
GENERATION OF POLYGONAL MESHES IN COMPACT

SPACE

Sergio Salinas-Fernández1 José Fuentes-Sepúlveda2 Nancy Hitschfeld-Kahler3

1University of Chile, Santiago, CL-RM, Chile. ssalinas@dcc.uchile.cl
2University of Concepción. Concepción, CL-BI, Chile. jfuentess@inf.udec.cl

3University of Chile, Santiago, CL-RM, Chile. nancy@dcc.uchile.cl

ABSTRACT

We present a new compact half-edge data structure for storing polygonal meshes. This data structure allows us
to reduce the memory usage for the topological information of the mesh in a 99% with respect to a non compact
half-edge. The compact data structure works for any kind of planar graph. To test this compact data structure,
we have implemented a new version of the polygonal mesh generator Polylla using the compact half-edge data
structure. We tested the mesh generator using two implementations of the half-edge data structure: the first one
(non-compact) using an array of structures and the second one (compact) using pemb, a modification to the Turán’s
graph representation such that it supports fast navigation. Finally, we show preliminary experiments to compare the
performance of compact Polylla versus the non-compact version.

Keywords: Polygonal mesh, compact data structures, arbitrary shape polygon

1. INTRODUCTION

Polygonal mesh generation is a research area broadly
studied, with applications in many fields such as com-
puter graphics [1], geographic information systems [2],
Finite Element Methods (FEM) [3], among others. In
the particular case of FEM, the polygons composing a
mesh has to fulfill some quality shape criteria. Typi-
cal meshes tend to contain only triangles or quadrilat-
erals, except for Voronoi meshes that contain convex
polygons as basic cells [4]. In recent years, the Vir-
tual Element Method (VEM) [5] has shown that mesh
generation can be based not only on convex but also
non-convex polygons [6, 7], opening a new research
line to generate quality meshes for VEM [8, 9].

There are several approaches to generate spatial dis-
cretizations, usually composed of triangles, quadrilat-
eral, or both cell types [10, 11]. In general, mesh al-
gorithms can be classified into two groups [12, 13]:
(i) direct algorithms: meshes are generated from the
input geometry, and (ii) indirect algorithms: meshes

are generated starting from an input mesh, typically
an initial triangle mesh. By joining triangles, sev-
eral algorithms have been developed to generate quad
meshes [14, 15, 16]. Such kind of mesh generators
are also known as tri-to-polygon mesh generators. An
advantage of using indirect methods is that the auto-
matic generation of triangular meshes is a well-studied
problem and several efficient and robust tools are avail-
able for free to generate triangulations [17, 18, 19].

Huge simulations such as hydrological modeling on
the earth’s surface, earthquakes, and climate model-
ing, among other applications, require solving numer-
ical methods using meshes with millions of points and
faces. A way to handle those kinds of applications is by
using GPU parallel programming, but GPU solutions
are more limited in memory than CPU solutions. An
approach to face this kind of memory problem is us-
ing compact data structures. Compact data structures
store information using a compact representation of it
while supporting operations directly over such a rep-
resentation. Examples of compact data structures in-

Figure 1: Polylla mesh of the football team Club Uni-
versidad de Chile’s logo. The mesh contains 410 poly-
gons and 1039 edges. White spaces represent holes.

clude integer vectors, trees, graphs, text indexes, etc.
(see [20] for a thorough list). Of particular interest for
this work are the results of Ferres et al. [21] to repre-
sent planar graph embeddings in compact space. From
now on, we will refer to their compact data structure
as pemb. Interestingly, pemb can be seen as a com-
pact version of the half-edge data structure [22], using
around 5 bits per edge. Given a planar graph τ , and an
arbitrary edge e and face f of τ , pemb accomplishes:

• Edge e has an orientation

• Edge e has a twin edge with opposite orientation

• Edge e is accessible by random access

• All edges of face f have the same orientation

In this work we show how to use pemb as a compact
half-edge data structure to implement compact Polylla,
a compact version of the polygonal mesh generator
Polylla [23], a mesh generator based on terminal-edge
regions. The original version of Polylla does not use
the half-edge data structure, so as a byproduct we will
provide a new non-compact version based on the half-
edge data structure. An example of a Polylla mesh is
shown in Figure 1. Both pemb and Polylla are aimed
to work on planar 2D polygonal meshes. Thus, all
the results of this work are limited to 2d geometries
defined by PSLGs.

The paper is organized as follows: Section 2 explains
the concepts necessary to understand this paper. Sec-
tion 3 explains the implementation of the compact and
the non-compact half-edge data structure. Section 4
shows a half-edge version of Polylla. Section 5 shows
the experiments of time and memory, and Section 6
shows the conclusions and future work for Polylla and
pemb.

2. BACKGROUND

This section explains the half-edge data structure, how
the pemb data structure works, and the Polylla algo-
rithm.

2.1 Compact representation of a planar
graph

A way to address the memory problem of represent-
ing large data sets is using lossless compression, that
is, reducing the number of bits as much as possible
without losing information. However, in general, a
disadvantage of this alternative is that it only allows
fast navigation with decompressing the data.

An alternative is to represent the data using a compact
representation and build data structures on top of it
to support fast operations. For instance, Tutte [24]
showed that 3.58m bits suffice to represent a planar
graph embedding with m edges in the worst case. In
the case of triangular meshes, works exist that try to
reach such a bound. For example, the compact data
structure showed in [25] reduces the representation of
a graph by assigning a unique id to each half-edge
and stores only the correspondence between adjacent
half-edges and a mapping from each vertex to any
of its incident half-edges. Catalog representation [26]
gathers the triangles of a triangulation into patches
to reduce the number of references to the elements in
the triangulation. The Star-Vertex data structure [27]
stores the geometrical position of the vertices and a
list of their neighbor’s vertices to represent a planar
mesh. More compact data structures to represent pla-
nar graphs can be seen in [28, 29]. The space con-
sumption of the previous works is O(m) references,
equivalent to O(m logm) bits. For a more detailed
analysis, see [28, Section I].

The space consumption can be improved to O(m) bits
using succinct data structures. In this paper, we use
the work of Ferres et al. [30], a succinct data structure
to represent planar embeddings (see Section 2.3). A
succinct data structure [20, Foreword] is a more re-
stricted version of a compact data structure, where
a combinatorial object, such as a graph or a tree, is
represented using space closed to its information the-
ory lower bound and add only a lower-order term to
support fast queries. Aleardi and Devillers showed a

similar result [31] that uses the succinct representa-
tion of the Schnyder wood triangulation to get similar
queries of the winged-edge data structure [32]. How-
ever, their solution is limited to triangulations, while
Ferres et al. works for any planar graph embedding.

2.2 Half-edge data structure

e

next(e)

p
rev(

e)

C
C
W
vertexE

dge(
e)

CWvertexEdge(e)

target(e)

origin(e)

tw
in
(e
)face(e)

Figure 2: Visual representation of the queries that
can be applied to the half-edge e.

The half-edge data structure, also known as doubly
connected edge list (DCEL) [22], is an edge-based
data structure where each edge of a polygonal mesh is
represented as two half-edges of opposite orientation.
Each half-edge contains information about its orienta-
tion and adjacent elements, allowing easy navigation
inside the mesh. Given a half-edge e, the primitive
queries [33, Chapter 2] supported by the data struc-
ture are the following (see Figure 2):

• twin(e): return the opposite half-edge of e, shar-
ing the same endpoints.

• next(e): return the half-edge next to e inside the
same face in counter-clockwise order.

• prev(e): return the half-edge previous to e inside
the same face in counter-clockwise order.

• origin(e): return the source vertex of the half-
edge e.

• target(e): return the target vertex of the half-
edge e.

• face(e): return the index of the incident face to
the half-edge e.

Based on the primitive queries, more complex queries
can be defined. Given a half-edge e, vertex v, and face
f of a mesh, we define the following complex queries
that will be used later:

• CCWvertexEdge(e): return the half-edge with
source vertex origin(e) and next to e in counter-
clockwise.

• CWvertexEdge(e): return the half-edge with
source vertex origin(e) and previous to e in clock-
wise.

• edgeOfVertex(v): return an arbitrary half-
edge with source vertex v.

• incidentHalfEdge(f): return an arbitrary
half-edge delimiting face f .

• isBorder(e): return true if half-edge e is inci-
dent to the outer face of the mesh.

• length(e): return the length of the half-edge e.

• degree(v): return the number of the edges inci-
dent to with source vertex v.

2.3 pemb data structure

pemb [30] is a compact data structure designed to
represent planar graph embeddings. Given a planar
graph embedding τ = (V,E), pemb represents τ in
4|E| + o(|E|) bits and support navigational opera-
tions in near-optimal time [34]. To construct pemb,
τ is decomposed into two spanning trees: an arbitrary
spanning tree T for τ and the complementary span-
ning tree T ′ of the dual graph of τ . Thus, naviga-
tional operations over τ are mapped to navigational
operations over the spanning trees. T is traversed in
counter-clockwise order in a depth-first manner, start-
ing at an edge incident to the outer face, generat-
ing a balanced parenthesis representation of T , where
open/close parentheses are represented with 0/1 bits,
respectively. During the traversal of T , a clockwise
depth-first traversal of T ′ is induced, generating a bal-
anced parenthesis representation of T ′ and a bitvector
representing how both spanning trees are intertwined.
The balanced parenthesis representations of both trees
are stored as compact trees [20, Chapter 8], while the
bitvector is stored as a compact bitvector [20, Chap-
ter 4]. After the construction of pemb, the vertices are
referred to by their rank in the depth-first traversal of
T . Thus, the first visited vertex in the traversal has id
0 and the last id |V | − 1. A planar graph τ = (V,E)
is represented as three bitvectors:

• a bitvector A[1..2|E|] in which A[i] = 1 if and
only if the i-th edge we process in the traversal
of τ is in T , and A[i] = 0 otherwise.

• a bitvector B[1..2(|V | − 1)] in which B[i] = 0 if
and only if the i-th time we process an edge in T
during the traversal, is the first time we process
that edge, and B[i] = 1 otherwise.

• a bitvector B∗[1..2(|E|−|V |+1)] in which B∗[i] =
0 if and only if the i-th time we process an edge
in T ′ during the traversal, is the first time we
process that edge, and B∗[i] = 1 otherwise.

Figure 3 shows an example of the decomposition of a
triangulation into two intertwined spanning trees. Its
representation is stored as:

A[0..48] = 011000110001100000110101010000001101010011111110

B[0..22] = 0010101000010001111111

B
∗

[0..26] = 00001000000011111100011111

0

1

4

5
6

3

26
2

37

7

25

8

11

9

10

1617

18

15

19

20

14

21

22
13 23

24

12

30

31

32 29 34

33

28

27

41 40 39

36

35 38

43

42

0 1 10

4
3

7

9865

Figure 3: Representation of a triangulation as the
decomposition into two spanning trees. Thick edges
represent the edges of the spanning trees, red for the
spanning tree of the triangulation, T , and green for
the spanning tree of the dual, T ′. For each edge of
the triangulation, its orientation and rank after the
traversal T are shown.

Some of the operations supported by pemb that we
will use in our compact half-edge representation, are:

• pemb vertex(i): return the id of source vertex
of the i-th visited edge.

• pemb first(v): return i such that when visiting
the i-th edge during the traversal of T , it is the
first edge whose source vertex is v.

• pemb last(v): return i such that when visiting
the i-th edge during the traversal of T , it is the
last edge whose source vertex is v.

• pemb next(i): return j such that the j-th visited
edge is next to the i-th edge, in counter-clockwise,
of the visited edges of pemb vertex(i) during the
traversal of T . If the i-th edge corresponds to the
last visited edge of pemb vertex(i), then return
pemb first(v).

• pemb prev(i): return j such that the j-th vis-
ited edge is previous to the i-th edge, in counter-
clockwise, of the visited edges of pemb vertex(i)
during the traversal of T . If the i-th edge corre-
sponds to the first visited edge of pemb vertex(i),
then return pemb last(v).

• pemb mate(i): return j such that we process the
same edge i-th and j-th during the traversal of T ;

• pemb degree(v): return the number of edges in-
cident to vertex v.

• pemb first dual(f): return the position of the
first visited edge incident to face f during the
traversal of T .

• pemb get face(e): return the id of the face in-
cident to edge e.

2.4 The Polylla algorithm

The Polylla mesh generator [23] takes an initial trian-
gulation as input τ = (V,E) to generate a polygonal
mesh τ ′ = (V,E′). Any triangulation works. The
algorithm merges triangles to generate polygons of ar-
bitrary shape (convex and non-convex shapes). To un-
derstand how the algorithm works, we must introduce
the longest-edge propagation path and terminal-edge
regions.

Figure 4: Example of a longest-edge propagation
path of a triangle and a terminal-edge region. Dashed
edges are the terminal-edge. The marked polygon is
a terminal-edge region formed by the union of the
triangles belonging to the Lepp(ta), Lepp(tb), and
Lepp(tc). The triangles with the line pattern corre-
spond to Lepp(tc).

Definition 1 Longest-edge propagation path [35]
For any triangle t0 of any conforming triangulation τ ,
the Longest-Edge Propagation Path of t0 (Lepp(t0)) is
the ordered list of all the triangles t0, t1, t2, ..., tn−1,
such that ti is the neighbor triangle of ti−1 by the
longest edge of ti−1, for i = 1, 2, ..., n. The longest-
edge adjacent to tn and tn−1 is called terminal-edge.

Figure 5: The output of the label phase to generate
terminal-edge regions. Black lines are frontier-edges,
and dotted gray lines are internal-edges. Terminal-
edges are red dashed lines. Since terminal-edges can
be inside or at the boundary of the geometric domain,
dashed lines are border terminal-edges, and dotted
dashed lines are internal terminal-edges. Barrier-edge
tips are green squared vertices and seed triangles with
a blue cross.

Definition 2 Terminal-edge region [36] A
terminal-edge region R is a region formed by the
union of all triangles ti such that Lepp(ti) has the
same terminal-edge.

An example of both concepts is shown in Figure 4.

To convert terminal-edge regions into polygons, the
Polylla algorithm works in three main phases:

i) Label phase: Each edge e ∈ E, adjacent to trian-
gles t1 and t2, is labelled according its length as
terminal-edge, internal-edge or frontier-edge:

• Internal-edge: e is the longest edge of t1 or
t2, but not of both.

• Frontier-edge [37]: e is neither the longest-
edge of t1 nor t2. If t2 = null, e is also a
frontier-edge.

Frontier-edges are the border of terminal-edge re-
gions and so the edges of the polygons in the fi-
nal mesh. A particular case of frontier-edges is
barrier-edges where t1 and t2 belong to the same
terminal-edge region. An endpoint of a barrier-
edge belonging to only one frontier-edge is called
a barrier-edge tip.

Figure 6: Traversal phase example: arrows inside
terminal-regions are the paths of the algorithm during
the conversion from a terminal-edge region to a poly-
gon. The path starts at a triangle labeled as a seed
triangle. Each terminal-edge region has only one seed
triangle.

Figure 5 shows a triangulation with labeled edges
and triangles. The labeled triangles are termi-
nal triangles, i.e., triangles that share a terminal-
edge. In the next phase, one terminal triangle per
each terminal-edge is labeled as seed triangle.

ii) Traversal phase: In this phase, polygons are gen-
erated from seed triangles.For each seed triangle,
the vertices of frontier-edges are traversed and
stored in counter-clockwise order, delimiting the
frontier of the terminal-edge region. During the
traversal, some non-simple polygons with barrier-
edges can be generated. Those polygons are pro-
cessed later in the next phase. An example of this
phase is shown in Figure 6.

iii) Repair phase: Non-simple polygons with barrier-
edges (a polygon with dangling interior edges) are
partitioned into simple polygons. Interior edges
with a barrier-edge tip as an endpoint are used to
split it into two new polygons, and per each new
polygon, a triangle is labeled as a seed. The final
output is a polygonal mesh composed of simple
polygons after applying the Traversal phase to
the new polygons. An example of this phase is
shown in Figure 7.

(a) (b) (c)

Figure 7: Example of a non-simple polygon split us-
ing interior edges with barrier-edge tips as endpoints.
(a) Non-simple polygon. (b) Middle interior edges in-
cident to barrier-edge tips are labeled as frontier-edges
(solid lines), and cross-labelled triangles are stored as
seed triangles. (c) The algorithm repeats the travel
phase using a new seed triangle but avoiding generat-
ing the same polygon again. Source: [23].

3. HALF-EDGE DATA STRUCTURE
IMPLEMENTATION

This section shows how to implement the non-compact
and compact versions of the half-edge data structure.
Additionally, we introduce some extra data structures
needed for the Polylla algorithm.

3.1 Non-compact half-edge: AoS half-
edge

To store the initial triangulation τ = (V,E) as a set
of half-edges, the half-edge data structure is imple-
mented as an array-based adjacency list, storing the
vertices in an array of length |V | and the half-edges in
an array of length 2|E|. Each vertex v stores its co-
ordinate (v.coord), the index of an arbitrary incident
half-edge (v.hedge), and a boolean indicating if v is
incident to the outer face (v.is border). For each half-
edge e its source (e.src) and target (e.tgt) vertices,
twin (e.twin), next (e.next) and previous (e.prev)
half-edges, incident face (e.face) and a boolean in-
dicating if e is incident to the outer (e.is border)face
are stored. The three half-edges bordering a face are
stored consecutively in the array of half-edges, i.e., the
half-edges of face i are stored in the indices 3i, 3i+ 1
and 3i + 2. Thus, most of the half-edge primitive
queries are supported in constant time by returning
the corresponding field (e.g. edgeOfVertex(v) re-
turns v.hedge and isBorder(e) returns e.is border).
More complex queries are supported as follows:

• CCWvertexEdge(e): twin(next(e)).

• CWvertexEdge(e): twin(prev(e)).

• incidentHalfEdge(f): Half-edge at index 3f
in the array of half-edges.

• length(e): Euclidean distance of the coordi-
nates of origin(e) and target(e).

• degree(e): Using the query
CCWvertexEdge(e), iterate over the neighbors
of origin(e) until reaching e.

3.2 Compact half-edge

Our compact representation of the half-edge data
structure has two components: (1) a compact repre-
sentation of the initial triangulation, using pemb, and
(2) a non-compact vector with the coordinates of the
vertices.The vertex identifiers in pemb are not neces-
sarily the same as the input triangulation since pemb
assigns new identifiers according to the traversal of
the trees. To simplify the mapping between the com-
ponents (1) and (2), the coordinate of the vertex with
id i, in pemb, is stored at the entry i of the vector of
coordinates. Notice that no extra data structures are
needed since pemb provides all navigational queries
to implement the half-edge data structure. Thus, the
compact half-edge data structure uses 4|E| + o(|E|)
bits for the first component and O(|V | log |V |) bits for
the second component, where the log |V | term comes
from the fact that at least O(log |V |) bits are necessary
to represent O(|V |) coordinates.

In pemb, the edges of a face are oriented clockwise, the
opposite orientation of the half-edge data structure
(see Figure 3). Additionally, we notice that queries
pemb next and pemb prev of pemb have a differ-
ent meaning than queries next and prev of the half-
edge. The former queries refer to edges incident to
a vertex, while the latter refers to edges incident to
a face. It is possible to orientate the faces of pemb
counter-clockwise by traversing the primal spanning
tree clockwise.

In what follows, we show how to support half-edge
queries with pemb:

• twin(e): pemb mate(e).

• next(e): pemb prev(pemb mate(e))

• prev(e): pemb mate(pemb next(e))

• origin(e): pemb vertex(pemb mate(e))

• target(e): pemb vertex(e)

• face(e): pemb get face(e)

Additional queries are implemented as follows:

• CCWvertexEdge(e): pemb next(e)

• CWvertexEdge(e): pemb prev(e)

• edgeOfVertex(v):
pemb mate(pemb first(v))

• incidentHalfedge(f): pemb first dual(f)

• isBorder(e): return true if pemb get face(e)
returns the id of the outer face. Otherwise, return
false

• length(v): Euclidean distance of the coordi-
nates, stored in the component (2) of compact
half-edge, of origin(e) and target(e).

• degree(v): pemb degree(v)

3.3 Additional data structures

Before implementing the Polylla algorithm based on
the half-edge data structure, we need some additional
temporary data structures. To label each edge of the
triangulation, we use two bitvectors, max-edge and
frontier-edge, to mark the longest edge of a triangle
and frontier edges, respectively. Both bitvectors are
of length 2|E|, the number of half-edges. For the seed
triangles, a vector called seed-list stores the indices
of the incident terminal-edges.

For the repair phase, we use two auxiliary arrays to
avoid the duplication of the polygons, subseed-list,
that is declared empty, and usage bitvector, of
length |E|.

Finally, the output mesh is stored as a 2-dimensional
array called mesh array, where each row stores a set of
vertices representing a polygon. Notice that we do not
return a compact version of the output mesh directly.
Instead, after the generation of mesh array, we can
store it in compact space by constructing its compact
half-edge representation.

4. HALF-EDGE POLYLLA ALGORITHM

This section explains how to implement the Polylla
algorithm using a half-edge data structure. The algo-
rithm takes a triangulation τ(V,E) as input and gen-
erates a polygonal mesh as output. All the phases of
the Polylla mesh are O(|V |).

4.1 Label phase

This phase labels each edge e ∈ E as a frontier-edge,
the longest edge of a face, and/or a seed edge incident
to a triangle seed. The pseudo-code of this process is
shown in Algorithm 1.

The algorithm iterates over each triangle t ∈ τ , where
the edges delimiting t are obtained with the queries
e = incidentHalfedge(t), next(e) and prev(e).
The edges of a triangle t are then compared, and the
id of the longest one is marked in max-edge bitvec-
tor (lines 1–3). Afterward, the algorithm iterates
over all the half-edges of τ . If a half-edge e or
its twin twin(e) are at the geometric boundary, i.e.
is border(e)=true or is border(twin(e))= true,
or both half-edges were not marked in max-edge, then
e is labelled as a frontier-edge (lines 4–9). Along-
side, the algorithm searches for seed edges: if a half-
edge e and its twin(e) are a terminal-edge or border

terminal-edge incident to an interior face, then the al-
gorithm labels any of the half-edges (lines 10–12).

Algorithm 1 Label phase

Input: Half-edge data structure HalfEdge
Output: Bitvectors frontie-edge and max-edge, and vec-

tor seed-list
1: for all triangle t in HalfEdge do
2: Mark the longest edge of t in max-edge
3: end for
4: for all half-edge e in HalfEdges do
5: if e and twin(e) are not in max-edge then
6: Mark e in frontier-edge
7: else if e or twin(e) are border edges then
8: Mark e in frontier-edge
9: end if
10: if e is terminal-edge or border terminal-edge then
11: Store the id of e or twin(e) in the seed list
12: end if
13: end for

4.2 Traversal Phase

In the second phase, the algorithm uses seed edges
generated in the previous phase to build terminal-edge
regions. For each generated region R, its vertices are
stored in counter-clockwise order in a set P .

For each seed half-edge e in seed list, Algorithm 2
is called. The algorithm iterates in clockwise order
around origin(e) until it finds a frontier-edge einit,
an edge that will be part of the final polygonal mesh
(lines 1–7). Once a frontier-edge is found, the algo-
rithm iterates, using the query CWvertexEdge(),
over the edges of the region R until reaching the next
frontier-edge in counter-clockwise order (lines 8–14).
Each discovered frontier-edge’s source vertex is added
to the output polygon (lines 7 and 13). This process
ends when all boundary vertices of R are stored in P

Each polygon P is checked if it is a simple or non-
simple polygon. The algorithm iterates over all ver-
tices in P , looking for three consecutive vertices, vi,
vj , and vk with vi == vk. If true, then vj is a barrier-
edge tip, and the polygon is a non-simple polygon. If
the polygon is simple, it is stored in the mesh array.
If not, it is sent to the repair phase.

4.3 Repair Phase

The repair phase works similarly to the label and the
travel phases but is limited to the triangles of a non-
simple terminal-edge region. In summary, the algo-
rithm labels an internal-edge e incident to each barrier-
edge tip as frontier-edge and repeats the travel phase
using the triangles adjacent to e to generate two new
polygons (see Algorithm 3).

Given a non-simple polygon P , for each barrier-edge
tip b ∈ P , the algorithm searches for the barrier-edge
incident to b (lines 4 – 7). To do that, the algorithm

Algorithm 2 Polygon construction

Input: Seed edge e of a terminal-edge region
Output: Arbitrary shape polygon P
1: P ← ∅
2: while e is not a frontier-edge do
3: e ← CWvertexEdge(e)
4: end while
5: einit ← e
6: ecurr ← next(e)
7: P ← P ∪ origin(e)
8: while einit ̸= ecurr do
9: while ecurr is not a frontier-edge do
10: ecurr ← CWvertexEdge(e)
11: end while
12: ecurr ← next(ecurr)
13: P ← P ∪ origin(ecurr)
14: end while
15: return P

uses the query edgeOfVertex(b to get a starting
half-edge e incident to b from where the incident half-
edges of b are traversed using CWvertexEdge(e) un-
til getting a frontier-edge of b.

Afterward, the algorithm chooses one of the incident
internal-edges of b to split the polygon in two (lines 8
– 10). To choose an internal-edge, the algorithm cal-
culates the number of incident edges as degree(b)−1
(−1 because of the frontier-edge incident to b), and
circles around b (degree(b)−1)/2 times to split the
polygon evenly. The target internal-edge e is labelled
as frontier-edge, marking its two half-edges in the
frontier-edge bitvector, labelled as True in usage

bitvector, to mark them as visited during this phase,
and stored in subseed-list to use them later as seed
edges to generate a new polygon (lines 11 – 13).

For each half-edge e inside subseed-list and usage

bitvector[e] = True, the algorithm repeats the travel
phase (line 18) to build a new polygon, marking usage

bitvector[e] = False after building it to avoid the
generation of the same polygon more than once.

The final set of simple polygons is returned and stored
as part of the mesh in the mesh array.

5. EXPERIMENTS

5.1 Implementation

The implementations of the Polylla algorithm and
the compact data structures are in C++.1 The al-
gorithm described in Section 4 was implemented as
a class that calls virtual methods of the abstract
class Mesh. This abstract class contains all the meth-
ods of the half-edge data structure, shown in Section
2.2. Those methods were implemented into two child
classes: Triangulation, that contains the implemen-
tations of the functions shown in Section 3.1, and

1The source code of our implementations are available at
https://github.com/ssalinasfe/Compact-Polylla-Mesh

Algorithm 3 Non-simple polygon reparation

Input: Non-simple polygon P
Output: Set of simple polygons S
1: subseed list as Lp and usage bitarray as A
2: S ← ∅
3: for all barrier-edge tip b in P do
4: e ← edgeOfVertex(b)
5: while e is not a frontier-edge do
6: e ← CWvertexEdge(e)
7: end while
8: for 0 to (degree(b) - 1)/2 do
9: e ← CWvertexEdge(e)
10: end for
11: Label e as frontier-edge
12: Save half-edges h1 and h2 of e in Lp

13: A[h1]← True, A[h2]← True
14: end for
15: for all half-edge h in Lp do
16: if A[h] is True then
17: A[h]← False
18: Generate new polygon P ′ starting from h using

Algorithm 2.
19: Set as False all indices of half-edges in A used

to generate P ′

20: end if
21: S ← S ∪ P ′

22: end for
23: return S

CompactTriangulation, that contains the implemen-
tations of the functions shown in Section 3.2. The
CompactTriangulation class encapsulates the class
Pemb, that contains the implementation of pemb us-
ing the library SDSL [38].2

5.2 Datasets

To test our implementations, we generated several De-
launay triangulations from random point sets inside a
square of dimensions 10, 000× 10, 000. To see the be-
haviour of Polylla meshes using another dataset see
[23]. For the generation of the triangulations, we used
the 2D package of the software CGAL [39]. An exam-
ple of the generated meshes is shown in Figure 8.

5.3 Experimental setup

To run the experiments, a machine with processor
Intel(R) Xeon(R) CPU E5-2640 v3 @ 2.60GHz and
main memory of 126 GB was used. To measure
the memory consumption, the library malloc count3

was used. From this library, we use the function
malloc count peak() to obtain the peak of memory
consumption and malloc count current() to obtain
the memory used to store the generated polygonal
mesh. The size of pemb was obtained with the sup-
port of the SDSL library. Memory usage and the exe-
cution time were calculated using the Chronos library

2The original implementation of pemb is available at
https://github.com/jfuentess/sdsl-lite

3https://panthema.net/2013/malloc_count/

https://github.com/ssalinasfe/Compact-Polylla-Mesh
https://github.com/jfuentess/sdsl-lite
https://panthema.net/2013/malloc_count/

Figure 8: Example of a Polylla mesh generated from
a Delaunay triangulation over 10k random vertices.

AoS Compact

#V GDT GHF GP GHF GP

10M 4.67 0.14 0.58 0.26 23.86
15M 7.19 0.20 0.87 0.39 36.31
20M 9.58 0.27 1.15 0.52 48.82
25M 11.92 0.33 1.43 0.65 60.90
30M 14.70 0.40 1.73 0.78 74.06
35M 16.08 0.47 2.01 0.92 87.77
40M 19.17 0.52 2.25 1.05 98.67

Table 1: Time comparison in minutes of the Delaunay
triangulation generation (GDT), the half-edge data
structure generation (GHF), and the Polylla mesh gen-
eration (GP).

without considering the time to load the input trian-
gulations. Each experiment was run five times, and
the average was reported. We generated meshes from
10 million vertices to 40 million.

5.4 Results

Half-edge data structures construction. Ta-
ble 1 and Figure 9 show the time needed to construct
the half-edge data structure (GHF) and to generate
the polygonal mesh using the Polylla algorithm (GP).
The construction of AoS half-edge data structure
is 1.95x faster than the construction of compact half-
edge. In the same line, the generation of a polygonal
mesh using AoS half-edge is 42.7x faster than the
generation using the compact half-edge. Additionally,

107 2 × 107 3 × 107 4 × 107

Num of vertices (log)

10 1

100

101

102

Ti
m

e
in

 m
in

ut
es

 (l
og

)

GP compact
GP Aos

GDT
GHF Aos

GHF compact

Figure 9: (LogLog plot) Running time, in minutes,
to generate the data structures. The continuous line
is the time to generate Polylla mesh using compact
half-edge and AoS half-edge (GP compact and GP
AoS, respectively), and the Delaunay triangulations
(GDT) using CGAL. Dashed lines correspond to the
time to generate compact half-edge and AoS half-
edge (GHF compact and GHF AoS, respectively).

107 2 × 107 3 × 107 4 × 107

Num of vertices (log scale)

10 1

100

101

102

Ti
m

e
in

 m
in

ut
es

 (l
og

 sc
al

e)

Polylla compact total
Label phase compact
Traverse compact

Repair compact
Polylla Aos Total
Label Phase AoS

Traverse phase AoS
Repair AoS

Figure 10: (LogLog plot) Running time, in minutes,
that takes each phase of the Polylla algorithm using
AoS Half-edge and compact Half-edge. The continu-
ous line is the total sum of the algorithm, while the
dashed lines show the time for each phase.

AoS Compact

#V HF GHF GP HF Pemb Coord GHF GP Polylla

10M 1.79 3.02 2.25 0.17 0.02 0.15 1.96 0.63 0.60
15M 2.68 4.53 3.49 0.25 0.03 0.23 2.95 1.06 0.95
20M 3.58 6.03 4.50 0.34 0.04 0.30 3.93 1.26 1.20
25M 4.47 7.54 5.54 0.42 0.05 0.38 4.91 1.49 1.44
30M 5.36 9.05 6.97 0.51 0.06 0.45 5.90 2.12 1.91
35M 6.26 10.56 7.99 0.59 0.07 0.53 6.88 2.32 2.15
40M 7.15 12.07 9.01 0.68 0.08 0.60 7.86 2.53 2.40

Table 2: Memory usage in gigabytes by the algorithm. HF is the memory used to store the half-edge data structure,
GHF is the memory cost to generate the triangulation, and GP is the memory cost to generate the Polylla mesh. In
the case of the compact HF, HF is also the memory used to store the vertices coordinates (Coord) and the Pemb
data structure. The Polylla column is the memory used to store the Polylla mesh.

Figure 11: Memory, in gigabytes, used to store the
data structures.

Figure 12: Peaks of memory achieved, in gigabytes,
during the generation of the data structures.

as a reference, we include the time needed by CGAL
to generate a Delaunay mesh from a random point set.

Phases of the Polylla algorithm. Figure 10
shows the running time to generate polygonal meshes
with Polylla. Despite the data structure used to gen-
erate the Polylla meshes, all phases of Polylla have
the same growth. Remember that all the phases of
Polylla have a complexity of O(|V |). Notice that each
phase uses different queries. The most costly phase
is the label phase, which visits all faces in the trian-
gulation, calculates the length of the edges using the
queries next(·) and prev(·), and then labels the edges
using queries is border(·) and twin(·). The second
costly phase is the traversal phase. This phase uses
the queries origin(·), next(·) and CWvertexEdge(·)

to generate each polygon. During this phase, all the
edges of the triangulation are revisited. The repair
phase is the fastest, as it is only used by the 1% of the
polygons [23] generated in the traversal phase. One
particular query used during the repair phase is the
query degree(·) to calculate the middle internal-edge.

Memory usage. Results of the memory usage are
shown in Table 2. To calculate the memory usage to
generate the data structure, we compute the memory
peak of the algorithm (the columns with the prefix
“G”). The memory usage for the triangulation once
the half-edge data structure was created shown with-
out the “G” prefix. It can be observed that the mem-
ory usage to generate the polygonal meshes (GP) us-
ing the AoS Polylla requires 3.49x more memory than

the compact version (compact GP). In the case of the
generation of the data structures (GHF), the AoS half-
edge generation (AoS GHF) takes 3.49x more memory
than the compact version (compact GHF). The peak
of memory usage is shown in Figure 12.

After the half-edge data structure (compact or non-
compact) was initialized, the memory usage decreased
because several temporal information was not needed
anymore. The memory usage during the application of
the Polylla phases is shown in Figure 11. The topolog-
ical information of a triangulation can be compacted
by a 99%4. respect to AoS half-edge, that is, with-
out considering the memory usage to store the coordi-
nates.

Most of the memory used by the compact and non-
compact half-edge data structure is related to the coor-
dinates of each vertex of the triangulation. The mem-
ory to store the compact triangulation is distributed
in 88.67% for the point coordinates and 11.33% for the
half-edge data structure. As the position of the ver-
tices is float values, they can not be compacted easily.

Despite the fact that compact Half-edge is slower than
AoS half-edge, we argue that in scenarios where the
non-compact representation of half-edge does not fit
in main memory while compact Half-edge does, the
latter will be faster due to the memory hierarchy effect.
Empirical evidence for this scenario, but applied on
general planar embeddings, can be found in [21].

6. CONCLUSIONS AND FUTURE
WORK

We have shown that the succinct data structure known
as pemb is useful for representing polygon meshes and
generating tri-to-polygon meshes. Using pemb, the
space usage of a mesh is largely reduced, allowing to
process of huge meshes.

One of the advantages of pemb is that their queries are
reduced to simple and fast operations over three static
bitvectors. We expect a future development where
those operations work in a GPU architecture, as GPU
parallelization could take advantage of the low mem-
ory usage of pemb. Additionally, in this work, we used
only 7 of the 17 queries supported by pemb [34]. As
future work, we will explore pemb operations to study
the possibility of implementing more queries such as
vertex insertion and edge flipping.

In the case of the Polylla algorithm, we showed a new
half-edge version that is easier to read and implement
in any language. Future work involves taking advan-
tage of this implementation to develop a parallel ver-
sion of Polylla and extends this work to a 3D using an

4Obtained by dividing columns Pemb and AoS HF in
Table 2

extension of the half-edge data structure.

7. ACKNOWLEDGMENT

This work was partially funded by ANID doctoral
scholarship 21202379 (first author), ANID FONDE-
CYT grant 11220545 (second author) and ANID
FONDECYT grant 1211484 (third author).

References

[1] Attene M., Campen M., Kobbelt L. “Polygon
Mesh Repairing: An Application Perspective.”
ACM Comput. Surv., vol. 45, no. 2, Mar. 2013

[2] Huisman O., de By R. Principles of geographic
information systems : an introductory textbook.
Oxford University Press, 01 2009

[3] Ho-Le K. “Finite element mesh generation meth-
ods: a review and classification.” Computer-
Aided Design, vol. 20, no. 1, 27–38, 1988

[4] Ghosh S., Mallett R. “Voronoi cell finite ele-
ments.” Computers & Structures, vol. 50, no. 1,
33–46, 1994

[5] Beir L., Brezzi F., Arabia S. “Basic principles of
Virtual Element Methods.” Mathematical Models
and Methods in Applied Sciences, vol. 23, 199–
214, 2013

[6] Chi H., da Veiga L.B., Paulino G. “Some ba-
sic formulations of the virtual element method
(VEM) for finite deformations.” Computer Meth-
ods in Applied Mechanics and Engineering, vol.
318, 148–192, 2017

[7] Park K., Chi H., Paulino G.H. “On nonconvex
meshes for elastodynamics using virtual element
methods with explicit time integration.” Com-
puter Methods in Applied Mechanics and Engi-
neering, vol. 356, 669–684, 2019

[8] Attene M., Biasotti S., Bertoluzza S., Cabiddu
D., Livesu M., Patanè G., Pennacchio M., Prada
D., Spagnuolo M. “Benchmarking the geometrical
robustness of a Virtual Element Poisson solver.”
Mathematics and Computers in Simulation, vol.
190, 1392–1414, 2021

[9] Sorgente T., Prada D., Cabiddu D., Biasotti
S., Patanè G., Pennacchio M., Bertoluzza S.,
Manzini G., Spagnuolo M. “VEM and the Mesh.”
CoRR, vol. abs/2103.01614, 2021

[10] Bommes D., Lévy B., Pietroni N., Puppo E., Silva
C., Tarini M., Zorin D. “Quad-mesh generation
and processing: A survey.” Computer Graphics
Forum, vol. 32, pp. 51–76. 2013

[11] Owen S.J., Staten M.L., Canann S.A., Saigal S.
“Q-Morph: an indirect approach to advancing
front quad meshing.” International journal for
numerical methods in engineering, vol. 44, no. 9,
1317–1340, 1999

[12] Owen S.J. “A survey of unstructured mesh gen-
eration technology.” IMR, vol. 239, 267, 1998

[13] Johnen A. Indirect quadrangular mesh generation
and validation of curved finite elements. Ph.D.
thesis, Université de Liège, Liège, Belgique, 2016

[14] Lee C., Lo S. “A new scheme for the genera-
tion of a graded quadrilateral mesh.” Computers
Structures, vol. 52, no. 5, 847–857, 1994

[15] Remacle J.F., Lambrechts J., Seny B., Marchan-
dise E., Johnen A., Geuzainet C. “Blossom-Quad:
A non-uniform quadrilateral mesh generator us-
ing a minimum-cost perfect-matching algorithm.”
International Journal for Numerical Methods in
Engineering, vol. 89, no. 9, 1102–1119, 2012

[16] Merhof D., Grosso R., Tremel U., Greiner G.
“Anisotropic quadrilateral mesh generation : an
indirect approach.” Advances in Engineering
Software, vol. 38, no. 11/12, 860–867, 2007

[17] Barber C.B., Dobkin D.P., Huhdanpaa H. “The
Quickhull algorithm for convex hulls.” Acm
Transactions on Mathematical Software, vol. 22,
no. 4, 469–483, 1996

[18] Shewchuk J.R. “Triangle: Engineering a 2D qual-
ity mesh generator and Delaunay triangulator.”
M.C. Lin, D. Manocha, editors, Applied Com-
putational Geometry Towards Geometric Engi-
neering, pp. 203–222. Springer Berlin Heidelberg,
Berlin, Heidelberg, 1996

[19] Si H. “An Introduction to Unstructured Mesh
Generation Methods and Softwares for Scientific
Computing.” Course, 7 2019

[20] Navarro G. Compact Data Structures – A practi-
cal approach. Cambridge University Press, 2016

[21] Ferres L., Fuentes-Sepúlveda J., Gagie T., He M.,
Navarro G. “Fast and compact planar embed-
dings.” Computational Geometry, vol. 89, 101630,
2020

[22] Muller D., Preparata F. “Finding the intersection
of two convex polyhedra.” Theoretical Computer
Science, vol. 7, no. 2, 217–236, 1978

[23] Salinas-Fernández S., Hitschfeld-Kahler N.,
Ortiz-Bernardin A., Si H. “POLYLLA: polygo-
nal meshing algorithm based on terminal-edge
regions.” Engineering with Computers, May 2022

[24] Tutte W.T. “A Census of Planar Maps.” Cana-
dian Journal of Mathematics, vol. 15, 249–271,
1963

[25] Alumbaugh T.J., Jiao X. “Compact Array-Based
Mesh Data Structures.” B.W. Hanks, editor,
Proceedings of the 14th International Meshing
Roundtable, pp. 485–503. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2005

[26] Aleardi L.C., Devillers O., Mebarki A. “Catalog-
based representation of 2D triangulations.” In-
ternational Journal of Computational Geometry
& Applications, vol. 21, no. 04, 393–402, 2011

[27] Kallmann M., Thalmann D. “Star-Vertices: A
Compact Representation for Planar Meshes with
Adjacency Information.” Journal of Graphics
Tools, vol. 6, no. 1, 7–18, 2001

[28] Aleardi L.C., Devillers O., Rossignac J. “ESQ:
Editable SQuad Representation for Triangle
Meshes.” 2012 25th SIBGRAPI Conference on
Graphics, Patterns and Images, pp. 110–117.
2012

[29] Gurung T., Rossignac J. “SOT: Compact
Representation for Tetrahedral Meshes.” 2009
SIAM/ACM Joint Conference on Geometric and
Physical Modeling, SPM ’09, p. 79–88. Associa-
tion for Computing Machinery, New York, NY,
USA, 2009

[30] Ferres L., Fuentes-Sepúlveda J., Gagie T., He M.,
Navarro G. “Fast and Compact Planar Embed-
dings.” WADS. 2017

[31] Aleardi L.C., Devillers O. “Array-based compact
data structures for triangulations: Practical so-
lutions with theoretical guarantees.” Journal of
Computational Geometry, vol. 9, no. 1, 247–289,
2018

[32] Baumgart B.G. “A Polyhedron Representation
for Computer Vision.” Proceedings of the May
19-22, 1975, National Computer Conference and
Exposition, AFIPS ’75, p. 589–596. New York,
NY, USA, 1975

[33] Berg M.d., Cheong O., Kreveld M.v., Over-
mars M. Computational Geometry: Algorithms
and Applications. Springer-Verlag TELOS, Santa
Clara, CA, USA, 3rd ed. edn., 2008

[34] Fuentes-Sepúlveda J., Navarro G., Seco D. “Nav-
igating planar topologies in near-optimal space
and time.” Computational Geometry, vol. 109,
101922, 2023

[35] Rivara M.C. “New longest-edge algorithms for
the refinement and/or improvement of unstruc-
tured triangulations.” International Journal
for Numerical Methods in Engineering, vol. 40,
no. 18, 3313–3324, 1997

[36] Alonso R., Ojeda J., Hitschfeld N., Herv́ıas C.,
Campusano L. “Delaunay based algorithm for
finding polygonal voids in planar point sets.” As-
tronomy and Computing, vol. 22, 48 – 62, 2018

[37] Herv́ıas C., Hitschfeld-Kahler N., Campusano
L.E., Font G. “On Finding Large Polygonal Voids
Using Delaunay Triangulation: The Case of Pla-
nar Point Sets.” Proceedings of the 22nd Interna-
tional Meshing Roundtable, pp. 275–292. 2013

[38] Gog S., Beller T., Moffat A., Petri M. “From
Theory to Practice: Plug and Play with Suc-
cinct Data Structures.” 13th International Sym-
posium on Experimental Algorithms, (SEA 2014),
pp. 326–337. 2014

[39] Yvinec M. “2D Triangulations.” CGAL User
and Reference Manual. CGAL Editorial Board,
CGAL project, 5.3.1 edn., 2021

