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ABSTRACT

This paper presents a novel approach, based on neural networks, to predict the mesh spacing for a simulation by
making use of the large amount of simulations that are currently available to industry. The main idea is to compute
a spacing function suitable to capture every solution available. The spacing function is then interpolated into a
background mesh. A conservative interpolation strategy is proposed to ensure that the mesh spacing function in the
coarse mesh does not under-resolve the spacing on the available fine mesh. This steps allows to homogenise the data
in such a way that a neural network can be employed to predict the spacing at the background mesh. Once the
neural network is trained, it can be used to predict the spacing at the nodes of the background mesh, so that near-
optimal meshes can be produced for new cases. Numerical examples are use to show the potential of the proposed
approach. In addition, a detailed comparison is presented with respect to a recently proposed NN approach in which
the location, strength and radius of influence of a set of point sources is predicted.

Keywords: Mesh generation, Spacing function, Machine learning, Near-optimal mesh prediction, Com-

putational fluid dynamics

1. INTRODUCTION

The generation of unstructured meshes for complex
geometric models is still one of the most time consum-
ing parts of the simulation pipeline [1, 2, 3]. This is
due to the large amount of human intervention and
expertise that is required to produce suitable meshes
for simulation.

Mesh generation techniques require the definition of a
suitable spacing function that dictates the size of the
elements to be generated. The objective is to pro-
duce a mesh that concentrate elements only in the
regions where they are needed, i.e. regions with com-
plex geometric features to be resolved or regions where
complex solution features will be present. The spac-

ing function can be defined using multiple approaches.
The more flexible approaches involve the use of point,
line or triangular sources [4, 5] and via a structured
or unstructured background mesh [6]. Other popu-
lar approaches include the refinement based on cur-
vature of the boundary [4] and the definition of the
required spacing on selected geometric entities. These
approaches can be used independently but they are of-
ten combined to achieve a greater control of the spac-
ing. Despite the flexibility of the available tools to
produce a suitable spacing function, setting up the re-
quired sources or defining an appropriate spacing on
a background mesh still requires a significant level of
human intervention and expertise.

An alternative is found on mesh adaptive algo-



rithms [7]. These methods start with a coarse mesh
defined by the user and iteratively refine the mesh
by identifying the regions where more elements are
needed. The main advantage of this approach is the
level of automation that can be achieved. However,
the initial coarse mesh must be able to capture the
solution features to some extend. Otherwise, despite
many refinement loops are performed, the solution fea-
tures will not be captured by the final mesh.

Approaches to utilise neural networks (NNs) to as-
sist the mesh generation process have been also pro-
posed. The earliest attempts to utilise NNs in a mesh
generation framework date back to the 1990’s and
can be found in the field of magnetic device simula-
tions [8, 9, 10]. In the last two years, NNs have been
used to assist mesh adaptive algorithms [11, 12, 13]
and to predict the spacing in terms of some charac-
teristics of the problem such as the partial differen-
tial equation, the boundary conditions and the geom-
etry [14, 15].

In this work we propose a novel approach based on NN
to predict the spacing that is required on a background
mesh to generate meshes suitable for simulations. The
ultimate goal is to utilise the vast amount of data that
is available in industry to accelerate the mesh gener-
ation stage. To obtain datasets that are suitable for
training a NN, a new interpolation approach is pre-
sented to transfer the spacing from a fine mesh, where
a solution is available, to a coarse background mesh.
The interpolation approach is designed to ensure that
the spacing in the coarse meshes is able to produce a
mesh capable of capturing all the features of the orig-
inal solution.

The proposed approach is also compared to a re-
cently proposed strategy where a NN is used to pre-
dict the position and the spacing at a number of point
sources [16]. The comparison is performed based on
the time required to train the NNs, including the fine
tuning of the hyperparameters, the size of the training
dataset required to produce accurate predictions and
the accuracy of the predicted spacing function. The
comparison is performed by using an example that
involves the prediction of near-optimal meshes for a
three dimensional wing configuration in the context of
inviscid compressible flow simulations. The approach
proposed in this work is finally used for a more com-
plex problem involving a full aircraft configuration.

In this work, an optimal mesh is considered to be a
mesh with the minimum number of elements that cap-
tures all the features of the solution. The proposed
technique is aimed at producing near-optimal meshes
in the spacing function lies within 5% of the target
spacing.

The remainder of the paper is organised as follows. In

Section 2 a brief summary of the two strategies consid-
ered to control spacing is presented, namely the use of
sources and a background mesh. Section 3 describes
the strategy used to compute the required spacing to
produce a mesh that captures all the features of a given
solution. In Section 4 the strategy to compute a set
of global sources that is capable of producing the re-
quired spacing to capture a number of given solutions
is described. Similarly, Section 5 describes the ap-
proach to compute the spacing on a background mesh
that is capable of representing a number of given so-
lutions. The use of a NN to predict the source charac-
teristics or the spacing of a background mesh is pre-
sented in Section 6. Two examples are considered in
Section 7. The first example is used to compare the ap-
proaches based on sources and the proposed approach
based on a background mesh. The second example
shows the potential of the proposed strategy on a large
scale problem involving a full aircraft. Finally, Sec-
tion 8 summarises the conclusions of the work that
has been presented.

2. MESH SPACING AND CONTROL

This section introduces the fundamental concepts on
how mesh spacing is defined within a mesh that are
utilised when presenting the two proposed strategies
to predict near-optimal meshes.

Within the aerospace industry, there is a preference
for using unstructured meshes for CFD simulations,
owing to their ability to efficiently discretise complex
geometric domains. This is due to the possibility to lo-
cally refine targetted regions without inducing a refine-
ment in regions that are not of interest. Refinement
techniques can be classified into automatic techniques,
based for instance on mesh adaptivity, or controlled
manually based on the expertise of the user. Auto-
matic adaptive algorithms can be used to localise the
refinement only in the regions where high gradients of
the solution are present. However, it is clear that if the
initial mesh is not able to capture some solution fea-
tures, they will not be captured even if a large number
of refinement loops are undertaken.

There are different methods available for the user to
control the spacing function, which can be used inde-
pendently or in combination with one another. These
techniques include the use point, line or triangular
sources [4, 5], the use of a background structured or
unstructured mesh [6, 4], the specification of the spac-
ing at geometric entities or the refinement based on
the curvature of the boundary [4]. The use of sources
and a background unstructured mesh are considered
here as the strategies that provide greater flexibility.



2.1 Mesh spacing controlled by sources

Sources provide the ability to control the spacing de-
sired at a localised region of the domain. A point
source consists of a given location x a desired spacing
δ0 and a radius of influence r. The spacing function
induced by the source is constant, and equal to δ0,
within the sphere of centre x and radius r. To ensure
a smooth transition of the spacing outside the sphere
of influence, an exponential increase of the spacing is
defined by specifying a second radius, R, where the
spacing doubles. The spacing at a distance d, from x,
is defined as

δ(d) =

�

δ0 if d < r

δ0e
ln(2) d−r

R−r otherwise
. (1)

A line source is a natural extension of the concept
of point sources. Line sources are made of two point
sources. To determine the spacing induced by a line
source at a given point, p, the closest point to p on
the line is found, namely p̂. A linear interpolation of
the radii and spacing of the two points forming the
line source is used to determine the radius and spac-
ing that must be associated to the projected point p̂.
The spacing induced by the line source is computed by
assuming that a point source is present at p̂ with the
interpolated radius and spacing. Similarly, it is possi-
ble to extend this concept to other geometric entities
such as triangular sources.

It is worth noting that when multiple sources are used
to control the spacing function, the minimum of all the
spacings induced by all the sources is used to specify
the required spacing at a given location.

2.2 Mesh spacing controlled by a back-
ground mesh

Alternatively, the spacing can be controlled by using
a background structured or unstructured mesh [6, 4].
In this scenario a coarse mesh that covers the whole
computational domain is generated, and the spacing is
specified at each node of the background mesh. To de-
termine the spacing at any point of the domain, the el-
ement of the background mesh that contains the point
is first identified. Then, a linear interpolation of the
nodal values of the spacing defined at the elements of
the background mesh is employed.

3. TARGET SPACING

It is assumed that a dataset of accurate solutions is
available. The solutions might have been computed
with different numerical schemes, and very often, on
overrefined meshes. For this reason, this work pro-
poses a learning procedure that is based on the so-
lution, rather than on the meshes that were used to

compute the solutions. However, the technique pro-
posed can be modified to learn from existing meshes
in cases where the meshes are considered to be opti-
mal, i.e. obtained after an adaptive process or man-
ually created by an expert, by obtaining the spacing
distribution of said mesh.

The first stage involves the computation of the spac-
ing function that would provide a mesh capable of re-
producing a given solution. This is done by borrow-
ing concepts of error analysis and relating the desired
spacing to the second-order derivatives of the solution,
namely

δ
2
β

�

N
�

i,j=1

Hijβiβj

�

= K, (2)

where β is an arbitrary unit vector, δβ is the spacing
along the β direction , H is the Hessian matrix of a
key variable σ and K is a user-defined constant.

Here, a recovery process [17, 18] is employed to numer-
ically evaluate the second derivatives of the selected
key variable. Next, by evaluating in the direction of
each eigenvector of H, the optimal value of the spacing
at a node is defined as

δi = min
i=1,...,n

�

�

K

λi

�

, (3)

where {λi}i=1,...,n denote the eigenvalues of H.

The discrete spacing is uniquely defined after the user
specifies the scaling factor, K. In regions where the
solution is smooth, the scaling reflects the value of the
mean square error that is to considered acceptable.

In practice, to account for the possibility of vanish-
ing eigenvalues of H, the spacing of Equation (3) is
bounded by a maximum allowable value. Similarly, to
avoid an excessive refinement near element with very
steep gradients (e.g., near shocks), a minimum value
of the spacing is also defined by the user.

At this stage a discrete representation of the spacing
function is obtained. However, for each solution avail-
able the number of mesh nodes is generally different so
two strategies are considered to homogenise the data
in such a way that is suitable for training a NN. The
first strategy, proposed in [16] consists of building a
global set of sources that is capable of describing the
spacing function of each case. The second approach,
proposed here for the first time consists of building a
spacing function by using a background mesh that is
also suitable to describe the spacing function of each
case. The two strategies are described in the next two
sections.



(a) Solution (b) Point sources

Figure 1: Transonic flow CFD solution and point sources
to create a spacing function capable of capturing the
solution for a NACA1206.

4. SPACING DESCRIPTION USING
SOURCES

The main idea is to construct a set of sources that
induce a spacing function that closely represents the
discrete spacing obtained using the strategy described
in the previous section. The full details and the algo-
rithmic implementation are described in detail in [16].

4.1 Generating point sources for one solu-
tion

The process starts by grouping points based on the
associated spacing. Point sources are created at the
centre of a group of points and with a radius that
covers all the points in the group.

The strategy developed guarantees that the spacing re-
quired at every node of the given mesh is represented
by at least one point source. To simplify the imple-
mentation, this work assumes that the second radius of
influence of a source is always double the first radius,
namely R = 2r. It is also imposed that two values of
the spacings are close enough, if they differ by at most
5% of the spacing at the node of interest. The process
for creating a point source ends when the spacing at
a surrounding layer is larger than the spacing of the
point source at a distance equal to R.

Figure 1 shows the result of creating sources to repre-
sent the spacing required to capture a given solution.
The solution corresponds to an actual two dimensional
inviscid transonic flow simulation. It can be observed
how the sources with smaller spacing (blue colour) are
concentrated near the regions with steep gradients.

4.2 Generating global sources for a set of
solutions

When the process described in the previous section
is applied to a set of different solutions, the number
of sources obtained is, in general, very different. As
the objective is to utilise this data to train a NN, a
procedure to obtain the same number of sources for a

(a) Solution (b) Point sources

Figure 2: Transonic flow CFD solution and point sources
to create a spacing function capable of capturing the
solution for a NACA4324.

set of solutions is devised.

The process starts by initialising the set of global
sources to be the set of sources of the first case and
creating a mapping that relates global sources to the
local sources of each case. The rest of the cases are
then considered sequentially. To ensure an efficient
implementation, the sources of all cases are inserted
in an alternating digital tree (ADT). The process then
considers each one of the remaining cases sequentially.
The ADT is employed to identify global sources that
are in close proximity to the unprocessed local sources.
When a global source is not found in close proximity to
a local source, a new source is added to the global list
and the mapping between local and global sources is
updated. In contrast, when a global source is in close
proximity to a local source, no new sources are added
and the mapping is updated. After the set of global
sources is produced, it is customised to accurately rep-
resent the spacing function associated to each solution.

Figure 2 shows the result of creating sources to rep-
resent the spacing required to capture a solution dif-
ferent to the one shown in Figure 1, i.e. a different
geometry and different flow conditions. It can be ob-
served that the number of sources will significantly
differ depending on the flow conditions and geometry.

By using the process briefly described in this section
a set of global sources is created for each case, as de-
picted in Figure 3. Both set of global sources are differ-
ent but they have the same number of sources, which
is necessary to ensure that this data can be used to
train a NN.

5. SPACING DESCRIPTION USING A
BACKGROUND MESH

A novel approach to build a spacing function that en-
sures uniformity of the data and therefore its possible
use for training a NN is presented here. The pro-
cess consists of creating a coarse background mesh
and to devise a strategy to compute the spacing at
each node of the background mesh that induces the



(a) (b)

Figure 3: Global sources for (a) the case of Figure 1 and
for (b) the case of Figure 2.

(a) Solution (b) Spacing function

Figure 4: A solution and its corresponding calculated
spacing function that describes the optimal spacing suit-
able for capturing the solution.

required spacing to capture a given solution.

First, the spacing is computed on the mesh where the
solution is provided. Figure 4 shows a solution and the
spacing function that will provide the required mesh
to capture the solution.

The implementation of this strategy introduces several
advantages when compared to the existing strategy of
using sources. First, the computation of the spacing
at the nodes of the background mesh is simpler than
the computation of the sources as it only requires in-
terpolating the spacing from a fine mesh to a coarse
mesh. This is described in detail in this section. Sec-
ond, uniformity of the data is guaranteed if the topol-
ogy of the background mesh is unchanged. For the
examples considered in this work, with design param-
eters not affecting the geometry of the domain, a fixed
background mesh can be used for all cases. For more
complex scenarios, a mesh morphing algorithm would
be required to ensure that the same background mesh
can be used for all cases. This is out of the scope of
the current work.

The fixed background mesh is produced using a com-
bination of curvature control and minimum spacing
defined at each individual surface of the geometry; an
octree is then used to propagate the spacing into the
domain.
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Figure 5: Detail of two triangular meshes, the fine mesh
where the solution is computed – denoted by continuous
red edges, and a coarser background mesh denoted by
discontinuous black edges. The green circles denote the
nodes of the fine mesh contained in one element of the
background mesh. The blue triangles denote the nodes
of the background mesh where the interpolated element
spacing is to be computed.

5.1 Interpolating the spacing on a back-
ground mesh

As mentioned above, the proposed strategy to use a
background mesh requires interpolating the discrete
spacing from a mesh where a solution is available to
a coarse background mesh. Interpolating a field from
one mesh to another is a relatively easy task but spe-
cial care must be taken when the quantity to be in-
terpolated is the spacing. If a näıve interpolation is
employed, many features of the solution can be unre-
solved by the spacing function embedded in the back-
ground mesh.

To illustrate the proposed strategy, let us consider the
scenario of Figure 5. The extract of the mesh with con-
tinuous red edges corresponds to the mesh where the
solution is available and where the spacing required
at the nodes has been computed, as described in Sec-
tion 3. The extract of the mesh with discontinuous
black edges corresponds to the background mesh. The
objective is to obtain the spacing at the nodes of the
background mesh, xa, xb and xc in Figure 5 so that
the spacing at the nodes of the fine mesh can be accu-
rately reproduced.

A näıve interpolation approach would consider the el-
ement of the fine mesh containing each node of the
coarse mesh and perform a linear interpolation of the
nodal values. However, this will make very limited use
of the rich information available in the fine mesh. If
values of the spacing are interpolated in this way, it is
possible to obtain very large values of the spacing at
the nodes of the background mesh even if very small
values are present in the vicinity of the nodes of the
background mesh. Referring to the example of Fig-
ure 5, if for instance the spacing is very small at nodes
x6, x7, x8 and x9, but it is very large at the remain-



ing nodes, a näıve interpolation will compute a large
value of the spacing at the nodes xa, xb and xc of the
background mesh. This will induce a spacing function
not suitable to capture the initial solution.

To avoid this problem, a different strategy is proposed
to interpolate the spacing. For each element of the
background mesh, the list of nodes of the fine mesh
that are contained in the background element is iden-
tified. In the example of Figure 5 all the numbered
nodes, from x1 to x13 are identified. A very conserva-
tive approach is then adopted in this work, which is to
define the spacing at the element nodes of the back-
ground mesh as the minimum of the spacing of all the
nodes of the fine mesh contained in the element. This
strategy will ensure that the resulting spacing is cer-
tainly able to capture the required solution. Other
strategies that can be explored include the use of the
arithmetic mean, the harmonic mean, or a weighted
arithmetic mean.

The process is finalised by assigning to each node of
the background mesh the minimum of the spacings
computed from each element sharing this node.

An example is shown in Figure 6 to illustrate the pro-
cess. The spacing function obtained on a reference
mesh is transfered to a background mesh using a näıve
interpolation approach and the proposed approach. It
can be clearly observed that the näıve approach does
not produce an accurate representation of the origi-
nal spacing function. When used for mesh generation,
this background spacing will lead to a mesh that is
not capable of representing the features of the target
solution. In contrast, with the proposed interpolation,
a conservative approach is favoured and the resulting
spacing will lead to a finer mesh, ensring that all the
features of the target solution are captured when a
mesh is generated with this spacing.

Figure 7 shows the interpolated spacing on a back-
ground mesh for the example of Figure 7. The ex-
ample clearly illustrates the ability of the proposed
interpolation strategy to capture the required spac-
ing on a coarse background mesh. It is worth noting
that the proposed approach is designed to produce a
spacing capable of capturing all the required solution
features. However, when the background mesh is ex-
cessively coarse, it can produce a spacing function that
leads to an over-refined mesh.

6. USING A NEURAL NETWORK TO
PREDICT THE SPACING

The two strategies presented above are designed to
preprocess a dataset of available solutions and produce
a dataset suitable for training a neural network. The
inputs of the neural network are design parameters
(e.g., boundary conditions, geometry). The examples

(a) Original spacing

(b) Näıve interpolation (c) Proposed interpolation

Figure 6: Illustrative example of two possible interpola-
tions of the spacing onto a background mesh.

Figure 7: Spacing function on a background mesh after
interpolating the spacing of Figure 4(b).

considered in this work involve inviscid compressible
flows in three dimensions and the design parameters
are the flow conditions, namely the free-stream Mach
number and the angle of attack.

For the strategy based on sources, the output consists
on the position (thre coordinates), the spacing and
the radius of the global set of sources. For the second
approach, based on a background mesh, the output
is simply the spacing at the nodes of the background
mesh. It is worth noting that the use of a background
mesh implies a reduction of the number of outputs by
a factor of five, when compared to the strategy based
on sources.

In general, the values of the spacing, in both ap-
proaches, and the radius, in the first approach, vary by
more than two orders of magnitude. To facilitate the



training of the NN, these outputs are scaled logarith-
mically. The scaling not only prevents a bias towards
larger values but also prevents the prediction of unre-
alistic negative values.

The type of NN employed in this work is a standard
multi-layer perceptron and extensively described in
the literature [19, 20]. In terms of the implementa-
tion, TensorFlow 2.7.0 [21] is employed to construct
the NNs. To minimise the influence of the random ini-
tialisation of the weights, each training is performed
five times by performing a variation of the initial guess
used in the optimisation. The maximum number of it-
erations allowed for the optimisation is 500, and the
process is stopped either when this number of itera-
tions is reached or when the objective cost function
does not decrease during 50 consecutive iterations.

Through preliminary numerical experimentation on
the influence of the activation function on the accuracy
of the NN, the sigmoid activation function was chosen
as it tended to produce more accurate results com-
pared to other classical activation functions. There-
fore, for each NN produced, the sigmoid function was
employed for all the hidden layers, with a linear func-
tion being used on the output layer. Respectively,
these activation functions are given by

S(x) =
1

1 + e−x
and L(x) = x. (4)

To train the NNs, the cost function used is the mean
square error (MSE), with the optimisation function
used to minimise the cost being the ADAM opti-
miser [22], with a learning rate of 0.001.

As usual in this context, the hyperparameters of the
NN are tuned to ensure that the best architecture
is employed. In [16] the authors demonstrate that
even performing a fine tuning of the hyperparame-
ters and repeating the training five times, the result-
ing approach is more efficient than the usual practice
in industry of generating an overrefined mesh to per-
form the simulations for varying flow conditions using
a fixed grid.

The design of the NNs considered in this work requires
selecting an appropriate number of layers, number of
neurons per layer and activation functions. For each
numerical example in Section 7, the number of layers
Nl and the number of neurons in each layer Nn is var-
ied in the pursuit of finding the optimal hyperparam-
eter configuration. The hyperparameter variation is
defined by a grid using the ranges Nl = [1, 2, . . . , 5, 6]
and Nn = [25, 50, . . . , 225, 250].

The accuracy of the predictions is measured using the
statistical R2 measure [23]. To better analyse the re-
sults, when the approach using sources is considered,
the R2 measure is reported independently for the five

(a) Predicted sources (b) Reduced sources

Figure 8: Predicted global sources for an unseen case and
the resulting sources after removing redundant sources.

source characteristics (i.e., the three coordinates of the
source, the spacing and the radius).

6.1 Spacing prediction using sources

After the NN is trained, it is used to predict the char-
acteristics of the global sources for cases not seen dur-
ing the training stage. It is possible to directly use the
predicted global sources to define the mesh spacing
function that is required to generate a near-optimal
mesh. However, due to the use of a global set of
sources, it is expected that the predicted sources for
a new case contain redundant information. For this
reason an extra step is required with this technique to
minimise the number of queries that the mesh gener-
ation requires to define the spacing at a given point.
The process, described in detail in [16], involves re-
moving sources with an associated spacing function
that can be described by other sources. In addition,
an attempt is made to reduce the number of sources by
merging point sources into line sources when possible.

Figure 8 shows the result of the process used to reduce
sources for a predicted global set of sources.

6.2 Spacing prediction using a background
mesh

In this case, once the NN is trained it can be used
to predict the spacing at the nodes of the background
mesh. With this approach, there is no need to perform
any further processing of the predicted data and it can
be directly used by a mesh generator to obtain the
near-optimal mesh for an unseen case.

7. NUMERICAL EXAMPLES

This section presents a numerical example to demon-
strate the potential of both approaches and to compare
their performance. The example involves the predic-
tion of near-optimal meshes for three dimensional in-
viscid compressible flow simulations over a wing for
varying flow conditions. A second numerical exam-
ple is presented to show the ability of the approach



(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦

Figure 9: Pressure coefficient, Cp, for the ONERA M6
wing and for two flow conditions.

best performing for the first example in a more real-
istic scenario involving the inviscid compressible flow
around a full aircraft configuration. In both examples
the variation of the flow conditions considered induce
a significant variation of the solution and include sub-
sonic and transonic flows. All the CFD simulations
used in this work were conducted using the in-house
flow solver FLITE [24].

7.1 Near-optimal mesh predictions on the
ONERA M6 wing

The ONERA M6 wing [25] is considered for this ex-
ample and flow conditions are described by the free-
stream Mach number, M∞, and the angle of attack,
α. The range used for the two design parameters,
M∞ ∈ [0.3, 0.9] and α ∈ [0◦, 12◦], leads to subsonic
and transonic flows. Therefore, the mesh requirements
for different cases are substantially different, posing a
challenge in the prediction of the near-optimal mesh
for a given set of parameters.

The variation of the solution that is induced by the
variation of the parameters is illustrated in Figure 9,
showing the pressure coefficient, Cp, for two flow con-
ditions. For the subsonic case, with M∞ = 0.41 and
α = 8.90◦, the solution requires refinement only near
the leading and trailing edges. In contrast, for the
transonic case, with M∞ = 0.79 and α = 5.39◦, the
mesh should be refined to also capture the λ-shock on
the top surface. The simulations were conducted using
tetrahedral meshes with approximately 1.3M elements
and 230K nodes.

For the purpose of this study, training and testing
data sets were generated by employing a Halton sam-
pling [26] in the parametric space. The training set
comprises Ntr = 160 cases, whereas the test set is
made of Ntst = 90 cases. To ensure that the con-
clusions are not biased by an incorrect use of the NN
for extrapolation, the range of values used to generate
the test set is slightly smaller than the range used to
generate the training data.

(a) Sources (b) Background mesh

Figure 10: The regression plots for the spacing, δ0, for
the approach using sources and the approach using a
background mesh.
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(b) Background mesh

Figure 11: ONERA M6: Minimum R2 for the predicted
outputs as a function of the number of training cases for
the two methods.

The approach using sources, required between 2,142
and 5,593 sources to represent the spacing of each
training case. When combined, the resulting num-
ber of global sources is 19,345. This means that the
number of outputs of the NN to be trained is almost
100K. For the second approach a background mesh
with 14,179 nodes is employed, meaning that the NN
to be trained has almost seven times less outputs when
compared to the approach that uses sources.

After tuning the NN that best predicts the spacing,
both approaches can be compared. For one of the 90
unseen cases Figure 10 shows the regression plot for
the spacing for both approaches. The results indicate
a better performance of the approach using a back-
ground mesh for this particular unseen case.

To better compare the accuracy, the minimum R2 for
each of the 90 unseen test cases is taken and com-
pared in Figure 11, for an increasing number of train-
ing cases. The results show that the strategy that
uses sources leads to a very accurate prediction of the
location of the sources. However, predicting the spac-
ing and the radius of influence seems much more chal-
lenging. To achieve an R2 of 90 in all the outputs,



Figure 12: ONERA M6: Histogram of the ratio between
the predicted and target spacing for the two strategies.

the whole training data set, with 160 cases, must be
considered. In contrast, for the strategy that uses a
background mesh 10 training cases are enough to pro-
vide an R2 above 90. By comparing the results, it is
clear that the approach that uses a background mesh
is significantly more efficient as with 10 training cases
the results are as accurate as with the approach that
uses sources employing 160 training cases. It is also
worth remarking that the approach that uses sources
requires the training of multiple NN, whereas only one
NN is to be trained by the approach proposed here. In
this example the tuning and training of the NN for the
proposed approach is almost four times faster than the
approach using sources.

To further analyse the performance of the two ap-
proaches, the predicted spacing function through the
domain is compared against the target spacing func-
tion for the two methods. At the centroid of each
element of a target mesh, and for all test cases, the
spacing induced by the two strategies is compared to
the target spacing. Figure 12 shows a histogram of
the ratio between the predicted and target spacing for
both methods. The results correspond to both ap-
proaches using all the available training data. Red
bars are used to depict the minimum and maximum
values for each bin in the histogram and the standard
deviation from the mean is represented by the orange
bars. A value of the ratio of spacings between 1/1.05
and 1.05 is considered accurate enough to generate a
mesh that is capable of resolving all the required flow
features. Values higher than 1.05 where the predicted
spacing is larger than the target spacing and, analo-
gously, values below 1/1.05 indicate regions where the
NN prediction will induce more refinement than re-
quired.

The results in Figure 12 clearly illustrate the superi-
ority of the strategy proposed in this work, by using
a background mesh. The strategy based on sources

Figure 13: ONERA M6: Histogram of the ratio between
the predicted and target spacing for the strategy using
a background mesh for an increasing number of training
cases.

provides approximately 70% of the elements with an
appropriate spacing whereas the approach based on
a background grid accurately predicts the spacing for
almost 95% of the elements. In addition, the worst
performing case for the approach using sources is less
accurate than the worst case for the approach that
uses a background mesh. Finally, it is worth mention-
ing that when the background mesh approach is less
accurate, it tends to produce a smaller spacing, which
is preferred to a larger spacing, as this will ensure that
all solution features are resolved with the predicted
near-optimal mesh. This tendency to over-refine can
be explained by the conservative interpolation scheme
that has been introduced in Section 5.1.

Given the high accuracy observed in Figure 11 for the
approach that uses a background mesh with very few
training case, Figure 13 shows the histogram of the
ratio of between predicted and target spacing for an
increasing number of training cases. The results cor-
roborate the conclusions obtained from the R2 mea-
sure in Figure 11 and show that with a significantly
smaller number of training cases, the approach using
a background mesh not only produces an R2 compa-
rable to the approach with sources with all training
data, but also the predicted spacing is as accurate.

To illustrate the potential of the strategies being com-
pared, the trained NNs are used to predict the spacing
function for unseen cases and near-optimal meshes are
generated and compared to the target meshes. It is
worth remarking that the approach that uses sources
undergoes the extra processing step to reduce and
merge sources as mentioned in Section 6.1.

Figure 14 shows two target meshes and the near-
optimal mesh prediction obtained with the strategy
based on sources for two test cases not seen during
the training of the NN. The comparison between tar-



(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦

(c) M∞ = 0.41, α = 8.90◦ (d) M∞ = 0.79, α = 5.39◦

Figure 14: Target (top row) and predicted (bottom row)
meshes using the strategy based on sources.

(a) M∞ = 0.41, α = 8.90◦ (b) M∞ = 0.79, α = 5.39◦

(c) M∞ = 0.41, α = 8.90◦ (d) M∞ = 0.79, α = 5.39◦

Figure 15: Target (top row) and predicted (bottom row)
meshes using the strategy based on a background mesh.

get and predicted meshes using the strategy based on
a background mesh is shown in Figure 15 It is worth
noting that the target meshes for the two strategies
considered are slightly different due to the different
definition of the target spacing function.

The results visually show superior accuracy of the pro-
posed approach, based on a background mesh. Not
only the meshes obtained with the predicted spacing
functions resemble the target more than the meshes
predicted with sources, but also the spacing grada-
tion is visually smoother with the approach based on
a background mesh.

Further numerical experiments, not reported here for
brevity demonstrate that the CFD calculations on the
near-optimal predicted meshes result in accurate CFD
simulations. More precisely, the aerodynamic quanti-
ties of interest (e.g., lift and drag) are obtained with
the required accuracy for the aerospace industry.

(a) M∞ = 0.41, α = 4.50◦ (b) M∞ = 0.71, α = 8.00◦

Figure 16: Falcon aircraft: Pressure coefficient, Cp, for
two different flow conditions.

7.2 Near-optimal mesh predictions on the
Falcon aircraft

After demonstrating the superiority of the approach
based on a background mesh, this section considers an
example with a more complex and realistic geometry
to show the potential of this approach.

Halton sequencing of the two input parameters is used
to generate a training dataset consisting of Ntr = 56
training cases and Ntst = 14 testing cases. The range
used for the parameters is M∞ ∈ [0.35, 0.8] and α ∈
[−4◦, 10◦], leading, again, to subsonic and transonic
flow regimes.

For each training and test case, the CFD solution is
obtained using FLITE [24] on an unstructured tetra-
hedral mesh consisting of 6M elements and 1M nodes.
The distribution of the pressure coefficient for two test
cases is shown in Figure 16. The Figure shows the dif-
ferent flow features that are induced by a change in
the design parameters.

To represent the spacing function, the spacing is first
determined at each node of the mesh where the so-
lution was computed. A coarse unstructured back-
ground mesh is then generated, containing approxi-
mately 30K tetrahedral elements, and the spacing is
interpolated to the background mesh using the tech-
nique described in Section 5.1.

A NN is then trained and the hyperparameters are
tuned, following the procedure described in the pre-
vious example. After the training is performed, the
spacing is predicted for the 14 unseen test cases and
the accuracy of the predictions is evaluated using the
R2 measure. Figure 17 shows the minimum R2, as
a function of the number of training cases. The re-
sults show that, even for this more complex example,
the behaviour is almost identical to the one observed
for the previous geometry. With less than 10 training
cases the predicted spacing achieves an excellent ac-
curacy, with the value of R2 above 96%. If the total
set of available training cases is considered, the value
of R2 reaches almost 100.

To further assess the accuracy of the predictions, the
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Figure 17: Minimum R2 for the characteristics as a func-
tion of the number of training cases.

Figure 18: Falcon aircraft: Histogram of the ratio be-
tween the predicted and target spacing.

ratio between predicted and target spacing is evalu-
ated to quantify the performance of NN in producing
new meshes for unseen flight conditions. Figure 18
shows the histogram of the ratio between predicted
and target spacing at the nodes of the background
mesh. The minimum and maximum values for each
bin in the histogram are depicted with red error bars,
whereas the orange bar represents the standard devi-
ation from the mean. A value of the ratio between
1/1.05 and 1.05 is considered sufficiently accurate to
produce a mesh able to capture the targeted flow fea-
tures. The histogram confirms the accuracy of the
predictions, with the middle bin containing more than
90% of the elements.

The trained NNs are next used to predict the spacing
for the background mesh, from which its subsequent
near-optimal mesh is generated and compared with
the corresponding target meshes. Figure 19 displays
the target and ML-produced meshes for the two un-
seen examples outline in Figure 16. The results clearly
show the ability of the proposed technique, based on
a background mesh, to automatically produce meshes
that are locally refined near the relevant regions. For

(a) M∞ = 0.41, α = 4.50◦ (b) M∞ = 0.71, α = 8.00◦

(c) M∞ = 0.41, α = 4.50◦ (d) M∞ = 0.71, α = 8.00◦

Figure 19: Falcon aircraft: Target (top row) and pre-
dicted (bottom row) meshes for two flow conditions.

the subsonic case, the NN has appropriately refined
the leading and trailing edges of the main wing, the
vertical and horizontal stabiliser, as well as the entry
and exit of the jet engine. Similarly, for the transonic
case, those features are also appropriately captured,
but in addition, the NN has successfully predicted the
presence and location of a shock along the main wing
and consequently appropriately refined this region.

8. CONCLUDING REMARKS

A novel technique to predict the required spacing for a
simulation has been presented. The approach is based
on the use of background mesh and a NN to predict the
required spacing at each node of the background mesh.
Using available data from previous simulations, the re-
quired spacing to capture a given solution is computed
on the available mesh. Then, a method to interpolate
the spacing onto the background mesh is devised. The
approach is conservative and avoids the problems that
a näıve interpolation will induce. Once the available
data is processed, a NN is trained where the inputs
are design parameters (i.e., flow conditions in the ex-
ample considered here) and the output is the required
spacing at the background mesh. When the spacing
is available, a standard mesh generator can be used
to obtain the near-optimal mesh suitable for a new
simulation.

The strategy has been compared to a recently pro-
posed approach in which a NN is used to predict the
position, strength and radius of influence of a set of
sources. The results show that the proposed approach
is much more efficient. First, it requires significantly
less training data to provide the same accuracy. Sec-



ond, the NNs to be trained are significantly smaller
due to the need to only predict the spacing at the
nodes of the background mesh. In addition, it does
not require a complex processing of the available data
to create a set of global sources.

The proposed approach has been applied to two ex-
amples, relevant to the aerospace industry. Flow con-
ditions were considered as the design parameters and
three dimensional examples showed the potential of
the proposed approach in dealing with large scale
problems.

Future work will include the extension of this approach
to deal with geometric parameters and the ability to
predict anisotropy in the near-optimal meshes.
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