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3COSMO, IBISC, Université d’Évry Val d’Essonne, Paris-Saclay, France

ABSTRACT

Nowadays for real study cases, the generation of full block structured hexahedral meshes is mainly an interactive and
very-time consuming process realized by highly-qualified engineers. To this purpose, they use interactive software
where they handle and modify complex block structures with operations like block removal, block insertion, O-grid
insertion, propagation of block splitting, propagation of meshing parameters along layers of blocks and so on. Such
operations are error-prone and modifying or adding an operation is a very tedious work. In this work, we propose to
formally define hexahedral block structures and main associated operations in the model of n-dimensional generalized
map. This model provides topological invariant and a systematic handling of geometric data that allows us to ensure
the expected robustness.

Keywords: Computational geometry, Quad and Hex meshes, n-G-map, Sheet operation

1. INTRODUCTION

Many high-fidelity numerical simulation fields model-
ing impact, fluid dynamics, shocks, crash or hydrody-
namics require or preferred to use hexahedral block-
structured meshes for getting the expected numeri-
cal and physical results. Such meshes are efficient
in highly anisotropic physical simulations (boundary
layers, shockwaves, etc.), as the associated tri-linear
basis has cubic terms that capture higher order vari-
ations and provide less elements, reducing simulation
time. They are also very interesting in terms of per-
formances: (1) unlike unstructured meshes, most of
the mesh connectivity in a block-structured hexahe-
dral mesh can be implicitly deduce from an underly-
ing multi-dimensional structure. This array structure
is also useful to ease fast access to adjacent node and
cells considering the indexed structure of arrays.

While research on hexahedral meshing is a very ac-
tive domain [1], real-case hexahedral block-structured
mesh are still generated using interactive tools [2, 3, 4],

which is a very-time consuming process realized by
highly-qualified engineers.

They also have to provide a way to link the block struc-
ture and the final mesh to the representation of the do-
main Ω to be meshed. In this work, we consider CAD
shapes that are represented with the BRep model [5],
or boundary representation where the CAD shape is
represented by its boundary. In order to provide a
robust and reliable software, we need to be very versa-
tile on the CAD model we consider. They often lack of
accuracy as they are designed for manufacturing first
(non-watertight, often only 10−4 arithmetic precision),
or contain excessive details that are not essential for
CFD/FEM analysis.

In this paper, we focus on the representation of the
block structure and its link to the CAD model repre-
sentation. It is the major component of an hexahedral
meshing software and it must be designed to be ro-
bust and reliable. Such a component has to provide
functionalities to handle and modify complex block



structures with operations like block removal, block
insertion, O-grid insertion, propagation of block split-
ting, propagation of meshing parameters along layers
of blocks and so on. Such operations are error-prone
and modifying or adding an operation is a very tedious
work.

In this work, we focus on the reliability of the un-
derlying representation model of those structures. We
formally define hexahedral block structures and main
associated operations in the model of n-dimensional
generalized map [6]. This model provides topological
invariant and a systematic handling of geometric data
that ensure the software has the expected robustness.

1.1 State of the art

The representation of a block structure of is halfway
between representing a mesh, which can contain mil-
lions of cells, and representing the topology of a ge-
ometric model composed of a few thousand volumes
at most. A direct approach to representing a n-
dimensional mesh is to define it as a n-tuple of cell
sets, each set containing the cells of a given dimension,
and the incidence/adjacency relations that are useful
for the application to be developed. This is provided
by generic meshing libraries [7, 8, 9, 10, 11, 12] that
explicitly represent the mesh cells. If we consider
the traditional representations used in computational
geometry, the representations used in these libraries
derive from the classical model of incidence graphs [13].

Some other libraries are based on abstract core entities
which implicitly represent the mesh cells, such as
winged edges [14], doubly Connected Edge List [15],
half-edge data structure [16], surface meshes [17] or
Combinatorial maps [6, 18]. The latter can be seen as
a generalization of half-edge meshes which can handle
higher dimensional cell complexes. Some other rep-
resentations go further in the cell splitting and pro-
vide abstract core entities that are relative to vertices.
Corner Tables[19] are based on vertices and are espe-
cially interesting for real time rendering. We consider
the usage of n-dimensional generalized maps. Eventu-
ally n-dimensional generalized map [6] represent non-
orientable and open subdivisions. Comparisons for
these various data structures can be found in [18].

Our work focuses on using n-dimensional generalized
maps to describe hexahedral block structures and as-
sociated operations. We believe that this model allows
us to formally and rigorously defined those operations.
Several previous works [20, 21, 22, 23] provided formal
definition for hexahedral operations, mainly acting on
sheets. A first benefit of our work is to have implemen-
tations that are equivalent to the formal definitions. A
second benefit is to rigorously consider topological and
geometric aspects.

1.2 Main contributions and outlook

In order to provide reliable and robust data structures
and operations to handle and modify hexahedral block
structures in interactive CAD-meshing software, we
use n-dimensional generalized maps to represent the
block structure. In this context, the main contribu-
tions of this work are: (1) We formally define how to
represent the topology of the block structure and the
automatic link to a BRep geometric model (see Sec-
tion 2); (2) We formally define the minimal set of op-
erations to edit hexahedral block structures (see Sec-
tion 3). Those operations are the selection of sheets,
the removal of sheets and the insertion of sheets; (3)
We provide pseudo-code algorithms for every opera-
tions in Section 3; (4) Set of operations: Split a series
of blocks, remove a series of blocks.

With the n-G-map model, for each operation, we are
able propose a definition and an algorithm, which is
unique whatever the dimension is (2 or 3).

2. REPRESENTING BLOCK
STRUCTURES WITH N-G-MAPS

Unlike meshes, block structures contain a limited num-
ber of blocks that rarely exceeds a few thousand ele-
ments, making memory footprint and data access per-
formances not a limiting factor in practice. Getting
the right data representation for block structures raises
some other specific constraints and issues.

CAD classification. Each block cell is classified onto
one or several geometrical entities. Each i-dimensional
block entity is classified, with 0 f i f 3 is classified
onto at least one j-dimensional geometric entity. Some
rules must be ensured and checked as pre- and post-
conditions before performing edition tasks. The CAD
classification is essential for the meshing process.

Mesh algorithms parameters. Block cells carry
the meshing parameters of each block. Among them,
some parameters are local to a face side. In other
words, for a face shared by two blocks, a parameter
can be given to each side of the face; it can be ge-
ometric discretization laws parameters, orthogonality
conditions. Implicit representations, like n-G-map are
then a better option that explicit representation that
do not usually store such half-faces.

Block geometric representation. It is simple and
traditional to represent blocks as linear cells com-
plexes, but this representation meets numerous issues
and we need to represent and handle non-linear repre-
sentations, where blocks are represented by boundary
cells that are high-order polynomials. The separation
of geometry and topology concerns in the n-G-map
model makes possible to change the geometrical repre-
sentation while keeping the topology part unchanged.



2.1 N-G-map to represent topology

The model of n-dimensional generalized maps, or n-
G-maps for short, uses darts as core elements. Darts
are purely abstract entities, that do not embed any
geometrical information. Intuitively, n-G-maps come
from decomposing n-dimensional objects into topolog-
ical cells. Let us consider the 2D object of Fig. 1-a,
which is first split into faces in Fig. 1-b connected along
their common edge with a 2-link. The link is noted
2 as it connects two faces, which are 2-dimensional
faces. Similarly, faces are split into edges connected
with the 1-link (see Fig. 1-c) and are split into ver-
tices by the 0-link to obtain the 2-G-map of Fig. 1-d.
Vertices obtained at the end of the process do not have
the meaning of those in explicit representations. They
are the darts and in 2D, each of them corresponds to
a ”vertex locally to an edge, itself locally to a face”.
In other words, a 2D dart is a triplet (vertex, edge,
face)1. The different i-links are labeled arcs, where
i depicts a dimension that belongs to [[0;n]] for a n-
G-map. They are functions mapping darts to others
and they allow to retrieve usual cells. Let us now for-
mally define the n-generalized maps, which represent
n-dimensional manifolds, orientable or not, and with
or without boundary [25, 26, 6].

Definition 2.1 (Generalized map) Let n g −1, a
n-dimensional generalized map, or n-G-map, is an al-
gebra (D,³0, . . . , ³n) such that D is a finite set of
darts such that

∀i, 0 f i f n, (³i)
2 = id, (1)

∀i, j, 0 f i < i+ 2 f j f n, (³i ◦ ³j)
2 = id. (2)

The definition starts from dimension −1 to repre-
sent the empty G-map that only contains unconnected
darts. Mapping functions ³i are involution2 and con-
dition (2) adds extra constraint that ensure to repre-
sent manifold cellular complexes only. For instance in
2D, it implies that ³0 ◦ ³2 is an involution. It means
that if two darts d and d′ are linked by ³2, then the
darts ³0(d) and ³0(d

′) are linked by ³2 too. By this
way, two adjacent faces share a full edge and not just
a part of it (see Fig. 2).

A dart d ∈ D is i-free if ³i(d)=d. All the boundary
darts of a n-G-map are n-free. In the remainder fig-
ures of the paper, we represent ³0 links with dot lines
between two dart ( ), ³1 links with two circles ( )

and ³2 links with two segment lines ( ).

If darts are the core elements of a n-G-map, a cellular
complex is made of cells, that we want to retrieve to
write many algorithms and applications. In our case, it

1A dart is equivalent to a cell-tuple as defined in [24].
2A function f is an involution if and only if f2 = id.

(a) (b)

(c) (d)

Figure 1: Decomposition of a 2-dimensional cellular
complex into a set of darts: In (a), the initial complex;
In (b), it is split into faces; In (c), every face is split
along its edges; Finally, each edge locally to a face is
split into its two end vertices (d).

is mandatory to get access to vertices, or 0-cells, edges,
or 1-cells, faces, or 2-cells, and regions, or 3-cells. In
the n-G-map representation, i-cells are a special case
of orbits.

Definition 2.2 (orbit) Let Φ = {f1, . . . , fn} a set of
permutations3 on a set E. The orbit of e ∈ E relatively
to Φ is the subset <Φ> (e) of E such that

<Φ> (e) = {ϕ(e)|ϕ ∈<Φ>}.

The orbit of an element e ∈ E is made of the ele-
ments of E that can be reached by any composition of
permutations of ϕ and their inverses. In the n-G-maps
model, ³i functions are involution, i.e. a special case of
permutations. And vertices, edges, faces and regions
are special cases of orbits. For instance, considering
the 2-G-map represented on Fig. 3.(a) and the dart
d, the orbit <³0, ³1> (d) gathers all the darts that
belong to the blue face. In (b), the orbit <³0, ³2> (d)
corresponds to the darts of an edge, while in (c), the 0-
cell that contains the dart d is the orbit <³1, ³2> (d).
Formally, in a n-G-map, we define i-cells as follows.

Definition 2.3 (i-cell) Let G = (D,³0, . . . , ³n) be a
n-G-map, d ∈ D and i ∈ {0, . . . , n}; the i-cell that
contains d is the orbit

<�³i>(d) =<³0, . . . , ³i−1, ³i+1, . . . , ³n>(d).

3f is a permutation on E iff ∀e ∈ E, ∃k > 0/fk(e) = e.



(a) (b)

(c) (d)

Figure 2: On the first line, we do not enforce ³0 ◦³2

to be an involution; quad faces are partially connected,
they only share one vertex. On the second line, ³0◦³2

is an involution and the quad faces are wholly glued
along the edge.

(a) (b) (c)

Figure 3: Definition of i-cells in the G-maps. In (a),
the 2-cell that contains the dart d is the orbit <³0, ³1>
(d); In (b), the 1-cell that contains the dart d is the
orbit <³0, ³2> (d); In (c), the 0-cell that contains the
dart d is the orbit <³1, ³2> (d).

We can observe that applying an involution ³i onto a
dart allows to go from an i-cell to another i-cell. On
the contrary, applying an involution ³j , j ̸= i makes
stay in the i-cell.

For sake of readability, we note ³ij...k the composition
of functions. ³k ◦ . . . ◦ ³j ◦ ³i, and by extension, we
note d³ij...k

∼= (³k ◦ . . . ◦ ³j ◦ ³i)(d). It allows us to
read from left to right each traversal made of a series
of ³ functions. For instance the dart d³12021 will be
the dart obtained by successively applying ³1, ³2, ³0,
³2 and ³1 starting from d.

2.2 Orbits and geometry classification

Vertices, edges and faces as previously defined are only
topological entities. To write algorithms, but also to
associate a geometrical representation, they have to
carry some pieces of data. In particular, in the con-
text of block generation for CAD models, we need: (1)
to embed/represent the topological model of n-G-map
into a geometrical space and (2) to assign block en-
tities to CAD entities. Such data assignment can be
handled in the n-G-map model by defining a mapping
function for each type of orbits.

For our purpose, we limit those mappings to the 0,
1, 2 and 3-cells. Let us consider a n-G-map G =
(D,³0, . . . , ³n) and a BRep model M = (V, S, C, P )
that is a set of volumes V , that are bounded by sur-
faces of S, curves of C and points in P . This set
definition is very weak and allow us to consider non-
watertight models. For each dimension i ∈ [[0;n]], we
define the geometric classification function gci : D →
SM , where SM = V ∪ S ∪ C ∪ P ∪ ∅, such that:

∀d ∈ D, ∀d′ ∈<�³i>(d), gci(d
′) = gci(d), (3)

∀d ∈ D, i f dim(gci(d
′)). (4)

Condition 1 ensures that the gci function assigns all
the darts of an i-cell to the same geometrical entity.
And with condition 2, we indicate that the dimension
of this geometrical entity is greater that i. For instance
a block edge can be classified onto a curve, surface or
a volume of M but not onto a point.

In the context of this work, we represent blocks lin-
early, that is, we assign a point of IRn to each 0-
cell, and we deduce the geometry of edges, faces,
and volumes linearly. More formally, for a n-G-map
G = (D,³0, . . . , ³n) we define the embedding function
e : D → IRn such that:

∀d ∈ D, ∀d′ ∈<�³0>(d), e(d′) = e(d). (5)

This property is similar to Equation 3 for the gci func-
tions. We ensure the consistency of the embedding:
all the darts of a 0-cell are assigned on the same geo-
metrical point. Note that the geometric classification
only allows us to update the link to the CAD model
during blocking operations. It does not intrinsically
handle CAD inaccuracies (gaps, surface intersections,
null-size curves, etc.), but could help.

2.3 Atomic modification operations

There exist four atomic operations that we can per-
form in an n-G-map G = (D,³0, . . . , ³n). Each of
this operation will have a potential impact on the ge-
ometrical classification.

Dart creation The first operation consists in adding
a new dart d in D. For all i ∈ [[0;n]], we have d³i = d,
gi(d) = ∅ and e(d) = (0, 0) in 2D and (0, 0, 0) in 3D.
In other words, d is totally unconnected to the other
darts.

Dart removal Removing a dart d from D, will have
an impact on the mapping functions {³i}i=0..n. First
of all, for all i ∈ [[0;n]], the dart that is i-linked to d be-
comes i-free. Second, as G remains an n-G-map after
removing d, the second condition of Def. 2.1 induces
that some other darts will be i-free after removing d.
For instance, removing a dart d from a 2-G-map im-
plies that d³2 will become 2-free, but also the darts
d³0 and d³02.



Dart unsewing We i-unsew a dart d when we set
d³i = d. Like for the dart removal, as G remains
an n-G-map after i-unsewing d, the second condition
of Def. 2.1 implies that other darts are i-free after i-
unsewing d.

Dart sewing If we consider a couple of i-free darts
(d, d′) ∈ D×D, then i-sewing d and d′ means to have
d³i = d′. The first condition of Def. 2.1 implies that
d′³i = d and the second condition implies that some
other links are created.

d d'

d d'

Figure 4: A 2-G-map is classified onto a geometric
model. On the top, darts of 0-cells that are classified
on geometric points are colored in red, while those
classified on curves are colored in green. On the bot-
tom, darts d and d′ are 2-sewed and their 0-cells are
fused.

Sewing darts has a very strong impact on functions gci
and e too. Equations 3 and 5 enforces those functions
to return the same value for darts that belongs to same
cells. For instance, sewing two darts d and d′ by ³2

in Figure 4 merge the cells <�³0> (d) and <�³0> (d′)
into a single one. It has an impact both on functions
e and gc0. Both function gave different values before
sewing for the darts of cells <�³0> (d) and <�³0> (d′).
After the sewing operations, all those darts belongs to
the same 0-cell. And so functions e and gc0 must give
the same values for those darts now.

Ensuring the consistency of functions gci and e when
sewing operations are performed is automatically done
by providing merging rules that depends on the in-
trinsic semantics of gci and e. We apply the following
rules. When merging two i-cells c1i and c2i to create
the cell cfi , then with d ∈ c1i and d′ ∈ c2i , we have:

• If gci(d) = gci(d
′) then for all d” ∈ cfi , gci(d”) =

gci(d) and e(d”) is the projection of e(d)+e(d′)
2

on
the geometrical entity gci(d);

• If dim(gci(d)) < dim(gci(d
′)) then for all d” ∈

cfi , gci(d”) = gci(d) and e(d”) = e(d);

• If dim(gci(d)) > dim(gci(d
′)) then for all d” ∈

cfi , gci(d”) = gci(d
′) and e(d”) = e(d′).

Otherwise it means that the two i-cells are classified
on distinct geometrical entities of same dimension and
the sewing operations is so impossible.

3. HEXAHEDRAL BLOCKING
OPERATIONS

The block structure that we handle is full-hexahedral.
As a consequence, updating the block structure con-
sists in modifying the topology and geometry of a hex-
ahedral mesh. We consider here two type of opera-
tions, which are sheet removal and sheet insertion [27].
In this section, we present each operation, the defini-
tion in the n-G-map model, and the corresponding
pseudo-code algorithm. We begin with the sheet se-
lection which gives us all the cells that belongs to a
sheet.

3.1 Sheet selection

We equally consider a 2D quad block structure or a
3D hexahedral block structure. We define a sheet S,
or layer of cells, as a subset of cells (quads in 2D, hexes
in 3D). Starting from an edge e of the mesh, we define
Ee as being the smallest subset of E that verifies:

e ∈ Ee and ∀ei ∈ Ee ⇒ E//
ei ¦ Ee,

with E
//
ei the set of edges opposed to ei in the cells that

are incident to ei. The sheet SH is the set of cells that
are incident to an edge of Ee at least. Examples of 3D
sheets are given on Figure 5 where we can see three
types of sheets: in (a), a simple sheet is depicted; in
(b) the sheet intersects itself along a complete chord of
hexahedral cells; in (c), the sheet touches itself along
several faces. Second and third sheets are respectively
qualified as being self-intersecting and self-touching.

(a) (b)

Figure 5: Example of 3D sheets in a hexahedral mesh.
In (a), the full mesh, in (b) three sheets are repre-
sented: a regular sheet (yellow), a self intersecting
sheet (red) and a self-touching sheet (green).



(a) (b) (c)

Figure 6: Building opposite sheet dart set Sd (see Al-
gorithm 1). Starting from a first marked dart (in red)
the front F is propagated via the alpha-links described
lines 5,6 and 8 and the darts are then added to Sd. (a,
b and c) represent Sd after several iterations.

In the n-G-map model, the edge selection process con-
sists in picking a dart d, that defines the edge <�³1>(d)
and then the set of edges that are topologically ”op-
posite” to <�³1>(d). The expected set of darts, called
Sd is given by Definition 3.1. This set of dart consists
in a specific orbit where all the darts of an edge are
reached, using mappings ³0, ³2 in 2D and mappings
³0, ³2, ³3 in 3D, and mapping ³(n−1)...0...(n−1) allows
us to jump from an edge to another one.

Definition 3.1 (Opposite sheet dart set) Let
G = (D,³0, . . . , ³n) be a structured n-G-map, with
n = 2 or 3, and d ∈ D, the opposite sheet dart set de-
fined by d is the orbit < �³n(n−1)...0...(n−1), ³0, ³2>(d).

In this definition and in the remainder, all the n-cells
of a structured n-G-map are quadrilaterals for n = 2
and hexahedra for n = 3. The whole set of darts that
belongs to the n-cells of the sheet expanded from dart
d is given by getting the n-cells of the darts that belong
to Sd. Starting from a dart d, it indicates in 2D that
dart d³2101 belongs to the sheet set too. In 3D, it is the
mapping ³321012 that allows us to reach an opposite
edge. Algorithm 1 gives us a naive but straightforward
implementation to build the set of darts Sd both in 2D
and 3D.

Algorithm 1: Opposite Sheet dart set

Data: A structured n-G-map
G = (D,³0, . . . , ³n) and a dart d ∈ D

Result: Sd a set of darts
1 F ← {d};
2 while F ̸= ∅ do
3 di ← F.first(); // Pop up the head of F ;
4 if di ̸∈ Sd then Sd ← Sd + {di};
5 if di³0 ̸∈ Sd then F ← F + {di³0};
6 if di³2 ̸∈ Sd then F ← F + {di³2};
7 if di³n(n−1)...0...(n−1) ̸∈ Sd then
8 F ← F + {di³n(n−1)...0...(n−1)};
9 end

10 end

3.2 Sheet collapse

Collapsing a sheet consists in removing it entirely from
the block structure. Figure 7 illustrates the overall
procedure in a simple case where the sheet represented
by red quadrilateral faces in Fig. 7-a will be totally
removed in Fig. 7-f. We define the resulting n-G-map
as follows:

Definition 3.2 (Sheet collapse) Let G =
(D,³0, . . . , ³n) be a structured n-G-map, with
n = 2 or 3, d ∈ D, and Sd, the the opposite sheet dart
set defined by d. Collapsing the sheet defined from d
gives the n-G-map G′ = (D′, ³′

0, . . . , ³
′
n) such that:

1. D′ = D− <�³n>(Sd),

2. ∀i ∈ [[0;n− 1]], ∀d′ ∈ D′, d′³′
i = d′³i,

3. ∀d′ ∈ D′, d′³′
n =

�
d′³n if d′³n ̸∈<�³n>(Sd),

dk³n otherwise,

with
dk = d′(³n(n−1)..0..(n−1))

k

and k the smallest positive integer such that

d′(³n(n−1)..0..(n−1))
k³n ̸∈<�³n>(Sd).

This definition deserves some comments. Item 1 gives
the set of darts composing the new n-G-map as being
the initial darts without the darts of <�³n>(Sd) as de-
fined by Definition 3.1. Item 2 indicates that mappings
³0 to ³n−1 are unchanged. Only the mapping ³n is
modified for the darts that belong to D− <�³n> (Sd)
and that are n-linked to a dart of < �³n > (Sd) (see
Fig. 7). After the collapse, such darts are n-linked to
the first dart that do not belong to <�³n> (Sd) and
that we can reach by applying a composition of map-
pings (³n(n−1)..0..(n−1))

k³n with k > 0. This com-
position of mappings is mandatory to collapse self-
touching sheets. Let us note that the sheet to collapse
can be a boundary sheet (see Figure 8-a). In this case,
the dart reached by applying (³n(n−1)..0..(n−1))

k³n on
a dart d is d itself. It is not an issue from a topological
point of view but raises some concerns for the geome-
try preservation. It should require a careful update of
the dart attribute.

In order to avoid a specific case to handle attribute
when we collapse a boundary sheet, the algorithm we
develop follows a two-stage approach after initializa-
tion phase, shown in Algorithm 2:

• Initialization - We first define all the darts that
will be used in the collapse; Line 1, we get the op-
posite darts in green in Fig. 7. From lines 6 to 10,
we mark the darts of the n-cells that are in the
sheet. Then we retrieve the red darts by applying



(a) (b) (c)

(d) (e) (f)

Figure 7: Darts of Sd are colored in green then ex-
tended with red darts to get all the darts of <�³2>(Sd)
in (a); From this set of darts, we can reach blue darts
highlighted in (b) using mapping ³2; Then green darts
are removed from the G-map in order to free red dart
of ³1 links in (c); The ³1 link is recreated between
opposite red darts in (d); Red darts are the removed
in (e) which free ³2 of blue darts that are sewed to the
opposite dart in (f).

³1 on green darts and we store the opposite red
darts in the 1-cell. From the red darts, we get the
blue ones in Fig. 7-b in the neighbor n-cell by ap-
plying ³2 in 2D or ³232 in 3D and store the oppo-
site blue dart by applying (³n(n−1)..0..(n−1))

k³n)
until reaching an unmarked dart in the sheet.
This corresponds to the item 3 of Definition 3.2
in lines 12 to 19.

• Phase (1) - Then starts the first stage of the
collapse operation. We first remove darts of the
opposite sheet darts (i.e. green darts) as shown in
Fig. 7-c. This free ³1 link of remaining red darts
(line 20). We can now 1-sew opposite red darts
and thus create a n-cell in line 21 (in Fig. 7-d).

• Phase (2) - The second collapse stage starts by
removing n-cells containing red darts in Fig. 7-e.
With this step we verify item 1 of Definition 3.2
at line 22. As we have removed all darts in the
sheet to collapse, blue darts are n-free. The last
step consist in sewing them to their opposite blue
darts (lines 23) to get the result shown in Fig. 7-f.

For the whole duration of the algorithm the only mod-
ifications on links of darts in the n-G-map not in the
sheet to collapse are n-links of darts neighbors of the
sheet. This verifies the item 2 of Definition 3.2.

This two-stage approach is designed to handle partic-
ular cases of sheet configurations as shown in Fig. 8:
self-intersecting sheets in (a), self-touching sheets in
(b) and boundary sheets in (c). Self-intersecting and

Algorithm 2: Sheet Collapse

Data: n-G-map H = (D,³0, . . . , ³n), a dart
d ∈ D

1 Sd ← sheetSelection(d) ; /* Algorithm 1 */

2 in sheet(x) : {d ∈ D} → {false, true};
3 ∀d ∈ D, in sheet(d)← false;
4 collapse← ∅;
5 to collapse(x) : {d ∈ D} → {d′ ∈ D};
6 for d ∈ Sd do
7 in sheet(<�³n>(d))← true;
8 collapse← collapse+ {d³1};
9 to collapse(d³1)← d³01;

10 end
11 sew ← ∅; to sew(x) : {d ∈ D} → {d′ ∈ D};
12 for dc ∈ collapse do
13 dX ← dc³X ; //X = 232 in 3D, X = 2 in 2D;
14 if dX /∈ collapse then
15 sew ← sew + {dX}; k ← 1;

16 while in sheet(dX(³n(n−1)..0..(n−1))
k³n)

do k ← k + 1;

17 to sew(dX)← dX(³n(n−1)..0..(n−1))
k³n);

18 end

19 end
20 for d ∈ Sd do remove(d);
21 for dc ∈ collapse do 1-sew(dc, to collapse(dc));
22 for dc ∈ collapse do remove(<�³n>(dc));
23 for dc ∈ sew do n-sew(ds, to sew(ds));

self-touching sheets configurations are handled in the
initialization phase. Line 14 ensures that no inner red
darts is taken as blue dart and line 16 ensure that
blue darts are getting the opposite one through multi-
ple layers of self-touching sheet. The definition of the
sewing operation coupled with the merging rules for
functions gci and e (Section 2.3) ensures the geometry
modification. In particular, we don’t loose lower di-
mension geometric entities and thus allows us to han-
dle the boundary collapse case as shown in Fig. 8-c
where the red darts sewing snaps the right side on the
left boundary.

We can apply Algorithm 2 to collapse sheet in 3-G-
map in Fig. 9. The only change is in line 13 when we
want to get the dart in neighbor n-cell. We define X
where X = 2 in 2D and X = 232 in 3D and so we
apply ³X , i.e. ³2 or ³232. This allow us to get the
blue darts in Fig. 9-b in 3D the same way as in 2D.

3.3 Sheet insertion

Sheet insertion is much more complex to define than
sheet collapse. The traditional way to insert sheets is
to perform a pillowing operation [27]. After selecting
a manifold connected set of n-cells P , called a pillow
set, the pillowing operation consists in inserting a new



(a) (b) (c)

Figure 8: The four major steps of sheet collapse for self-intersecting sheets (a), self-touching sheets (b) and boundary
sheets (c). On the top left, we define the darts to remove (green, red) and to collapse (blue); on the top right, we
remove green darts; on the bottom left, we sew red darts and on the bottom right, we eventually sew blue darts.

(a) (b)

(c) (d)

(e) (f)

Figure 9: A close up view of a sheet collapse opera-
tion in 3D, following the same steps as Fig. 7.

(a) (b)

Figure 10: Example of pillowing operation where the
red blocks are selected in (a). The pillowing operation
isolates those two blocks from the other blocks and
inserts a complete sheet in yellow (b).

layer of n-cells, i.e. a pillow, that surrounds P and iso-
late it from the remainder of the block structure (see
Fig. 10). Having a set of hexahedral elements as an
input does not allow us to insert self-intersecting and
self-touching sheets. To this end, we propose to select
a connected set of (n−1)-cells, or hyperplane, that ver-
ify several conditions. To express those conditions, we
first introduce the ghost layered n-G-map. By analogy
with ghost layer of cells used in HPC simulation for
duplicating boundary cells across the computational
units, thus avoiding useless interprocess communica-
tions, we enrich an hexahedral n-G-map with extra
darts on the boundary. Those darts allow us to avoid
dealing with particular cases for boundary elements.

Definition 3.3 (ghosted n-G-map) Let
G = (D,³0, . . . , ³n) be a structured n-G-map,
with n = 2 or 3 and ∂nD be the set of n-free darts of
G. Let {fi : ∂n → Di}i∈[[1;n]] be n mapping functions
such that

Di ∩ ∂nD = ∅ and Di ∩Dj = ∅, ∀(i, j) ∈ [[1;n]]2

with i ̸= j. The ghosted n-G-map of G, noted Gg is
the n-G-map (Dg, ³g

0, . . . , ³
g
n) such that:

1. Dg = D +D1 + . . .+Dn,

2. ∀d ∈ D, ∀i ∈ [[0;n− 1]], d³g
i = d³i,



3. ∀d ∈ Dg, d³g
n =





d³n if d ∈ D − ∂nD,

dfn if d ∈ ∂nD,

d if d ∈ fi(∂nD), i < n

4. ∀d ∈ ∂nD, ∀i ∈ [[1;n− 1]], dfi³
g
i = dfi+1,

5. ∀d ∈ f1(∂nD), d³g
n = d′, with d′ ∈ ∂nD and

∃k > 0/d(³g
n−1³

g
n)

k³g
n−1 = d′

The ghosted n-G-map Gg enriches the n-G-map G by
adding a pillow layer of partial n-cells around G. Fig-
ure 13.(b) illustrates the set of darts that has been
added. For each boundary dart d of G, two darts d1
and d2 are added such that d1 = d³2 and d2 = d1³1

(items 1, 2, 3 and 4). Item 5 ensures to zip the ver-
tices containing new darts in 2D (and edges in 3D).
We can now define the conditions that a connected set
of (n−1)-cells must verify in order to be used for sheet
insertion.

Definition 3.4 (admissible hyperplane) Let G =
(D,³0, . . . , ³n) be a structured n-G-map, with n = 2
or 3 and H a subset of D. Let Gg = (Dg, ³g

0, . . . , ³
g
n)

be the ghost layered n-G-map of G. Then H defines
an admissible hyperplane in G if and only if:

1. d ∈ H ⇒<³0, . . . , ³n−2>(d) ¢ H,

2. ∀d ∈ H, | < �³g
n−2>d ∩H| = 2 or 4

3. ∀d ∈ H, | < �³g
n−2 > d ∩ H| = 2 ⇒ | < �³g

n−1 >
d ∩H| = 0.

The first item ensures that if a dart of an half-edge in
2D, or an half-face in 3D, is in H then all the darts
of the whole half-edge in 2D, respectively half-face in
3D, are in H. By half, we mean here a ”side”, i.e
an edge seen from a face in 2D and a face seen from
a hex in 3D. Fig. 11(a) and 11(b) illustrate it in 2D:
the darts of four ”half”-edges are selected. The second
item indicates that around a vertex in 2D, respectively
an edge in 3D, the hyperplane can intersect at most

once. If | < �³g
n−2>d ∩ H| = 2, it does not intersect at

this (n− 2)-cell. If | < �³g
n−2>d ∩ H| = 4, it intersects

at this (n−2)-cell. It is the case for Figures 11.(a) and
11.(b) but not for Figures 11.(c) and (d). The last item
is introduced to avoid the particular case where two
half-cells would have been selected while belonging to
the same cell (see Fig. 11.(d)).

Let us underline that by limiting | < �³g
n−2> d ∩ H|

to 4 in condition 2 of Def. 3.4, we only consider in-
tersection of four (n− 1)-cells that will create a single
quad in 2D or a hexahedron in 3D at the intersection.
An admissible hyperplane H in an n-G-map H is de-
fined using the ghost extension of H. Definitions 3.5

(a) (b)

(c) (d)

Figure 11: Examples of 2D admissible hyperplanes
in (a) and (b) and non admissible ones in (c) and (d).

to 3.6 gives us core notions to formally define the sheet
insertion process in Definition 3.8 and the correspond-
ing algorithm in Algorithm 3. First of all, to perform
sheet insertion, we extend the set of darts of H into
the extended map.

Definition 3.5 (ghosted admissible hyperplane)
Let G = (D,³0, . . . , ³n) be a structured n-G-map,
with n = 2 or 3 and H an admissible hyperplane in H.
We extend H into the ghosted n-G-map Gg as follows:
(1) Hg = H on D; (2) ∀d ∈ Hg, if there exists

d′ ∈<�³g
0>(d) such that d′ ∈¢ H, then d ∈¢ Hg.

The second property of Def. 3.5 ensures that if a dart
d belongs to the hyperplane, then all the darts of the
vertex containing d are also in the hyperplane. It give
us a homogeneous configuration for applying the same
pattern to every dart of Hg. We have one pattern
in 2D and another one in 3D (see Fig. 12). The two
following definitions formally introduce those patterns.

Definition 3.6 (2D Insertion Pattern) We de-
fine P2 = {d0, . . . , d5} the pattern made of 6 darts
such that all those darts are 0, 1 and 2-free but
d1 = d0³1,d2 = d0³10, d3 = d0³12, d4 = d0³102 and
d5 = d0³101 (see Figure 12-a).

Definition 3.7 (3D Insertion Pattern) We de-
fine P3 = {d0, . . . , d11} the pattern made of 12 darts
such that all those darts are 0, 1, 2 and 3-free but
d11 = d0³21012, d1 = d0³2, d2 = d0³21, d3 = d0³210,
d4 = d0³2101, d5 = d0³2131, d6 = d0³213,
d7 = d0³2103, d8 = d0³21013, d9 = d0³2132 and
d10 = d0³21032 (see Figure 12-b and 17.a).

We can now formally define the sheet insertion oper-
ation. In the following, we note p(d) the set of darts



(a) (b)

(c)

Figure 12: Insertion patterns in 2D (a) and 3D (b).
For the red dart, we insert a configuration of 6 darts in
2D and 12 in 3D (with ³3 links). (c) the 3D pattern
where the ³0 links to darts spawned by other marked
darts are established based on d³0d (³1 respectively).

that corresponds to the pattern Pn for dart d. The
notation p(d).f gives access to the first dart of Pn,
p(d).ℓ gives access to the last dart of Pn and pi(d)
gives access to the ith dart.

Definition 3.8 (Sheet insertion) Let G =
(D,³0, . . . , ³n) be a structured n-G-map, with n = 2
or 3, and H and admissible hyperplane in G. The
insertion of the sheet defined by H is the n-G-map
G′ = (D′, ³′

0, . . . , ³
′
n) such that:

1. D′ = D + {p(d)}d∈H,

2. ∀i ∈ [[0;n− 1]], ∀d ∈ D, d³′
i = d³i,

3. ∀d ∈ D′,

d³′

n =





d³n if d ∈ D− < �³n−1 > (Hg)

p(d).f if d ∈ Hg,

p(d′).ℓ if d′ ∈ Hg ' d³n = d′.

4. ∀d ∈ {p(d)}d∈Hg , ∃k1 > 0/d(³′
n−1³

′
n)

k1 = d and
∃k2 > 0/d(³′

n−2³
′
n−1)

k2 = d.

In order to try and explain this definition, let us con-
sider the 2D case shown on Figure 13. Starting from
the hyperplane H (red darts) given as an input in
Fig. 13.a, we show the ghost layer extension in (b)
and the ghosted hyperplane Hg. Then for each dart

of Hg, we show the inserted 2D pattern (see Def. 3.6)
in Fig. 13.c. We have here all the darts of D′ (item 1
of Def. 3.8). Item 2 indicates that we preserve all the
³i link for the darts of G, for all i ∈ [[0;n− 1]].

The third item indicate that we also preserve ³2 links
for the darts that are not involved in the sheet inser-
tion process (those that are not connected to a dart
of Hg). We also reconnect the inserted patterns via
p(d).ℓ and p(d).f (see Fig. 13.d). As G′ is a 2-G-map,
some ³0 link are implicitly performed to ensure that
³02 is an involution (see Fig. 13.e).

The fourth item close some open cells. In 2D the
darts p3(d) and p4(d) are 1-linked with the first dart
1-free m of their orbits <³1, ³2 > (d), d ̸= m (see
Fig. 13.d). (around vertex in 2D and around edge in
3D). It gives us the result of Fig. 13.e. It remains then
to remove4 some flat or compressed (n−1)-cells to get
from Fig. 13.e to Fig. 13.f . In fact, Definition 3.8 al-
lows us to define the result of Fig. 13.f without the
ghost darts.

Algorithm 3: n-Insertion

Data: A n-G-map H = (D,³0, . . . , ³n), a set of
selected darts De

1 Add a ghost-layer g on the boundary of H;
2 De ← De+ darts selected in g (see Def. 3.5) ;
/* Fig. 13.(b) */

3 Memorise ³p
n, ∀d ∈ De ;

4 n− unsew all darts ∀d ∈ De ;
5 Generate local nD-pattern ∀d ∈ De;
/* Fig. 3.6 Fig. 3.7, Fig. 13.(c) */

6 Link patterns ;
/* Fig. 13.(d)-(e) */

7 Collapse compressed n-cells ;
8 Remove g ;
/* Fig. 13.(f) */

From Def. 3.8, we derive the Algorithm 3 that de-
fines the sheet insertion both 2 and 3D. Only the link
stage differs between 2D and 3D (line 6). We keep
using Fig. 13 to explain the algorithm. Given a se-
lection set De, that is an admissible hyperplane (see
Def. 3.4), we first insert a ghost layer (line 1), as de-
fined in Def. 3.3, to get from Fig. 13.a to Fig. 13.b. To
ease the final suppression of the ghost layer, we mark
the dart of a pattern generated for the ghost layer as
to be removed later. The usage of the ghost layers
and the ghosted hyperplane (line 2) allows us to write
a generic algorithm without having to consider specific
cases for boundary darts.

Note that unlike Def. 3.8, we incrementally update

4We do not formally define this operation, which is quite
general, for a lack of space.



(a) (b) (c)

(d) (e) (f)

Figure 13: Pipeline of the 2-Insertion for selected darts in red ( see Algorithm 3). Links added are in pink (a)
Selection in red (b) Add the ghost-layer in blue, extend the selection in red with darts of ghost layer (c) Memorize
³p
n, 2 − unsew darts selected (d) 2-link p(d).ℓ and p(d).f (e) 0-link p(d).f ,p(d).ℓ and 1-link p3, p4 (f)

Result with collapsed 2-compressed faces and removed ghost layer.

(a) (b)

Figure 14: (a) Marked darts; (b) after an insertion
operation and collapse of the central inserted face (see
Fig. 15).

the n-G-map in the algorithm5. So we store the initial
function ³n, noted ³p

n,to be used later to insert the
patterns (line 3). After that, we unsew all the darts of
De for ³n. Then the pattern is inserted for every dart
d ∈ De but not n-sew to the initial n-G-map already
(see Fig. 13.c). Line 6 of Algo. 3 differs in 2D and 3D.
It corresponds to the fourth item of Def. 3.8. We give
some details about their implementation afterward.

At line 7, we collapse compressed n-
cells. The 2-insertion pattern, given
in Def. 3.6 generates compressed 2-
cells (see Fig. 16). We get the same
kind of compressed 3-cells in 3D (see
on the right). In both dimension,
we detect such cells as they own at
least one dart d such that d³0101 =

5A side effect is that n-G-map properties are not neces-
sarily verified during the algorithm, but just at the end.

d. Once detected, we remove every
compressed n cell. In 2D, a compressed 2-cell C2. In
3D, a compressed 3-cell C3 are removed and we 3-sew
³23(d) with ³123(d) for d a dart of C3. Finally the
ghost layer is removed (line 8).

Links in 3D, we first 0-link darts {0, 1, 4, 5, 8, 11} of
a selected dart d with darts of p(d³0). For example
dart p0(d) is 0-linked with p0(d³0). After that, darts
p(d).f , p(d).ℓ and p2,3(d) are respectively 1- and 2-
linked with darts of p(d³1) (see Fig. 12.c).

We now link darts p5,9(d) to the pattern spawned
by the marked dart d′ found in the orbit <³2, ³3>
(d), d′ ̸= d. Dart p5(d) is 2-linked to p5(d

′) while p9(d)
is 1-linked to p9(d

′); if there is no such d′ nothing is
done. We then look for the marked dart m (m ̸= d) in
orbit <³2, ³3> (d³p

3). If m is found we 1-link p10(d)
with p9(m) and 2-link p8(d) with p5(m). We proceed
similarly with d′. If there is no such dart m, we are in
the usual case illustrated in Figure 17.e where we form
a flat 3-cell between p(d) and p(d′). Figure 17.f shows
the auto-intersecting case where the patterns open-up
to form an hexahedron (see Fig. 17.a and b).

We then close the orbit <³0, ³1> p10(d) by 1-linking
together the two ³1-free darts f and f ′, and we 2-
link f³21 and f ′³21 which closes the flat 3-cells and
the hexahedra. After the link done in n-D we have to
remove the compressed n-cell; in 3D, we remove the
compressed 3-cells and 3-sew into a chord the hexahe-
dra created on the auto-intersection. For a 3-free dart
d of such an hexahedron, we 3-sew it with the other
3-free dart of <³2, ³3> (d). To address the case of a



(a) (b)

Figure 15: Collapse a 2-cell to generate a self-
touching pattern.

self-touching self-intersection ( see Fig. 14.a ) in 2D,
we define an operation which collapse a 2-cell when
two new 2-cells inserted are 2-linked Fig. 15.b.

Figure 16: Simple insertion of two 2-cell (green).
Darts in pink form three compressed 2-cells.

4. CONCLUSION AND FUTURE
WORKS

In this work, we formally defined and implemented
hexahedral blocking operations using the n-G-map
models. Using this model brings us many benefits:
(1) the ability to get a unique definition in 2D and 3D
for our operations; (2) the clear separation of concerns
between topology and geometry; (3) formal pre- and
post-conditions to validate the block structure during
blocking operations; (4) the usage of orbits, which are
much more general than regular cells.

The first three items were very important to be able
to get a clean implementation of the sheet operations,
especially the sheet insertion. We are able to insert
self-intersecting and self-touching sheets in a robust
manner. The merging rules, introduced to handle ge-
ometrical classification and vertex location, coupled
with the sewing and unsewing operations helped us
guarantee the robustness of the operations.

In order to go further, we expect to allow more com-
plex sheet insertion patterns. We also plan to formally
prove the robustness of our approach by deriving from
the definitions we proposed in Section 3 a system of
rules using, for instance, the Jerboa framework [28])
to ensure our definitions and algorithms are correct.

(a) (b)

(c) (d)

(e)

(f)

Figure 17: Marked darts of a grid mesh along which
an auto-intersected sheet will be inserted (a) and the
resulting mesh with the highlighted sheet (b). In (c) a
more complex case with (d) a cross-section to show the
inserted sheet. The two highlighted 12-darts patterns
spawned by the two red darts (see Fig. 12) form a flat
3-cell in (e) (the same is illustrated in 2D in Figure 16).
In (f) where the sheet auto-intersects the four patterns
form an additional hexahedron 3-cell.
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