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ABSTRACT

This work presents the mathematical foundations for the generation of integrable cross-field on 2D manifolds based
on user-imposed singularity configuration. In this paper, we either use singularities that appear naturally by solving
a non-linear problem, or use as an input user-defined singularity pattern, possibly with high valence singularities
that typically do not appear in cross-field computations. This singularity set is under the constraint of Abel-Jacobi’s
conditions for valid singularity configurations. The main contribution of the paper is the development of a formulation
that allows computing, when possible, an integrable isotropic 2D cross-field from a given set of singularities through
the resolution of only two linear PDEs. To address the issue of possible suboptimal singularities’ distribution, we also
present the mathematical setting for the generation of an integrable anisotropic 2D cross-field based on a user-imposed
singularity pattern. The developed formulations support both an isotropic and an anisotropic block-structured quad
mesh generation.
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1. INTRODUCTION AND RELATED
WORK

The cross-field guided techniques represent a signif-
icant member of the quad meshing methods’ fam-
ily, accompanied by a noteworthy number of methods
[1, 2, 3]. The cross-field drives the orientation and the
size of quadrilaterals of a quad mesh, and there ex-
ists a profound topological relationship between them
[4]. It is important to note that the integrability rep-
resents a crucial feature of a cross-field, used to ob-
tain a conformal parameterization, e.g., [5, 6], finite
length of integral lines, and even influence the num-
ber of singularities, e.g., [7]. Nevertheless, cross-fields
are not integrable by default. Here, we mention the
works closest to our approach and direct the reader to
other prominent methods e.g., [8, 9, 10, 11] for a more
detailed overview.

Computing an integrable cross-field can be achieved
by, for instance, using the Hodge decomposition [6, 12],
reducing the curl [7], obtaining the metric which is
flat except at singularities [13, 14, 15], using the triv-
ial connection [16], or computing a global conformal
scaling from curvature prescription [4, 5]. Some of the
techniques also consider a flat metric with cone sin-
gularities but do not consider additional constraints
needed for quadrangulation [17, 18], or obtain con-
formal parametrization on the prescribed singularity
set, but do not take into account the holonomy signa-
ture which may result that obtained parameterization
is not aligned with the given field [19]. The work of
[6] generates an integrable vector field from a given
frame field relying on the Hodge decomposition. At
the same time, using the Hodge decomposition as in
[12] is computationally intensive and may not preserve
the directions, while reducing the curl in the post-



Figure 1: Three quad layouts of a simple domain. Singularities of valence 3 are colored in blue, valence 5 in red, valence
6 in orange, and valence 8 in yellow.

processing step as in [7] may not eliminate the curl en-
tirely. A trivial connection [16], a flat metric with zero
holonomy around non-contractible cycles, can indeed
be used to obtain an integrable direction field with
user-specified singularities, but the boundary align-
ment constraints may not be honored. We compute
a metric resembling the one presented in the method
relying on Abel-Jacobi theory [13, 14, 15], but without
using the meromorphic quartic differentials. The tech-
niques of [4, 5] present a close concept to the one de-
veloped in this paper in terms that the computed size
field is obtained from the singularity set. The work
of [5] involves using the iterative process to identify
the locations and the curvatures of singularities and
computing the target metric by solving the linear sys-
tems of the Poisson equations. Our approach uses an
imposed singularity set, as an application-dependent
matter, and exploits the commuting of vector fields
under the Lie bracket to obtain the guiding size field
by solving two linear systems.

Unlike the previously mentioned methods, we develop
the integrability formulation for both isotropic and
anisotropic scaling. Further, our formulation offers a
simple manner of computing the relevant size field and
effortless singularity set imposing. Last but not least,
the generated cross-field induces per-partition bijec-
tive parametrization, more details in [20].

Although leaning on heterogeneous approaches, all
quad-meshing methods share the common challenge:
dealing with the inevitable singularity configuration.
A singularity appears where a cross-field vanishes and
it represents an irregular vertex of a quad layout/quad
mesh [3], i.e., a vertex which doesn’t have exactly four
adjacent quadrilaterals. The singular configuration is
constrained by the Euler characteristic Ç, which is a
topological invariant of a surface. Moreover, a sub-
optimal number or location of singularities can have
severe consequences: causing undesirable thin parti-
tions, large distortion, not an adequate number and/or

tangential crossings of separatrices as well as limit cy-
cles (spiraling separatrices) [21, 22, 2].

Our integrable cross-field formulation, with mathe-
matical foundations detailed in Section 2, exploits the
concept of user-imposed singularity configuration in
order to gain direct control over their number, loca-
tion, and valence (number of adjacent quadrilaterals).
The user is entitled to use either naturally appearing
singularities, obtained by solving a non-linear problem
[23, 2, 24, 25], using globally optimal direction fields
[26], or to impose its own singularity configuration,
possibly with high valences, as illustrated in Fig. 1. It
is important to note that the choice of singularity pat-
tern is not arbitrary, though. Moreover, it is under the
direct constraint of Abel-Jacobi theory [13, 14, 15] for
valid singularity configurations. Here, the singularity
configuration is taken as an input and an integrable
isotropic cross-field is computed by solving only two
linear systems, Section 3. Finally, the preliminary re-
sults of the developed cross-field formulation for an
isotropic block-structured quad mesh generation are
outlined using the 3-step pipeline [20] in Section 4.

Computing only one scalar fieldH (a metric that is flat
except at singularities) imposes a strict constraint on
singularities’ placement, i.e., fulfilling all Abel-Jacobi
conditions. In practice, imposing suboptimal distri-
bution of singularities may lead to not obtaining a
boundary-aligned cross-field, preventing an isotropic
quad mesh generation, Section 4.1 and 4.2. To by-
pass this issue, we develop a new cross-field formula-
tion on the imposed singularity configuration, which
considers the integrability, while relaxing the condi-
tion on isotropic scaling of crosses’ branches. Here,
two independent metrics H1 and H2 are computed in-
stead of only one as in the Abel-Jacobi framework,
enabling an integrable 2D cross-field generation with
anisotropic scaling without modifying singularity con-
figuration imposed by the user, Section 5.

Lastly, final remarks and some of the potential appli-



cations are discussed in Section 6.

2. CROSS-FIELD COMPUTATION ON
PRESCRIBED SINGULARITY

CONFIGURATION

We define a 2D cross c as a set of 2 unit coplanar
orthogonal vectors and their opposite, i.e.,

c = {u,v,−u,−v}

with {u.v = 0, |u| = |v| = 1} and u,v are coplanar.
These vectors are called cross’ branches.

A 2D cross-field CM on a 2D manifold M, now, is a
map CM : X ∈ M → c(X), and the standard ap-
proach to compute a smooth boundary-aligned cross-
field is to minimize the Dirichlet energy:

min
CM

�

M

∥∇CM∥2 (1)

subject to the boundary condition c(X) = g(X) on
∂M, where g is a given function.

The classical boundary condition for cross-field com-
putation is that ∀P ∈ ∂M, with T(P) a unit tangent
vector to M at P, one branch of c(P) has to be co-
linear to T(P). In the general case, there exists no
smooth cross-field matching this boundary condition.
The cross-field will present a finite number of singu-
larities Sj , located at Xj and of index kj , related to
the concept of valence as kj = 4− valence(Sj).
We define a singularity configuration as the set

S = {Sj , j ∈ [|1, N |], N ∈ Z}.

In the upcoming section, a method to compute a cross-
field CM matching a given singularity configuration S
is developed. In other words, we are looking for CM

such as:














· if X belongs to ∂M, at least one branch of
CM(X) is tangent to ∂M,
· singularities of CM are matching the given S
(the same number, location, and indices).

(2)

Before developing the method to compute such a cross-
field, a few operators on the 2D manifold have to be
defined.

2.1 Curvature and Levi-Civita connection
on the 2D manifold

Let E3 be the Euclidean space equipped with a Carte-
sian coordinates system {xi, i = 1, 2, 3}, and M be an
oriented two-dimensional manifold embedded in E3.
We note n(X) the unit normal to M at X ∈ M. It

is assumed that the normal field n is smooth and that
the Gaussian curvature K is defined and smoothed on
M.

If µ(s) is a curve on M parametrized by arc length, the
Darboux frame is the orthonormal frame defined by

T(s) = µ
′(s) (3)

n(s) = n(µ(s)) (4)

t(s) = n(s)×T(s). (5)

One then has the differential structure
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 ds (6)

where »g is the geodesic curvature of the curve, »n the
normal curvature of the curve, and Är the relative tor-
sion of the curve. T is the unit tangent, t the tangent
normal and n the unit normal.

Arbitrary vector fields V and W ∈ E3 can be ex-
pressed as

V = V
i
Ei, W =W

i
Ei

in the natural basis vectors {Ei, i = 1, 2, 3} of this
coordinate system, and we shall note

< V,W >= V
i
W

j
¶ij , ||V|| =

�

< V,V >

the Euclidean metric and the associated norm for vec-
tors. The Levi-Civita connection on E3 in Cartesian
coordinates is trivial (all Christoffel symbols vanish),
and one has

∇E
VW = (∇VW

i)Ei.

The Levi-Civita connection on the Riemannian sub-
manifold M, now, is not a trivial one. It is the orthog-
onal projection of ∇E

V in the tangent bundle TM, so
that one has

∇VW = PTM[∇E
VW] = (∇VW

i)PTM[Ei] (7)

where PTM : E3 �→ TM is the orthogonal projection
operator on TM.

An arbitrary orthonormal local basis (uX,vX,n) for
every X ∈ M, can be represented through the Eu-
ler angles (È, µ, ϕ) which are C1 on M, and with the
shorthands sφ ≡ sinϕ and cφ ≡ cosϕ, as:

uX =





−sφsψcγ + cφcψ
sφcψcγ + sψcφ

sφsγ



 ,

vX =





−sφcψ − sψcφcγ
−sφsψ + cφcψcγ

sγcφ



 ,

n =





sψsγ
−sγcψ
cγ





(8)

in the vector basis of E3.



2.2 Conformal mapping

We are looking for a conformal mapping

F : P → M ¢ E3

P = (À, ¸) �→ X = (x1, x2, x3)
(9)

where P is a parametric space. As finding F right
away is a difficult problem, one focuses instead on find-
ing the 3× 2 Jacobian matrix of F

J(P) = (∂ξF(P), ∂ηF(P)) ≡ (ũ(P), ṽ(P)), (10)

where ũ, ṽ ∈ TM are the columns vectors of J . The
mapping F being conformal, the columns of J(P) have
the same norm L(P) ≡ ||ũ(P)|| = ||ṽ(P)|| and are
orthogonal to each other, ũ(P) · ṽ(P) = 0. We can
also write:

J = L(u,v), n = u ' v

where

u = ũ

||ũ||

v = ṽ

||ṽ||
.

(11)

Recalling that finding a conformal transformation F
is challenging, we will from now on be looking for the
Jacobian J , i.e., the triplet (u,v, L).

The triplet (u,v,n) forms a set of 3 orthonormal basis
vectors and can be seen as a rotation of (uX,vX,n)
among the direction n. Therefore, a 2D cross
c(X), X ∈ M can be defined with the help of a scalar
field ¹, where u = Rθ,n(uX) and v = Rθ,n(vX), and
the local manifold basis (uX,vX,n) as:

u = cθuX + sθvX, v = −sθuX + cθvX. (12)

By using the Euler angles (È, µ, ϕ) and ¹, the triplet
(u,v,n) can also be expressed as:

u =





−sθ+φsψcγ + cθ+φcψ
sθ+φcψcγ + sψcθ+φ

sθ+φsγ



 ,

v =





−sθ+φcψ − sψcθ+φcγ
−sθ+φsψ + cθ+φcψcγ

sγcθ+φ



 ,

n =





sψsγ
−sγcψ
cγ



 .

(13)

It is important to note that u and v are the two
branches of the cross-field CM we are looking for. The
projection operator PTM introduced in Eq. (7) then
simply amounts to disregarding the component along
n of vectors.

For a vector field w defined on M, one can write by

derivation of Eq. (13)

∇E
wu = v∇w(¹ + ϕ) + sθ+φn∇wµ

+ (cγv − sγcθ+φn)∇wÈ

∇E
wv = −u∇w(¹ + ϕ) + cθ+φn∇wµ

+ (−cγu+ sγsθ+φn)∇wÈ

∇E
wn = −(sθ+φu+ cθ+φv)∇wµ

+ sγ(cθ+φu− sθ+φv)∇wÈ

(14)

and hence, using Eq. (7), the expression of the covari-
ant derivatives on the submanifold M is:

∇wu = v∇w(¹ + ϕ) + cγv∇wÈ

∇wv = −u∇w(¹ + ϕ)− cγu∇wÈ.
(15)

This allows writing the Lie bracket

[u,v] = ∇uv −∇vu

= −(u∇u(¹ + ϕ) + v∇v(¹ + ϕ)

− cγ(u∇uÈ + v∇vÈ), (16)

which will be used in the upcoming section.

3. INTEGRABILITY CONDITION WITH
ISOTROPIC SCALING

The mapping F , now, defines a conformal
parametrization of M if the columns of J com-
mute as vector fields, i.e., if the differential condition

0 = [ũ, ṽ] = ∇ũṽ −∇ṽũ = [Lu, Lv] (17)

is verified. Developing the latter expression and posing
for convenience L = eH , it becomes

0 = v∇uH − u∇vH + [u,v],

and then
�

∇uH = − < v, [u,v] >
∇vH = < u, [u,v] >

(18)

which after the substitution of Eq. (16) gives

�

∇uH = ∇v¹ +∇vϕ + cγ∇vÈ

−∇vH = ∇u¹ +∇uϕ + cγ∇uÈ.
(19)

In order to obtain the boundary value problem for H,
the partial differential equation (PDE) governing it
will be expressed on ∂M as well as on the interior of
M.

3.1 H PDE on the boundary

As the boundary ∂M is represented by curves on M,
it is possible to parametrize them by arc length and
thus associate for each X ∈ ∂M a Darboux frame



(T(X), t(X),n(X)). As we are looking for a cross-field
CM fulfilling conditions (2), the triplet (u,v,n) can be
identified as (T(X), t(X),n(X)). One then has:

∂sT = »gt+ »nn ≡ ∇uu

= v∇uϕ+ sφn∇uµ + (cγv − sγcφn)∇uÈ

where from follows

�

»g = ∇uϕ+ cγ∇uÈ

»n = sφ∇uµ − sγcφ∇uÈ.
(20)

Using Eq. (19) it becomes:

∇tH = −»g, (21)

the result that matches exactly the one found in the
planar case [20].

3.2 H PDE in the smooth region on the
interior of M

To find the PDE governing H, let’s assume the Jaco-
bian J is smooth (and therefore H) in a vicinity V of
X ∈M .

We choose U ¢ V such as X ∈ U , ∂U such as unit
tangent vector T0 to ∂U0 verifies T0 = v, T1 to ∂U1

verifies T1 = u, T2 to ∂U2 verifies T2 = −v, T3 to
∂U3 verifies T3 = −u.

Thus we have a submanifold U ¢ M on which H is
smooth, and such as ∂U = ∂U0 ∪ ∂U1 ∪ ∂U2 ∪ ∂U3.
Darboux frames of ∂U (Fig. 2) are:















(T, t,n) = ( v,−u,n) on ∂U0

(T, t,n) = (−u,−v,n) on ∂U1

(T, t,n) = (−v, u,n) on ∂U2

(T, t,n) = ( u, v,n) on ∂U3

(22)

Figure 2: Vicinity of X considered.

For (ũ, ṽ) to be a local coordinate system, we recall
Eq. (21) demonstrated in Section 3.1:

»g = −∇tH, with t = n 'T (23)

and the divergence theorem stating that:
�

∂U

∇tH = −

�

U

∆H. (24)

Applying the Gauss-Bonnet theorem on U leads to:
�

U

K dU +

�

∂U

»g dl + 4
Ã

2
= 2ÃÇ(U)

where K and Ç(U) are respectively the Gaussian cur-
vature and the Euler characteristic of U . As Ç(U) = 1
and using Eq. (23) and (24), it becomes:

�

U

K dU = −

�

U

∆H dU (25)

which holds for any chosen U . Hence, there is:

∆H = −K, if J is smooth. (26)

In the general case, it is impossible for J to be smooth
everywhere. Indeed, let’s assume M to be with
smooth boundary ∂M (i.e. with no corners) and of
the Euler characteristic Ç(M) = 1. If we assume J is
smooth everywhere, it becomes:

� �

M
K dM+

�

∂M
»g dl = 0

2ÃÇ(M) = 2Ã
(27)

which is not in accordance with the Gauss-Bonnet the-
orem. Therefore, J has to be singular somewhere in
M.

The goal is to build a usable parametrization of M,
i.e., being able to use this parametrization to build
a quad mesh of M. Therefore, we will allow J to
be singular on a finite number N of points Sj , j ∈
[|0, N − 1|] and show that this condition is sufficient
for this problem to always have a unique solution.

3.3 H PDE at singular points

For now, we know boundary conditions for H,
Eq. (21), and the local equation in smooth regions,
Eq. (26). The only thing left is to determine a local
PDE governing H at singular points {Sj}. We define
kj as the index of singularity Sj .

For this, we are making two reasonable assumptions:

�

∆H(Sj) = −K(Sj) + ³j¶(Sj)
ki = kj ⇒ ³i = ³j ,

(28)

where ³j is a constant, and ¶ is the Dirac distribution.
We consider the disk M represented in Fig. 18 with 4
singularities Sj , j ∈ [|0, 3|] of index kj = 1.

The Gauss-Bonnet theorem states that:
�

M

K dM+

�

∂M

»gdl = 2ÃÇ(M).



Figure 3: The disk with four singularities of index 1.

Replacing K and »g by their values in Eq. (21) and
(26), and using the hypothesis (28) we get ³ = 2Ã 1

4
.

For the singularity of index 1 we have:

∆H(Sj) = −K(Sj) + 2Ã
1

4
¶(Sj).

Using the same idea, we can generalize the following:

∆H(Sj) = −K(Sj) + 2Ã
kj

4
¶(Sj). (29)

3.4 Boundary value problem for H

To sum up, the equations governing H on M are:

�

∆H = −K + 2Ã
kj
4
¶(Sj) on M

∇tH = −»g on ∂M.
(30)

Eq. (30) being a Laplace equation, with Neumann
boundary conditions respecting divergence theorem,
it admits a unique solution up to an arbitrary addi-
tive constant. A triangulation MT of the manifold M
is generated and problem (30) is solved using a finite
element formulation with order 1 Lagrange elements.
Once H is determined (illustrated in Fig. 4), the next
step is to retrieve J ’s orientation, detailed in the next
section. The fact that H is only known up to an addi-
tive constant is not harmful as only ∇H will be needed
to retrieve J orientation.

Figure 4: H function obtained on a closed manifold.

3.5 Retrieving crosses orientation from H

In order to get an orientation at a given point X ∈ M,
a local reference basis (uX,vX,n) in X is recalled.

Equation (19) imposes that:
�

∇uH = ∇v(ϕ+ ¹) + cγ∇vÈ

∇vH = −∇u(ϕ+ ¹) − cγ∇uÈ
(31)

which is equivalent to:
�

∇uX
H = ∇vX

(ϕ+ ¹) + cγ∇vX
È

∇vX
H = −∇uX

(ϕ+ ¹) − cγ∇uX
È

(32)

and eventually gives:
�

∇uX
¹ = −∇vX

H −∇uX
ϕ − cγ∇uX

È = P

∇vX
¹ = ∇uX

H −∇vX
ϕ − cγ∇vX

È = Q

(33)
which is linear in ¹.

Using the Kelvin-Stokes theorem, it is possible to show
that ¹ exists if and only if we have:

∇uX
Q−∇vX

P = 0. (34)

Using Eq. (33) we obtain:

∇uX
Q−∇vX

P

= ∆H +∇vX
(cγ∇uX

È)−∇uX
(cγ∇vX

È)
= −K +∇vX

(cγ∇uX
È)−∇uX

(cγ∇vX
È).

(35)

We know that, for 2D manifolds embedded in R
3, the

Gaussian curvature K is equal to the Jacobian of the
Gauss map of the manifold [27]. We have:






























∇uX
n = sγ∇uX

È





cψ
sψ
0



−∇uX
µ





−sψcγ
cψcγ
sγ





∇vX
n = sγ∇vX

È





cψ
sψ
0



−∇vX
µ





−sψcγ
cψcγ
sγ





(36)

Therefore we also have:

K = sγ(∇vX
È∇uX

µ −∇uX
È∇vX

µ). (37)

Developing Eq. (35) and substitutingK with the right-
hand side of Eq. (37) we get:

−K +∇vX
(cγ∇uX

È)−∇uX
(cγ∇vX

È)
= −K + cγ∇vX

∇uX
È − sγ∇vX

µ∇uX
È

−cγ∇uX
∇vX

È + sγ∇uX
µ∇vX

È

= 0.

(38)

As Eq. (34) is verified, we know that there exists a
scalar field ¹ verifying Eq. (33), and therefore that our
problem has a unique solution.

In order to solve Eq. (33), we first need to obtain a
smooth global basis (uX,vX,n) on M. This is pos-
sible by generating a branch cut L, as defined below,



and computing a smooth global basis (uX,vX,n) on
M allowing discontinuities across L.

A branch cut is a set L of curves of a domain M that
do not form any closed loop and that cut the domain in
such a way that it is impossible to find any closed loop
inM\L that encloses one or several singularities, or an
internal boundary. As we already have a triangulation
of M , the branch cut L is in practice simply a set of
edges of the triangulation.

The branch cut is generated with the method de-
scribed in [20] which is based on [28]. An example
of generated branch cut is presented in Fig. 5.

Figure 5: Edges of the branch cut L are represented in
blue. There exists no closed loop in M \L enclosing one
or several singularities.

Once a branch cut L is available, the field ¹ can be
computed by solving the linear equations (33). With
equations (33), ¹ is known up to an additive constant.
For the problem to be well-posed, ¹ value has to be im-
posed at one point of domain M. The chosen bound-
ary condition consists in fixing the angle ¹ at one arbi-
trary point XBC ∈ ∂M so that CM(XBC) has one of
its branches collinear with T(X). The problem can be
rewritten as the well-posed Eq. (39) and is solved us-
ing the finite element method on the triangulationMT

with order one Crouzeix-Raviart elements. This kind
of element has shown to be more efficient for cross-field
representation [23].






PTM(∇¹) = PTM(n×∇H −∇ϕ− cγ∇È) in M
¹(XBC) = ¹XBC

for an arbitrary XBC ∈ ∂M
¹ discontinuous on L

(39)

It is important to note that for Eq. (39) to be well-
posed, the ¹ value can only be imposed on a single
point. A consequence is that if M has more than
one boundary (∂M = ∂M1 ∪ ∂M2 ∪ · · · ∪ ∂Mn), the
resulting cross-field is guaranteed to be tangent to the
boundary ∂Mi such as XBC ∈ ∂Mi, which does not
necessarily hold for all boundaries ∂Mj for j ̸= i, as
detailed in Section 4.1.

Once H and ¹ scalar fields are computed on M (illus-
trated respectively in Fig. 4 and Fig. 6), the cross-field

CM can be retrieved for all X ∈ M:

c(X) = {uk = Rθ+k π
2
,n(uX), k ∈ [|0, 3|]}. (40)

Figure 6: Scalar field ¹ obtained from scalar field H
(represented in Fig. 4).

4. PRELIMINARY RESULTS

As a proof of concept, the cross-field computation
based on the imposed singularity configuration is in-
cluded in the 3-step quad meshing pipeline of [20] (il-
lustrated in Fig. 7 and Fig. 8):

Step 1: impose a singularity configuration, i.e., posi-
tion and valences of singularities (see [20]).

Step 2: compute a cross-field with the prescribed sin-
gularity configuration of Step 1 on an adapted mesh
(singularities are placed in refined regions), by solving
only two linear systems (Section 3).

Step 3: compute a quad layout on the accurate cross-
field of Step 2, and generate a full block-structured
isotropic quad mesh (see [23, 20]).

The presented pipeline includes the automatic check
that singularity configuration obeys the Euler charac-
teristic of the surface, but it does not inspect all Abel-
Jacobi conditions [13, 14, 15]. Further, the models
of industrial complexity would require a more robust
quad layout generation technique than the one fol-
lowed here ([23, 20]). The final quad mesh is isotropic,
obtained from the quad layout via per-partition bijec-
tive parameterization aligned with the smooth cross-
field (singularities can only be located on corners of
the partitions) [20], and following the size map implied
by the H, i.e., the element’s edge length is s = eH .
In case when the application demands an anisotropic
quad mesh, two sizing fields (H1, H2) for the cross-field
must be computed, more details in Section 5.



Scalar field H-0.99 1.1

Figure 7: Quad mesh on a 2-sphere with a natural singularity configuration forming an anticube. The singularity configu-
ration comes from solving a non-linear problem, i.e., by using the MBO algorithm from [2].

-0.97 0.11Scalar field H

Figure 8: Quad mesh on a 2-sphere with an imposed singularity configuration forming a cube.

4.1 Valid singularity configurations for
conformal quad meshing

The singularity configuration, including both the po-
sitions and valences, plays a crucial role in the gen-
eration of conformal quad meshes [29]. It is essential
to note that not all user-imposed singularity configura-
tions matching the Euler’s characteristic of the surface
will be valid for conformal quad meshing, Fig. 9. The
central cause for this lies in the fact that a combina-
tion of choices of valences and holonomy is not arbi-
trary [30]. Relevant findings on the non-existence of
certain quadrangulations can be found in [31, 32, 33].

The work of [3] presents the formula for determin-
ing the numbers of and indices of singularities, and
[34] presents their possible combinations in conform-
ing quad meshes. Latter authors also show that the
presented formula is necessary but not sufficient for
quad meshes, but neither of these works are proving
the rules for the singularities’ placement.

Recently, the sufficient and necessary conditions for
valid singularity configuration of the conformal quad
mesh are presented in the framework based on Abel-
Jacobi’s theory [13, 14, 15]. The developed formula-
tion here is under its direct constraint. In practice,

imposing a singularity configuration fulfilling Euler’s
characteristic constraint ensures that the flat metric,
i.e., the H field can be obtained. If this singularity
configuration also verifies the holonomy condition, the
cross-field will be aligned with all boundaries and con-
sistent across the cut graph.

We recall here that our formulation entitles the user
to impose its own singularity configuration, which in
practice can contain a suboptimal distribution of sin-
gularities. As a consequence, computed cross-field
may not be aligned with all boundaries, Fig. 9 d), pre-
venting the generation of the final conformal isotropic
quad mesh. To bypass this issue, the following section
develops an integrable cross-field formulation with two
independent metrics (which are flat except at singular-
ities), instead of only one as presented for Abel-Jacobi
conditions.

4.2 Dealing with suboptimal distribution
of singularities

The issue of suboptimal distribution of singularities
imposes the need for developing a new cross-field for-
mulation on the imposed singularity configuration,
which considers the integrability while relaxing the



Figure 9: Imposing a 3−5 singularity configuration on a
torus. a) The boundary marked in blue. b) The boundary
and the cut graph marked in black. c) Consistent cross-
field across the cut graph. d) Cross-field not aligned with
the boundary.

condition on isotropic scaling of crosses’ branches.
More specifically, the integrability condition, along
with computing only one scaling field H, ||ũ|| = ||ṽ||,
imposes the strict constraint on the valid singularity
configurations, i.e., the need for fulfilling the Abel-
Jacobi theorem. Therefore, two sizing fields L1 = ||ũ||
and L2 = ||ṽ|| are introduced and the upcoming sec-
tion presents the mathematical foundations for the
generation of an integrable cross-field with anisotropic
scaling on 2−D manifolds. As it will be shown in
the following, this setting presents promising results in
generating an integrable and boundary-aligned cross-
field on the imposed set of singularities, even when
their distribution is not fulfilling all Abel-Jacobi con-
ditions. Only for the sake of visual comprehensive-
ness, the presented motivational examples in Fig. 10 -
Fig. 15 are planar.

5. INTEGRABILITY CONDITION WITH
ANISOTROPIC SCALING

As explained previously (Section 3), a cross-field CM

is integrable if and only if ũ and ṽ commute under the
Lie Bracket. In other words, the condition:

0 = [ũ, ṽ] = ∇ũṽ −∇ṽũ = [L1u, L2v] (41)

where:
L1 = ||ũ||, L2 = ||ṽ|| (42)

and
u = ũ

||ũ||

v = ṽ

||ṽ||

(43)

has to be verified.

Developing the latter expression and posing for conve-
nience L1 = eH1 and L2 = eH2 , it becomes:

0 = v∇uH2 − u∇vH1 + [u,v],

and then

�

∇uH2 = − < v, [u,v] >
∇vH1 = < u, [u,v] >

(44)

which after the substitution of Eq. (16) gives:

�

∇uH2 = ∇v¹ +∇vϕ + cγ∇vÈ

−∇vH1 = ∇u¹ +∇uϕ + cγ∇uÈ.
(45)

It is important to note that the three scalar fields
(¹,H1, H2) are completely defining the cross-field CM,
as (È, µ, ϕ) are known since they are defining the local
manifold basis (t,T,n).

From Eq. (45), we can define the cross-field CM inte-
grability error E as:

E2(¹,H1, H2)
=

�

M
(∇uH2 −∇v¹ −∇vϕ − cγ∇vÈ)

2

+(∇vH1 +∇u¹ +∇uϕ + cγ∇uÈ)
2 dM.

(46)

The problem of generating an integrable cross-field
with anisotropic scaling can therefore be reduced
at finding three scalar fields (¹,H1, H2) verifying
E(¹,H1, H2) = 0.

The process of solving this problem presents several
difficulties. First, (¹, È, µ, ϕ) are multivalued func-
tions. This kind of difficulty is commonly encoun-
tered in cross-field generation and is tackled here by
cutting the domain M along a generated cut graph.
Then, minimizing E regarding (¹,H1, H2) is an ill-
posed problem. Indeed, there are no constraints on
∇uH1 and ∇vH2. This is the main obstacle for gener-
ating an integrable 2D cross-field with an anisotropic
scaling.

A simple approach to solve this problem is proposed
here. In order to do so, it is needed to:

• be able to generate a boundary-aligned cross-field
matching the imposed singularity configuration,

• compute (H1, H2) minimizing E for an imposed
¹̄,

• compute ¹ minimizing E for an imposed
(H̄1, H̄2).

The final resolution solver (Algorithm 3), proposed in
Section 5.4, allows for finding a local minimum for E
around an initialization (¹0, H0

1 , H
0
2 ).
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Figure 10: Obtained quad layouts on an imposed set of singularities that do not respect the location’s condition from the
Abel-Jacobi theorem. a) Quad layouts obtained using the integrable cross-field with isotropic scaling: not aligned with
boundaries (marked with ”!”) and demonstrate the presence of t-junctions (marked with ”T”) generated by cutting the
limit cycles upon their first orthogonal intersection. b) Quad layouts obtained with imposing the ¹ value along the cut
graph and boundary following the method presented in [28]: boundary aligned but demonstrate the presence of t-junctions
(marked with ”T”) generated by cutting the limit cycles upon their first orthogonal intersection. c) Quad layouts obtained
using the integrable cross-field with an anisotropic scaling: boundary aligned and without t-junctions.

5.1 Local manifold basis generation and θ
initialization

As exposed earlier, in order to completely define a uni-
tary cross-field CM with a scalar field ¹ it is needed to
define a smooth global basis (t,T,n) on M. This is
possible by generating a branch cut L and computing
a smooth global basis (t,T,n) on M allowing discon-
tinuities across L.

The branch cut is generated using the method de-
scribed in [28]. A local basis (t,T,n) on M can be
generated with any cross-field method. Such local ba-
sis will be smooth and will not show any singularities,
as discontinuities are allowed across the cut graph L
and no boundary alignment is required. Once the cut
graph L and the local basis (t,T,n) are generated, it
is possible to compute ¹ only if:

• ¹ values on ∂M are known,
• ¹ jump values across L are known.

These can be found using methods described in [28], or
can be deduced from a low computational cost cross-
field generation detailed in [20].

5.2 Computing (H1, H2) from imposed θ̄

For a given ¹̄, it is possible to find (H1, H2) minimizing
E. It is important to note that, in general, there does
not exist a couple (H1, H2) such as E = 0. Minimizing
E with imposed ¹̄ is finding the couple (H1, H2) for
which the integrability error is minimal.

The problem to solve is the following:

Find (H̄1, H̄2) such as
E(¹̄, H̄1, H̄2) = min

(H1,H2)∈(C1(M))2
E(¹̄, H1, H2).

(47)
Let’s define S as:

S = {(H̄1, H̄2) | (H̄1, H̄2) verifies Eq. (47)}.

For this problem to be well-posed, a necessary con-
dition is to have 2 independent scalar equations in-
volving ∇H1, and the same for ∇H2. We can note
that in our case, there are no constraints on ∇uH1

and ∇vH2. Therefore, there is only 1 scalar equation
involving ∇H1, and 1 scalar equation involving ∇H2.
As a consequence, the problem we are looking to solve
is ill-defined. As this problem is ill-defined, S will not



be a singleton and, in the general case, there will be
more than one solution to the problem (47).

To discuss this problem in detail, we will use the simple
example of a planar domain Ω illustrated in Fig. 11.

Figure 11: Planar square.

In this case, the unitary frame field CΩ obtained with
common methods is:

CΩ = {c(X) = {x,y,−x,−y},X ∈ Ω} (48)

which is equivalent to:

¹̄ = 0. (49)

As in this case domain Ω is planar, we also have:

È = µ = ϕ = 0. (50)

Equation (45) becomes:

�

∇xH2 = 0
−∇yH1 = 0

(51)

which gives:
�

H1(x, y) = f(x), ∀(x, y) ∈ Ω, ∀f ∈ C1(R)
H2(x, y) = g(y), ∀(x, y) ∈ Ω, ∀g ∈ C1(R).

(52)

Knowing this, we finally have S = (C1(R))2. There is
an infinity of solutions, confirming the fact that prob-
lem (47) is ill-defined.

The solution we could expect to obtain for quad mesh-
ing purposes would be:

S = {(H1, H2) = (0, 0)}, (53)

which is equivalent to (L1, L2) = (1, 1).

Based on this simple example, we can deduce that
problem (47) has to be regularized in order to reduce
the solution space. One way to achieve this goal is to
add a constraint on the (H1, H2) fields we are looking
for. A natural one is to look for (H1, H2) verifying
Eq. (47) and being as smooth as possible.

With this constraint, the problem to solve becomes:

Find (H̄1, H̄2) ∈ S such as
�

M

||∇H̄1||
2 + ||∇H̄2||

2 dM

= min
(H1,H2)∈S

�

M

||∇H1||
2 + ||∇H2||

2 dM.

(54)

Adding this constraint transforms the linear problem
(47) into a non-linear one (54). Algorithm 1 is used
to solve Eq. (54), leading to an E’s local minimum
(¹̄, H̄1, H̄2) close to (¹̄, H0

1 , H
0
2 ).

k = 0
initial guess H0

1 , H
0
2

compute ϵ0 = E(¹̄, H0
1 , H

0
2 )

while ϵk < ϵk−1 do
k = k + 1
find (Hk

1 , H
k
2 ) minimizing:

E(¹̄, f1, f2) +
�

M
||∇f1 −∇Hk−1

1 ||2+

||∇f2 −∇Hk−1
2 ||2dM,

(f1, f2) ∈
"

C1(M)
"2

compute ϵk = E(¹̄, Hk
1 , H

k
2 )

end

Algorithm 1: Regularized solver for (H1, H2)

5.3 Computing θ from (H̄1H̄2)

For an imposed couple (H̄1H̄2), it is possible to find ¹
minimizing E. The problem to solve is formalized as:

Find ¹̄ ∈ C1(M) such as
E(¹̄, H̄1, H̄2) = min

θ∈C1(M)
E(¹, H̄1, H̄2). (55)

This problem is non-linear too since ∇vH1 and ∇uH2

are showing a non-linear dependence regarding ¹. Al-
gorithm 2 is used to solve Eq. (55), leading to an E’s
local minimum (¹̄, H̄1, H̄2) close to (¹0, H̄1, H̄2).

k = 0
initial guess ¹0

deduce (u0,v0) from ¹0

compute ϵ0 = E(¹0, H̄1, H̄2)
while ϵk < ϵk−1 do

k = k + 1
find ¹k minimizing:

Ek(f, H̄1, H̄2)
=

�

M
(∇uk−1H̄2 −∇vk−1f

−∇vk−1ϕ − cγ∇vk−1È)2+
(∇vk−1H̄1 +∇uk−1f

+∇uk−1ϕ + cγ∇uk−1È)2 dM

f ∈ C1(M)
deduce (uk,vk) from ¹k

compute ϵk = E(¹k, H̄1, H̄2);

end

Algorithm 2: Solver for ¹



5.4 Minimizing integrability error E
regarding (θ,H1, H2)

Using the three steps exposed previously, it is possible
to find a local minimum in the vicinity of an initial-
ization (¹0, H0

1 , H
0
2 ) following Algorithm 3.

k = 0
initial guess ¹0 using method presented in
Section 5.1

compute (H0
1 , H

0
2 ) from ¹0 using Alg. 1

compute ϵ0 = E(¹0, H0
1 , H

0
2 )

while ϵk < ϵk−1 do
k = k + 1
compute ¹k from (Hk−1

1 , Hk−1
2 ) using Alg. 2

compute (Hk
1 , H

k
2 ) from ¹k using Alg. 1

compute ϵk = E(¹k, Hk
1 , H

k
2 )

end

Algorithm 3: Solver for (¹,H1, H2)

For the sake of simplicity the motivational example,
presented in Fig. 12 is planar. A set of four of index
1 and four of index -1 singularities whose locations
are not fulfilling the Abel-Jacobi condition is imposed.
Consequently, a cross-field generated using theH func-
tion will not be boundary aligned, and a cross-field
generated by imposing the ¹ value along the cut graph
and boundary following the method presented in [28]
will not be integrable and therefore will generate limit
cycles.
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Figure 12: Left: a quad layout obtained using the inte-
grable cross-field with isotropic scaling: not aligned with
all boundaries (marked with ”!”). Right: a quad lay-
out obtained with imposing the ¹ value along the cut
graph and boundary following the method presented in
[28]: boundary-aligned but with t-junctions (marked with
”T”) generated by cutting the limit cycles upon their first
orthogonal intersection.

The method presented here is applied to compute an
integrable boundary-aligned cross-field. Fig. 13 repre-
sents the cross-field used as an initial guess and Fig. 14
is the one obtained at Algorithm 3 convergence.

Fig. 13 demonstrates that integrability error density is
not concentrated in certain regions, but rather quite
uniformly spread over the domain. This suggests that

Figure 13: Left: a quad layout obtained at initializa-
tion: boundary-aligned but with t-junctions (marked with
”T”). Right: the integration error density on Ω. The to-
tal integration error is E = 0.307898.

addressing the integrability issue cannot be performed
via local modifications but only via the global one,
i.e., the convergence of the presented non-linear prob-
lem. Fig. 14 shows that generating a limit cycle-free
2D cross-field can indeed be done by solving Eq. (45).
Nevertheless, this problem is highly non-linear and ill-
defined, and solving it turns out to be difficult.

Figure 14: Left: a quad layout obtained from integrable
cross-field with an anisotropic scaling: orthogonal with
all boundaries and without t-junctions. Right: the inte-
gration error density on Ω. The total integration error at
convergence is E = 1.45639e− 06.

The method proposed here works well when initializa-
tion is not far from an integrable solution, i.e., when
the imposed singularity set obeys Abel-Jacobi’s con-
ditions. Otherwise, it does not converge up to the de-
sired solution by reaching a local minimum (¹̄, H̄1, H̄2)
which does not satisfy E(¹̄, H̄1, H̄2) = 0, as illustrated
in Fig. 15. Although, it is interesting to note that,
even without the presented method’s convergence, the
number of t-junctions dramatically decreases and the
valid solution, in the opinion of authors, can be “intu-
itively presumed”.
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Figure 15: Left: a quad layout obtained at initialization,
with t-junctions (marked with ”T”), the total integration
error is E = 0.842169. Right: a quad layout obtained at
convergence, the total integration error is E = 0.013597.

6. CONCLUSION AND FUTURE WORK

We presented the mathematical foundations for the
generation of an integrable cross-field on 2D man-
ifolds based on a user-imposed singularity configu-
ration with both isotropic and anisotropic scaling.
Here, the mathematical setting is constrained by the
Abel-Jacobi conditions for a valid singularity pattern.
With the automatic algorithms to check and opti-
mize the singularity configuration (as recently pre-
sented in [13, 14, 15]), the developed framework can
be used to effectively generate both an isotropic and
an anisotropic block-structured quad mesh with pre-
scribed singularity distribution. When it comes to
computational costs of our cross-field generation, the
formulation with isotropic scalingH takes solving only
two linear systems, and the anisotropic one (H1, H2)
represents a non-linear problem.

An attractive direction for future work includes, al-
though it is not limited to, working with the user-
imposed size map. By using the integrable cross-field
formulation relying on two sizing fields H1 and H2, it
would be possible to take into account the anisotropic
size field to guide the cross-field generation. The size
field obtained from the generated cross-field would not
precisely match the one prescribed by the user, but it
would be as close as possible to the singularity config-
uration chosen for the cross-field generation.

It is important to note that employing the presented
framework in the 3D volumetric domain would be pos-
sible only for a limited number of cases, in which the
geometric and topological characteristics of the vol-
ume (more details in [34, 35]) allow the use of cross-
field guided surface quad mesh for generating a hex
mesh.

A. ADDITIONAL EXAMPLES

Figure 16: A square with a squared hole rotated by
π
4
. Left: Quad layout obtained for an empty singularity

set. The corresponding cross-field is isotropic, bound-
ary aligned and integrable. Right: Quad layout obtained
for a singularity set composed of four valence 3 (in blue)
and four valence 5 (in red) singularities. The correspond-
ing cross-field is anisotropic, boundary aligned and inte-
grable.

Figure 17: Nautilus with a hole. Quad layout obtained
for an empty singularity set. The corresponding cross-
field is isotropic, boundary aligned and integrable.

Figure 18: Nautilus with a hole. Left: Quad layout ob-
tained for a singularity set composed of a valence 3 (in
blue) and a valence 5 (in red) singularity. The corre-
sponding cross-field is anisotropic, boundary aligned and
integrable. Right: Quad layout obtained for a singularity
set composed of two valence 3 (in blue) and two valence
5 (in red) singularity. The corresponding cross-field is
anisotropic, boundary aligned and integrable.



References
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“Globally optimal direction fields.” ACM Trans-
actions on Graphics (TOG), vol. 32, no. 4, 1–10,
2013

[27] Singer I.M., Thorpe J.A. Lecture notes on ele-
mentary topology and geometry. Springer, 2015

[28] Bommes D., Zimmer H., Kobbelt L. “Mixed-
integer quadrangulation.” ACM Transactions On
Graphics (TOG), vol. 28, no. 3, 1–10, 2009

[29] Gu X., Luo F., Yau S.T. “Computational con-
formal geometry behind modern technologies.”
Notices of the American Mathematical Society,
vol. 67, no. 10, 1509–1525, 2020

[30] Myles A., Pietroni N., Zorin D. “Robust Field-
aligned Global Parametrization: Supplement 1,
Proofs and Algorithmic Details.” Visual Com-
puting Lab, 2014
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