tools mentioned, many have a resolution
approach based on topological algorithms and do not
take advantage of the geometric information associ-
ated with the mesh. Moreover, these tools are mainly
focusing on minimizing the communication costs while
keeping the imbalance of the solution below a given
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maximal imbalance. They do not minimize the load
imbalance as an objective, and do not take the mem-
ory load and memory capacity of the computing units
into account.

In this paper, we present Coupe a mesh partitioning
platform that aims to fill the gaps mentioned above.
For this purpose, algorithms under developments as
well as well known algorithms for geometrical, topo-
logical and number partitioning are available. These
algorithms are either direct or refinement algorithms
and can be easily chained together.

The remainder of this paper is structured as follows.
In section 2 we define the Mesh Partitioning Problem
and more precise sub-problems which can be of in-
terest, for large-scale applications, depending on what
objectives have higher priority. Then, in section 3,
we concisely present the main practical algorithms for
each partitioning problem. On top of those algorithm
we mention two refinement algorithms under develop-
ment which are used in our experiments. Section 4
focuses on Coupe and discuss its software choices, ar-
chitecture, and technical differences with other parti-
tioning tools. Moreover, we also present the multiple
tools provided to easily experiment partitioning ap-
paroches with Coupe, and other partitioners. Finally,
in section 5, we experimentally evaluate our tool by
combining multiple kind of algorithms and compare
their results to Scotch and Metis.

2. MESH PARTITIONING AND LOAD
BALANCING

Previously we have briefly introduced the need to
break down the elements of the mesh into several sub-
sets that different computing units will handle.

Load balancing is paramount for any large-scale ap-
plication: the higher the number of computing units,
the most likely one computing unit will have to wait
for another, locally stopping the computation.

This paper focuses on mesh-based applications and
how solving a Mesh Partitioning Problem can enable
high scalability. Mesh Partitioning works with numer-
ical simulation solvers [9] as well as mesh generation
software [10].

Giving a precise definition of the mesh partitioning
problem is difficult due to the number of constraints
and objectives one wants to satisfy. It depends on
how the application uses the mesh, the programming
paradigm, the data structure layouts, and what kind
of hardware performs the computations. We can start
a skeleton problem given in definition 1.

Definition 1 (Mesh Partitioning Problem)
Given a mesh M for which each cell c has a compu-

tation cost wc, find a family Π = (Ci)0fi<k of subsets
of M that satisfies:

• Partition: each cell c of M is in exactly one set
Ci ∈ Π ;

• Balance: the sum of the weights wc of the ele-
ments c of each set Ci of Π is (approximately)
the same ;

• Over-cost: the cost (communication, . . . ) in-
duced by the decomposition Π of M is minimal.

The family Π = (Ci)0fi<k is named a partition and
its elements Ci are called parts.

The ”over-cost” objective is often reduced to the com-
munication costs for updating distributed computa-
tions. However, it can also represent other data dis-
tribution effects, such as a change in the numerical
convergence (for domain decomposition linear solvers,
for example) or the time spent accessing common re-
sources for shared memory architectures.

In practice, the Mesh Partitioning Problem of defini-
tion 1 can be declined in more precise sub-problems,
depending on what objectives have higher priority. We
will always satisfy the ”partition” constraint, but the
other two objectives will be modified depending on the
chosen model.

2.1 Balance oriented partitioning

The most straightforward Mesh Partitioning Problem
reduction focuses only on the ”balance” objective. In
this case, mesh topology is ignored, and the mesh cells
are considered independent between them.

The problem is now the Number Partitioning Problem,
a well studied NP-Hard problem [11, 12].

Definition 2 (Number Partitioning Problem)
Given a mesh M for which each cell c has a compu-
tation cost wc, find a family Π = (Ci)0fi<k of subsets
of M such that:

• Partition: each cell c of M is in exactly one set
Ci ∈ Π ;

• Balance: Minimize the maximum of the sum of
the weights wc of the elements c of each set Ci of
Π.

This model’s main issue ignores any relation or compu-
tational dependency between cells. That means that it
is very likely that adjacent cells can belong to different
parts. In practice, this leads to high communication
costs, and when mesh data structure duplicates cells
that are parts on a part boundary (ghost cells), there
is high memory consumption.



2.2 Geometric partitioning

A simple way to avoid this adjacency issue is to exploit
the geometry of the domain. The geometric domain
Ω is cut, and the mesh M is distributed accordingly.
This geometric approach leads to more locality for the
parts, keeping them almost always connex.

The issue with this approach is that to minimize the
imbalance between parts, it is likely that the excellent
geometrical domains should be over-cut. The contin-
uous domain can be discomposed using only straight
lines [13, 14], but the discrete domain cannot.

In practice, a new Mesh Partitioning Problem is
solved, as presented by definition 3. The ”balance”
objective becomes a constraint: partitioner user fixes
a tolerance ε to allow a certain amount of imbalance,
and the algorithm satisfies this constraint.

Definition 3 (Balanced-Partitioning) Given a
mesh M for which each cell c has a computation
cost wc, and an imbalance tolerance ε, find a family
Π = (Ci)0fi<k of subsets of M such that:

• Partition: each cell c of M is in exactly one set
Ci ∈ Π ;

• Balance: Ensure that the maximum of the sum of
the weights wc of the elements c of each set Ci of
Π is less than 1 + ε the average one (Σ

k
).

Note that definition 3 does not rely on any geomet-
rical notion: this problem is often solved using ge-
ometric methods, as we will see later, but it is not
required. The ”balance” constraint here only focuses
on the weight of the heaviest part, but sometimes the
lightest part is checked and compared to 1 − ε times
the average.

2.3 ”Communication” optimized parti-
tioning

With the previous definition, there is still no explicit
way to compare different partitions in terms of induced
parallelism for the application.

The mesh partition defines the required communica-
tions between computing units on distributed memory
systems. With Bulk Synchronous Parallel [15] pro-
gramming, it translates into two communication over-
costs. The number of messages and the data transfer
volume are metrics for communication consumption.
The other cost is synchronization: computing units
must wait for the slowest. This wait is not strictly a
communication cost but is due to the imbalance of the
computations.

In practice, communication cost models use the mesh’s
topological properties, i.e. how cells and other mesh

entities are connected. This topological information is
embedded into a simpler topological structure such as
a graph or a hyper-graph to be partitioned [6, 16, 17].
The primary metrics used to evaluate partition quality
are the edge and the λ − 1 cut. The edge cut is the
sum of the weights of the graph edges that link vertices
that belong to two different parts. The λ − 1 cut is
a more refined measure, defined on a hyper-graph by
being the sum of the product of the weight of a hyper-
edge and the number λ of different parts linked by this
hyper-edge minus one.

Definition 4 (Communication-Minimized Par-
titioning) Given a mesh M for which each cell c has
a computation cost wc, and an imbalance tolerance ε,
find a family Π = (Ci)0fi<k of subsets of M such that:

• Partition: each cell c of M is in exactly one set
Ci ∈ Π ;

• Balance: Ensure that the maximum of the sum of
the weights wc of the elements c of each set Ci of
Π is less than 1 + ε the average one (Σ

k
).

• Communication: Minimize the modeled commu-
nication cost (edge-cut, λ− 1 cut, . . . ).

2.4 ”Memory” optimized partitioning

Even if definition 4 is the most popular model, some
issues still have to be addressed: no direct control over
the memory consumption induced by the partition,
and the evaluation of the communication cost becomes
inaccurate. Applications rely on complex communi-
cation semantics, mixing point-to-point, global and
pseudo-global communications, or even asynchronous
one-sided patterns. No graph or hyper-graph can ac-
curately model such complex patterns. Moreover, non-
BSP applications can hide asynchronous communica-
tion times by computing. All these aspects are essen-
tial to efficiently exploit exascale computers [18].

Memory footprint depends even more on the applica-
tion implementation. Distributed codes often dupli-
cate boundary vertices to save some communication
costs. This duplication has a cost which can be mod-
eled [7] as shown in definition 5.

Definition 5 (Memory-aware Partitioniong)
Given a mesh M for which each cell c has a com-
putation cost wc and a memory occupation ωc, and
a list of memory capacity (Mi)0fi<k, find a family
Π = (Ci)0fi<k of subsets of M such that:

• Partition: each cell c of M is in exactly one set
Ci ∈ Π ;

• Balance: Minimize the maximum of the sum of
the weights wc of the elements c of each set Ci of
Π;



• Memory: Ensure that for each part Ci, the sum
of the memory occupation of the elements of Ci

and the ghosts are less than Mi.

An important change between this definition 5 and
more classical approaches such as definition 3 or defi-
nition 4 is that the ”balance” is an objective and not
a constraint.

2.5 Other specificities

All previous models assumed that only the mesh par-
tition changes the application’s computing properties.
However, a numerical impact can exist if the applica-
tion uses the partition as a base for a domain decompo-
sition solver [19]. Therefore, specific partitioners that
focus on the parts’ geometric and topological aspect
ratio have been designed [20, 21].

Even for linear solvers, if the application relies on the
partition to order the matrices, convergence properties
can be affected [22].

It is also worth to mention that for the sake of simplic-
ity all these models are for initial partitioning, however
most of them are extended to deal with re-partitioning
for dynamic load balanced computations [6, 9].

3. ALGORITHMS

In section 2, we have presented many ways to define a
Mesh Partitioning Problem. All these different mod-
els, except for definition 3, are NP-Hard discrete prob-
lems.

This section will present the main practical algorithms
for each model. Descriptions will be kept concise as
very good surveys [23] or books [24] are available.

3.1 Direct algorithms

Some algorithms can start from scratch to construct a
partition of the mesh M.

For the Number Partitioning Problem, a greedy al-
gorithm that takes the heaviest element and puts it
into the part of the least weighted is a fast approach.
Differencing algorithm, also known as Karmarkar-
Karp[25], can lead to better results [26]. However,
both methods lead to highly fragmented partitioning
when one looks at the resulting mesh.

On the opposite, geometric algorithms such as Recur-
sive Coordinates Bisections [27], multi-jagged[28], or
space-filling curves algorithms [29, 30] produce very
compact parts [16]. The idea is to travel across the
mesh following an axis and find swinging elements up
to the weight constraint. These elements are pivot

points that define the geometry of the partition. How-
ever, the path along the mesh might not allow match-
ing the weight constraints. For example, if the heaviest
elements are potential pivots, algorithms can end up
in a state where stopping the part here is not enough,
but stopping after the next element will be too much.

Graph and hyper-graph partitioners are often a bet-
ter compromise to achieve good load balance while
keeping the communication cost low. Most of the cur-
rent partitioners such as Kahip [31], Metis [4], Pa-
toh [3], Scotch [5], or Zoltan[2] rely on multi-level al-
gorithms [32, 33]. The idea is to apply a very simple
greedy algorithm on a smaller graph and then refine
the obtained partition. During different steps named
levels, the graph is coarsened by grouping pairs of ver-
tices together, selecting the ones most likely to end up
in the same part. Once the graph is small enough,
i.e. around a few hundred vertices, the greedy initial
partitioning is used. Then, the method projects the
result, level by level. The projected partition is re-
fined at each level, considering the higher precision of
the upper levels graphs.

3.2 Refinement algorithms

Refinement algorithms, i.e. processes that take a
partition and optimize it according to a partitioning
model, are the other class of algorithms commonly
used to compute a partition.

Multi-level schemes require such optimization meth-
ods. Several approaches exist, but most practical tools
rely on either local refinement or diffusion algorithms.
Local refinement methods move a vertex from one part
to another [34] or exchange pairs of vertices [35]. They
produce high-quality results but are challenging to
parallelize. We have implemented a modified version
of [34] called Arcswap which can serve as an example
of how Coupe can be used to implement new algo-
rithms. The original algorithm proceeds by moving
vertices between parts, one by one, so that the qual-
ity of the solution improves the most at every step.
A specific table is used to retrieve in constant time
a vertex whose move improves the solution the most
and great care is taken to also enable constant time up-
dates of the table each time a vertex is moved. By its
greedy nature, this algorithm is very much sequential
and thus mainly used in multilevel partitioning, where
the input size has been drastically reduced. Thus, the
idea behind Arcswap is to drop the greedy requirement
and the table, and to move any vertex with a positive
gain. Diffusion-based methods [36, 37] are more par-
allel than local refinement methods but do not have a
direct effect on the cut.

Close to diffusion methods, a K-means [38] algorithm
optimizes a partition geometrically.



On the opposite, we also have implemented a mod-
ified version of the greedy algorithm for the Num-
ber Partitioning Problem [12] that improves the bal-
ance of an initial partition, moving elements between
parts. This algorithm, named VNBest, consists of
iteratively moving a number from the heaviest part to
another, selecting the number that most decreases the
imbalance. VNBest takes advantage of the relation-
ship between the numbers and the current imbalance
to select the best move efficiently.

3.3 Algorithms composition

We saw that mesh partitioning can relate to many
problems with many practical algorithms.

Combining partitioning models or algorithms can lead
to better, more adapted results. Scotch has a highly
customizable way to choose algorithms with its strat-
egy strings: one can chain algorithms using condition-
als and tune their parameter accordingly. However,
the partitioning problem remains the same for all al-
gorithms: Scotch solves graph partitioning.

For Mesh Partitioning, being able to change the chosen
model at each link of the chain is of great interest. For
example, one can start with a geometric partition gen-
erated from scratch by a fast algorithm, apply a refine-
ment algorithm to optimize the load balance, and then
finish with another optimization focusing on minimiz-
ing the cut. With this scheme, it should be possible
to obtain a pretty well-shaped partition, thanks to the
geometric decomposition, but well-balanced and with
low communication volume, thanks to the refinement
algorithms.

Composing algorithms that work on different problems
and with different kinds of inputs is a software chal-
lenge. It is hard to do robustly, so we designed Coupe
as a mesh partitioning framework with this particular
feature in mind.

4. COUPE: A PLATFORM DEDICATED
TO MESH PARTITIONING

Coupe was primarily started from scratch following a
paradigm shift on partitioning a mesh.

First, the most widely used partitioning tools, except
for Zoltan, target arbitrary graphs or other topolog-
ical structures. Although these structures allow the
expression of relationships between mesh elements,
they remove important information associated with
the mesh: the geometrical information about its el-
ements. In our case, we focus on mesh partitioning
and want to leverage such information.

Second, partitioning a mesh does not necessarily re-
quire distributing the mesh on several nodes. Indeed,

the memory capacity of current machines is often large
enough to work locally on the whole mesh, allowing us
to use multithreading and GPU acceleration as a way
to scale.

Third, the classical tools, built around MPI, follow
an approach mainly based on multi-level partitioning.
Although this approach is well proven in practice, we
believe that it is worth experimenting with inherently
scalable algorithms that have the potential to reach a
higher threshold of concurrency [28, 38].

Finally, this new platform is intended to host different
types of partitioning algorithms that could be coupled
for mesh partitioning, as well as different metrics that
are not directly treated by the classical tools, e.g., the
ghost cells [7].

4.1 Rust as primary development language

A critical distinguishing design decision was to choose
Rust [39] as the development language. While building
for distributed architectures led software developers to
mainly write code in C or Fortran whose support is re-
quired by the MPI standard, Coupe is not bounded to
this interface. However, it still requires low-level ac-
cess to hardware that these programming languages
offer to fully use CPU cores and GPU accelerators.
Moreover, Coupe is intended to host different types of
partitioning algorithms to experiment with new parti-
tioning approaches and address practical partitioning
problems. Among the proposed algorithms, we can
find those dedicated to:

• geometrical or topological partitioning;

• number or vector partitioning, which can be used
to obtain balanced initial partitions;

• optimizing an existing partition.

Being convinced of the interest in composing these dif-
ferent algorithms, it is crucial that their implementa-
tion does not interfere with others and that the source
code, as a whole, is highly modular. The technological
challenge induced by the modularity above-mentioned
and the extensive use of multi-threading drove us to
select Rust.

On the one hand, Rust compiles and produces opti-
mized machine code and has little to no runtime; on
the other, it offers features worthy of high-level lan-
guages like closures, generics, and iterators. It also
has the advantage of having several collection types
built into the standard library, such as hash maps
and binary heaps. Moreover, safe Rust guarantees
an absence of data races and other memory errors
detected at compile time, which significantly helps



us build Coupe. Finally, we leverage Rust’s ever-
growing ecosystem of libraries seamlessly usable from
the Cargo package manager, e.g., benchmark frame-
works, property testing frameworks, parallel process-
ing libraries, . . .

4.2 Integration with other languages

While codes written in C can easily be called from
other languages, it is not the case for Rust. For this
reason, Coupe proposes a compatibility layer that ex-
poses its features through the C ABI. This layer, called
FFI (for Foreign Function Interface) or C bindings, is
the baseline for bindings to other languages. The bind-
ings target C99 but should work with later versions
of the language. The Listing 1 shows an example of
the bindings where a mesh, with four cells of unitary
weight, is partitioned into two parts using the RCB
algorithm.

#include <stdio.h>
#include <coupe.h>

int main() {
uintptr_t partition[4];

// Cells' center
double center_array[4][2] = {{0.0,0.0}, {0.0,1.0},

{1.0,0.0}, {1.0,1.0}};
struct coupe_data *centers =

coupe_data_array(4, COUPE_DOUBLE, center_array);

// Cells' weight
int one = 1;
struct coupe_data *weights =

coupe_data_constant(4, COUPE_INT, &one);

// Geometric partitioning using the RCB algorithm
uintptr_t iter = 1;
double tolerance = 0.05;
enum coupe_err err = coupe_rcb(

partition, 2, centers, weights, iter, tolerance);

if (err != COUPE_ERR_OK) {
fprintf(stderr, "Error: %s\n", coupe_strerror(err));
coupe_data_free(points);
coupe_data_free(weights);
return 1;

}

printf("With 1 iteration (2 parts), RCB returned:%s\n",
coupe_strerror(err));

return 0;
}

Listing 1: Coupe C binding in use.

In addition, to facilitate integration into existing
source codes that use Metis, we are also working on a
library that implements Metis 5.1 API using Coupe’s
algorithms. This library is a drop-in replacement for
libmetis. It can be used by simply replacing -lmetis by
-lcoupemetis in the linker flags.

4.3 The Coupe toolkit

As presented in the previous sections, Coupe can be
used in both Rust (native) and C languages. Since we
want to experiment with new partitioning approaches
easily, multiple tools are provided to work with Coupe,

and other partitioners, from the command line. It
includes the following tools:

• num-part, a framework to evaluate the quality of
number partitioning algorithms specifically. This
program generates sets of random numbers that
follow a given distribution, runs algorithms on
these sets, then saves the results in a SQLite
database. The supported distributions are:

– the uniform distribution;

– the normal/gaussian distribution;

– the exponential distribution;

– the pareto distribution;

– the beta distribution.

• weight-gen, a tool used to generate a distribution
of cell weights for a given MEDIT mesh. The as-
sociated values can either be integers or floating-
points and can be laid out following multiple dis-
tributions such as:

– constant: all weights are equal to a given
value;

– linear: weights follow a linear slope on the
given axis;

– spike: weights form spikes of given values at
given locations.

• mesh-part, a tool to apply partitioning algo-
rithm(s) onto a given mesh. When multiple algo-
rithms are provided, they are chained together.
Available algorithms belong to the following cat-
egories: number partitioning algorithms, num-
ber partition improving algorithms, geometric
partitioning algorithms, graph partition improv-
ing algorithms, Metis partitioning algorithms, or
Scotch partitioning algorithms.

• part-bench, a tool used to benchmark the speed
of the given algorithms.

• part-info, a tool used to print information about
the quality of a partition, e.g., the imbalance for
each criterion, the edge cut, and the lambda cut.

• mesh-dup (resp. mesh-refine), a tool used to in-
crease the size of a mesh by duplicating the ver-
tices (resp. splitting its elements into smaller
ones).

• mesh-reorder, a tool used to change the order of
the vertices and the elements of a mesh.

• apply-part (resp. apply-weight), a tool that en-
codes a partition (resp. weight distribution) in a
mesh file for visualization.



• mesh-svg, a tool outputting an SVG given a mesh
file.

• a collection of shell scripts that aggregate results
into visual reports.

All tools can read and write meshes in different for-
mats via a common module called mesh-io. It cur-
rently supports reading from and writing to:

• MEDIT, both ASCII and binary variants;

• VTK legacy ASCII and binary.

The mesh-io module extracts node coordinates and
basic element types (triangles, quads, tetrahedra and
hexahedra) for use by other tools. Arbitrary polyhe-
dra and other complex elements, as well as complex
topology specifications are discarded, for now. Please
note that this is not an issue for the Coupe partition-
ing library (Rust and C interfaces), which happily ac-
cepts any arbitrary graph, coordinate set, and num-
bers, whether they derive from mesh data or not.

The Listing 2 is a quick walk-through showing how
easy it is to experiment with Coupe. We generate a
weight distribution from a given mesh, chain several
algorithms, analyze the quality of the resulting parti-
tion, and display the partitioned mesh.

# Cells' weight increase linearly according to its position
# on the X axis.
weight-gen --distribution linear,x,0,100 \

<sample.mesh \
>sample.linear.weights

# Partition the mesh and its weight distribution into 2
# parts using RCB and FM algorithms.
mesh-part --algorithm rcb,1 --algorithm fm \

--mesh sample.mesh \
--weights sample.linear.weights \
>sample.linear.rcb-fm.part

# Analyse the partition
part-info --mesh sample.mesh \

--weights sample.linear.weights \
--partition sample.linear.rcb-fm.part

# Merge partition file into MEDIT mesh file and
# convert it to an .svg file.
apply-part \

--mesh sample.mesh \
--partition sample.linear.rcb-fm.part \
| mesh-svg >sample.rcb-fm.svg

Listing 2: Example of use of Coupe commands.

Note that this sequence of instructions can be eas-
ily tested using the Docker image associated with the
project.

5. EXPERIMENTS

In this section, we show measures performed on so-
lutions returned by Scotch, Metis and Coupe. The
solutions returned by Coupe are the result of different

algorithm chains that we will detail. We used each
partitioner to generate 100 solutions per instance. We
configured Scotch and Metis to allow a maximum im-
balance of 1%, i.e. with a tolerance ε = 0.01, and kept
other standard parameters. We also used that value
for the algorithms of Coupe which required a maxi-
mum imbalance value. The reason for such tolerance
value is due to the fact that 1% is the default maxi-
mum imbalance for Scotch on version 6.1.3 (contrary
to Metis which defaults at 3%).

The instances under consideration are obtained from
one 2D mesh and two 3D meshes. The 2D mesh
was generated from a geometric domain looking like a
holed plate and is composed of 12e3 cells. The two 3D
meshes are extracted from the HexMe dataset [40] and
can be found under the names i08c_m8 and i15u_s8.
They are both composed of tetrahedra and the first
one represents a propeller composed of 475e3 cells,
while the second represents a joint composed of 130e3
cells. From each of these meshes we have created two
instances. Both were generated with the weight-gen
tool. The first one uses a linear distribution where the
cells’ weight follow a linear slope on a selected axis and
where the lowest coordinates on that axis are assigned
a value of 1 while the one at the highest coordinates
are assigned the value 1e3. The second one is obtained
by using the spike distribution on two different coor-
dinates. The weights obtained form two spikes where
weights are of the order of e−d where d is the distance
between a cell barycenter and the closest selected spike
coordinate. The second type of instance is of great
interest given that it is the most dreaded case when
partitioning a mesh. Such distribution is illustrated in
Figure 1 for the mesh i08c_m8. When representing the
mesh with a topological model, we derived the weight
of the edges from the vertices. Thus, the weight of an
edge is equal to the weight of the vertices it connects.

Since we wanted to illustrate the composition of algo-
rithms through Coupe, we have experimented using a
couple of combinations that make sense. However, we
have not tried all possible combinations because, at
the time of writing, Coupe implements the following
algorithms:

• Geometrical partitioning: RCB, Hilbert curves
(2D only);

• Geometrical improvement: K-Means;

• Topological improvement: Fiduccia-Mattheyses,
Arcswap;

• Numerical partitioning: Greedy, Karmarkar-
Karp;

• Numerical improving: VNFirst, VNBest;

• Miscellaneous: random, default.



Figure 1: Paraview [41] screenshot of mesh i08c_m8

where the cells’ weights were obtained from two spikes.

As many algorithms consist in refining a solution, we
will start every chain of algorithm with an algorithm
that can create a partition from scratch. From our
current experiments, number partitioning algorithms
provide really poor communication costs. Therefore,
we will start every composition of algorithms with a
geometrical algorithm.

Now let us illustrate the kind of results we can ob-
tain while chaining multiple algorithms. To do this,
we focus on the instance with mesh i08c_m8 and the
spike distribution. In contrast to the experimental
results presented in the following tables, the experi-
ments were performed while configuring VNBest and
Arcswap with a maximum imbalance of 5%.

Let us start off with the geometrical algorithm RCB.
Figure 2, like all subsequent figures, is a Paraview
screenshot. It illustrates the result obtained after us-
ing RCB to split the mesh into eight parts.

Listing 3 shows the associated Coupe command as well
as the information associated to the quality of the so-
lution. We can see that the imbalance if of five per-
cents, while the edge cut and λ − 1 cut are around
60e3 − 70e3. Note that we specified rcb,3, i.e. we
asked to run three iterations of RCB, in order to ob-
tain our eight parts.

Since the high weights are concentrated around small
areas, we can use a refinement algorithm to improve
the imbalance. Here, let us use the VNBest algo-
rithm. As a greedy algorithm, it reduces the imbal-
ance quickly with very few moves which, in our case,
should happen close the cut set. Figure 3 shows the
result obtained after refining the solution of RCB.

Figure 2: Partition obtained after using RCB to split,
along each axis, the mesh into eight parts. Each color
represents a part.

mesh-part -a rcb,3 -m $mesh -w $weights -E linear |
part-info -m $mesh -w $weights -E linear -p /dev/stdin

imbalances: [0.05085917717083563]
edge cut: 74067
lambda cut: 60526

Listing 3: Coupe command to run RCB and quality
information.

Figure 3: Partition obtained after refining the solu-
tion from RCB with VNBest. Because VNBest is un-
aware of topology, some parts have been disconnected.

You may notice the parts are not connected anymore.
This happens frequently because VNBest neither work
on geometry nor topology: cells are moved as long as
their weight best reduce the imbalance.

In Listing 4, the Coupe command uses the verbose flag
to obtain the number of moves made by VNBest. In
this case, only fourteen moves have been performed.
However, we can see that the imbalance has greatly
decreased, while the edge cut and λ− 1 cut are of the



same order of magnitude.

mesh-part -a rcb,3 -a vn-best --verbose #...
vn-best: 14
imbalances: [2.803188159333215e-5]
edge cut: 78094
lambda cut: 64614

Listing 4: Coupe command to run RCB + VNBest
with inner information.

Finally, as a last step, we try to counterbalance the
loss of quality on the edge cut and λ− 1 cut. For this,
we will use the Arcswap algorithm. Figure 4 illustrates
the partition obtained after that the VNBest adjust-
ments are corrected by Arcswap to reduce the edge
cut. As the figure shows, most irregularities brought
by VNBest have been corrected.

Figure 4: Partition obtained after using Arcswap on
the solution from RCB + VNBest. Some adjustments
from VNBest are cancelled to improve the edge cut
while keeping imbalance below the 5% threshold.

Listing 4 illustrates the Coupe command used to par-
tition the mesh with the chain of algorithms RCB +
VNBest + Arcswap. We can see that the solution ob-
tained has better edge cut and λ− 1 cut than the pre-
vious solution while having an imbalance lower than
5%.

mesh-part -a rcb,3 -a vn-best -a arcswap,0.05 #...
imbalances: [0.016473402416348194]
edge cut: 73563
lambda cut: 63433

Listing 5: Coupe command to run RCB + VNBest +
Arcswap with quality information.

For reference, we run Metis’ kway procedure. To do
so, we have to accommodate with the input constraints
Metis and Scotch have: weights are integers and must
not be zero. mesh-part has to scale the weights to the
whole integer type range, and shift them up by one,
as done with existing simulation frameworks. Figure 5
shows the partition returned by Metis and listing 6
presents the associated quality information.

Let us now experiment on the 2D instances. Since
Hilbert curves can be used for 2D meshes, we have

Figure 5: Partition obtained by Metis.

mesh-part -a metis:kway,8,0.05 # 8 parts, 5% tolerance
imbalances: [0.021706020313770193]
edge cut: 47706
lambda cut: 47202

Listing 6: Coupe command to run Metis with eight
parts and 5% imbalance

tried two chains of algorithms: RCB + VNBest + Arc-
scap and Hilbert + VNBest. Table 1 presents the re-
sults of the mean imbalance, edge cut and λ−1 cut for
100 runs on each instance. To simplify the writing of
algorithm chains, the names of the algorithms are ab-
breviated as: R=RCB, H=Hilbert curves, V=VNBest,
A=Arcswap. Note that the intermediate results are
presented for each chain of algorithms.

In Tables 1 and 2,

• the imbalance is computed as the ratio between
the weight of the heaviest part and the ideal
weight per part, i.e. the weight of all cells di-
vided by the number of parts;

• the edge cut is computed on the graph associated
with the mesh, as the sum of the weights on edges
that span two parts:

Let G = (V,E) be a graph, let W (v) be the
weight of the vertex v, and Π(v) be the part as-
signed to v. Then the edge cut of Π on G is

�

(v1,v2)∈E,Π(v1) ̸=Π(v2)

(W (v1) +W (v2))

• the λ− 1 cut is computed on the hypergraph as-
sociated with the mesh, like so:

Le H = (V,E) be the hypergraph associated with
the mesh. For each hyperedge e in E, let λ(e) be
|{Π(v), v ∈ e}|, the number of parts on which e

spans. Then the λ− 1 cut is

�

e∈E

(W (e) · (λ(e)− 1))

From the results, we can see that using RCB algorithm
can result in solutions whose cut quality may be bet-
ter than that returned by Metis or Scotch. However,



this is at the expense of the load balancing. As for
Hilbert, it seems to allow us to obtain better balanced
solutions but for which the quality of the cut is not
better than that of Metis. It should be noted that, for
the spikes distribution, the result obtained is better
than Scotch. As constated in the previous chaining
walk through, using VNBest and Arcswap one after
the other can improve the imbalance while avoiding
too much degradation of the quality of the cut met-
rics. This is of particular interest as RCB + VNBest
+ Arcswap and Hilbert + VNBest manage to return
solution with a mean imbalance that respect the im-
balance constraint, i.e. have an imbalance of less than
1%. However, this is not the case for Scotch. More-
over, the average imbalance obtained can be better
than that returned by Metis while having a mean cut
quality close to that returned by Metis.

Partitioner Imbalance Edge cut λ− 1 cut

Spike distribution
R 7.3% 1.5e5 1.5e5
R-V 0.078% 4.0e5 3.7e5
R+V+A 0.47% 2.1e5 1.9e5
H 0.89% 2.1e5 1.8e5
H-V 0.29% 2.1e5 1.8e5
Metis 1.0% 1.7e5 1.5e5
Scotch 1.8% 3.1e5 3.0e5

Linear distribution
R 7.4% 4.9e4 3.8e4
R+V 0.009% 7.7e4 6.2e4
R+V+A 0.47% 5.7e4 5.2e4
H 0.069% 7.6e4 6.1e4
H-V 0.022% 7.6e4 6.1e4
Metis 0.96% 4.4e4 3.8e4
Scotch 0.99% 4.5e4 4.4e4

Table 1: Measures of the mean imbalance, edge cut
and λ−1 cut for 100 runs on the two instance from 2D
mesh. Best results for each metric are in bold. The
names of the algorithms are abbreviated as: R=RCB,
H=Hilbert curves, V=VNBest, A=Arcswap.

As an illustration of the results returned by Hilbert
algorithm, Figure 6 presents the partition generated
for the case where weights are distributed linearly.

Now, let us focus on the 3D instances. Since 3D
Hilbert curve generation is yet to be implemented, we
will focus on the chain RCB + VNBest + Arcswap.
Contrary to the 2D instances, there is no 3D instance
where the mean cut quality achieved with RCB is lower
than Metis. However, it should be noted that this is
not the case for Scotch. Moreover, we can see that
there are instances where Scotch does not find a valid
solution to the imbalance constraint, whereas this is
not the case for our chain of algorithms. Finally, we
can observe that the successive application of algo-
rithms that do not optimise the same problems does

Figure 6: The 2D mesh partitionned using an Hilbert
curve.

not necessarily lead to antagonistic modifications that
cannot be corrected. Indeed, for three instances out
of four, we can observe that the average quality of the
edge cut of the solutions returned by RCB is close or
equal to that returned by RCB + VNBest + Arcswap
no matter if the application of VNBest had greatly
deteriorated the average quality.

Partitioner Imbalance Edge cut λ− 1 cut

i08c_m8 Propeller - Spike distribution
R 5.1% 7.4e4 6.1e4
R+V 0.003% 7.8e4 6.5e4
R+V+A 0.50% 7.7e4 6.4e4
Metis 0.86% 4.9e4 4.6e4
Scotch 1.8% 6.7e4 6.4e4

i08c_m8 Propeller - Linear distribution
R 6.7% 11e6 8.6e6
R+V 0.001% 18e6 14e6
R+V+A 0.99% 11e6 10e6
Metis 1.0% 5.8e6 5.4e6
Scotch 1.0% 21e6 21e6

i15u_s8 Joint - Spike distribution
R 7.4% 9.5e3 8.5e3
R+V 0.060% 11e3 9.5e3
R+V+A 0.13% 11e3 9.5e3
Metis 0.94% 6.8e3 6.5e3
Scotch 3.6% 11e3 11e3

i15u_s8 Joint - Linear distribution
R 2.1% 5.3e6 4.1e6
R+V 0.004% 6.7e6 5.2e6
R+V+A 0.96% 5.4e6 4.8e6
Metis 1.0% 3.4e6 3.1e6
Scotch 1.0% 8.5e6 8.1e6

Table 2: Measures of the mean imbalance, edge cut
and λ−1 cut for 100 runs on the two instance from 2D
mesh. Best results for each metric are in bold. The
names of the algorithms are abbreviated as: R=RCB,
V=VNBest, A=Arcswap.



6. CONCLUSION AND PERSPECTIVES

This paper describes Coupe, a mesh partitioning plat-
form that provides solutions to solve different vari-
ants of the mesh partitioning problem, mainly in the
context of load-balancing parallel mesh-based appli-
cations. Its codebase is made modular, and multiple
direct or refinement algorithm have already been im-
plemented. These algorithms are geometrical, topo-
logical or number partitioning algorithms and can be
easily composed together to allow users to fine-tune
how they partition their mesh. Although it is still
a work in progress, the project is very much usable,
and algorithm chaining experiments can easily be per-
formed and can be carried out on meshes of the order
of a million cells.

Coupe can be used from Rust and C languages as well
as command-line thanks to the Coupe toolkit. Among
the proposed tools, some are dedicated to instance
generation and can be used, for example, to gener-
ate weight cells according to several available distri-
butions; others can be used to apply one or multiple
partitioning algorithms on a mesh; and some are used
to compute information on the quality of the generated
solutions and aggregate results into visual reports.

All library and tooling code is open source
and hosted on Github: https://github.com/

LIHPC-Computational-Geometry/coupe. We also of-
fer a Docker image for easier access and use.

From the experimental results obtained, we are con-
vinced of the interest of geometric partitioning algo-
rithms for mesh partitioning. Especially since the
chaining of algorithms seems to be a sensible approach
to compensate, if necessary, the solutions returned by
geometric algorithms.

Soon, we intend to develop the library that implements
Metis 5.1 API using Coupe’s algorithms in order to fa-
cilitate integration into existing source codes that use
Metis. We also want to integrate Coupe into the Ar-
cane framework [42], a software development frame-
work for 2D and 3D numerical simulation codes. This
will set performance goals to attain and deliver profil-
ing data. It is also planned to support multi-criteria
runs, i.e. runs where cells have multiple associated
computation costs. Finally, we also want Coupe to
propose algorithms for the Memory-aware Mesh Par-
titioning Problem. A first step in this direction will be
the implementation of [7].
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Çatalyürek U. “Multi-Jagged: A Scalable Par-
allel Spatial Partitioning Algorithm.” IEEE
Transactions on Parallel and Distributed Sys-
tems, vol. 27, no. 3, 803–817, Mar. 2016

[29] Pilkington J.R., Baden S.B. “Partitioning with
Spacefilling Curves.” Tech. rep., Dept. of Com-
puter Science and Engineering, University of Cal-
ifornia, San Diego, 1994

[30] Bader M. Space-Filling Curves: An Intro-
duction with Applications in Scientific Comput-
ing. Springer Publishing Company, Incorporated,
2012

[31] Sanders P., Schulz C. “Think Locally, Act
Globally: Highly Balanced Graph Partition-
ing.” V. Bonifaci, C. Demetrescu, A. Marchetti-
Spaccamela, editors, Experimental Algorithms,
Lecture Notes in Computer Science, pp. 164–175.
Springer, Berlin, Heidelberg, 2013

[32] Barnard S.T., Simon H.D. “A Fast Multilevel
Implementation of Recursive Spectral Bisection
for Partitioning Unstructured Problems.” Con-
currency: Practice and Experience, vol. 6, no. 2,
101–117, 1994



[33] Hendrickson B., Leland R. “A Multilevel Algo-
rithm for Partitioning Graphs.” Proceedings of
Supercomputing. 1995

[34] Fiduccia C., Mattheyses R. “A Linear-Time
Heuristic for Improving Network Partitions.”
19th Design Automation Conference, pp. 175–
181. Jun. 1982

[35] Kernighan B.W., Lin S. “An Efficient Heuris-
tic Procedure for Partitioning Graphs.” The Bell
System Technical Journal, vol. 49, no. 2, 291–307,
Feb. 1970

[36] Pellegrini F. “A Parallelisable Multi-Level
Banded Diffusion Scheme for Computing Bal-
anced Partitions with Smooth Boundaries.” T.P.
A.-M. Kermarrec, L. Bougé, editor, EuroPar, vol.
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