
REFINING SIMPLEX POINTS FOR SCALABLE

ESTIMATION OF THE LEBESGUE CONSTANT

Albert Jiménez-Ramos Abel Gargallo-Peiró Xevi Roca

Barcelona Supercomputing Center, Barcelona, Spain. xevi.roca@bsc.es

ABSTRACT

To estimate the Lebesgue constant, we propose a point refinement method on the d-dimensional simplex.
The proposed method features a smooth gradation of the point resolution, neighbor queries based on
neighbor-aware coordinates, and a point refinement that algebraically scales as (d+ 1) d. Remarkably,
by using neighbor-aware coordinates, the point refinement method is ready to automatically stop using a
Lipschitz criterion. For different polynomial degrees and point distributions, we show that our automatic
method efficiently reproduces the literature estimations for the triangle and the tetrahedron. Moreover,
we efficiently estimate the Lebesgue constant in higher dimensions. Accordingly, up to six dimensions, we
conclude that the point refinement method is well-suited to efficiently estimate the Lebesgue constant on
simplices. In perspective, for a given polynomial degree, the proposed point refinement method might be
relevant to optimize a set of simplex points that guarantees a small interpolation error.

Keywords: optimization, simplices, adaptivity, point refinement, Lebesgue constant

1. INTRODUCTION

In approximation theory, one of the key prob-
lems is obtaining a set of simplex points for a
given polynomial degree that guarantees a small
interpolation error. To solve this problem, it is
standard to obtain interpolation points featuring
a small Lebesgue constant. This constant is usu-
ally denoted by Λ and defined as

Λ = max
x∈Kd

Np
∑

i=1

|φi (x)| . (1)

It corresponds to the maximum on the d-
dimensional simplex Kd of the summation of the
absolute values of the lagrangian functions φi as-

sociated with each of the Np interpolation points,
a summation that is Lipschitz because the abso-
lute value terms are Lipschitz, a summation that
is called the Lebesgue function. The maximum
of this function appears in the upper bound of
the interpolation error. Specifically, given a point
distribution, for any function f , the error of the
polynomial interpolation satisfies

‖f − I (f)‖ ≤ (1 + Λ) ‖f − p
?‖ ,

where I (f) denotes the lagrangian interpolator,
and p? the best polynomial approximation. Ac-
cording to the previous inequality, the smaller
the Lebesgue constant, the smaller the bound of
the interpolation error. Moreover, the Lebesgue

constant exclusively depends on the position of
the interpolation points. For instance, equispaced
distribution of points, which lead to larger errors
for higher polynomial degrees, feature large val-
ues of the Lebesgue constant, yet non-uniform
distribution of points, with improved interpo-
lation error, feature sub-optimal values of the
Lebesgue constant [1, 2, 3]. Accordingly, to guar-
antee small interpolation errors, the Lebesgue
constant has to be evaluated and thus, it is key
to estimate on the simplex the maximum of the
Lebesgue function.

To approximate this maximum, it is critical to
automatically generate on the d-dimensional sim-
plex a finite number of sample points – exactly
the goal of this work. Then, for those points, the
approximation is the maximum of the function
evaluations. Note that these sample points are
used to estimate the Lebesgue constant, but they
do not correspond to the interpolation points that
define the lagrangians in Eq. (1). To estimate the
Lebesgue constant, there are general zeroth-order
optimization [4] and Lebesgue-specific [2, 3, 5]
methods. These approaches are mainly differ-
ent because the latter family exploits the struc-
ture of the Lebesgue function. Specifically, be-
cause the Lebesgue function presents several sim-
ilar local maxima, specific-purpose methods suc-
cessfully favor smooth gradations of the point res-
olution.

Nevertheless, both families of methods share
some aspects. They feature the same stopping
criterion, add sample points, and have computa-
tional costs scaling with the number of points. To
stop the maximum approximation process, all the
previous methods terminate after a fixed number
of iterations. The two families of methods gener-
ate sample points statically or dynamically, stati-
cally by adding in one shot a grid of points [5], dy-
namically by adding at each iteration new points
[2, 3, 4]. Because the Lebesgue function is eval-
uated at these sample points, the computational
cost of the maximum estimation scales with the
number of points. This scaling depends on the
method, the polynomial degree, and the simplex
dimension. Next, we see how to automatically
stop the optimization iterations and the need for
neighbor queries and scalable point refinement.

Unfortunately, to automatically stop the op-

timization iterations, neither the general nor
the specific-purpose methods exploit that the
Lebesgue function is Lipschitz. Although all the
previous methods can improve the estimation of
the maximum by increasing the number of itera-
tions, none of them automatically stops when the
optimal of the Lebesgue function is sufficiently
converged. To measure the convergence and stop
the iterations, first- and second-order optimiza-
tion methods check if the approximated candi-
date is sufficiently flat, a successful condition that
can be emulated if the function is Lipschitz —
precisely the case for the Lebesgue function.

To emulate the sufficiently flat condition on a
sample point, it is key to query for point neigh-
bors. Thus, using all these points to evaluate
the function, a local estimation of the Lipschitz
constant is the quotient of the function difference
and the distance of the neighbor points. Then,
using this constant and a flatness tolerance, the
automatic stopping criterion can be incorporated
by only evaluating the function. The specific-
purpose [2, 3] and the general [4] methods in-
corporate neither the stopping criterion nor the
neighbor queries.

To efficiently estimate the Lebesgue constant in
the simplex, it is critical to use scalable point
refinement techniques. In this manner, the
Lebesgue function can be finely sampled only on
the interest regions and coarsely sampled other-
wise, an adaptive strategy that reduces the num-
ber of needed points [2, 3, 4] . As we said before,
the computational cost scales with the number of
points, so the local refinement reduces the cost of
approximating the Lebesgue constant. Unfortu-
nately, when specific-purpose methods refine the
resolution [2, 3, 5], the number of points scales ex-
ponentially with the dimensionality. This expo-
nential scaling is affordable for two and three di-
mensions, but impractical for higher dimensions.
Fortunately, some general methods do not scale
exponentially with the dimension. Specifically,
the DiSimpl [4] method adds only two new points
per point refinement, a refinement scaling that is
well-suited for higher dimensions.

Summarizing, for more than three dimensions,
there is no specific-purpose method to estimate
the Lebesgue constant in the simplex. For two
and three dimensions, the specific-purpose meth-

ods successfully estimate the Lebesgue constant,
but their extensions to arbitrary dimensions do
not scale well with the dimensionality. For arbi-
trary dimensions, optimization methods for gen-
eral functions scale well with the dimensionality,
but they are not specifically devised to estimate
the Lebesgue constant. That is, they do not con-
trol size gradation. Neither general nor specific-
purpose methods feature neighbor queries. Thus,
they are not ready to stop automatically when
the optimal candidate features sufficient flatness.

To address the previous issues, the main contri-
bution of this work is to propose a new specific-
purpose point refinement method. The proposed
method features a smooth gradation of the reso-
lution, neighbor queries based on neighbor-aware
point coordinates, and a point refinement that
scales algebraically with the dimension as (d+1)d.
The main novelty of the proposed smooth point
refinement method is not only that it scales al-
gebraically with the dimension but also that it
is ready to use an automatic Lipschitz stopping
criterion.

The main application of the proposed point re-
finement method is to estimate the Lebesgue
constant on the simplex. Accordingly, the re-
sults check whether the proposed point refine-
ment method reproduces the literature estima-
tions for the triangle and the tetrahedron. More-
over, the results assess whether the method is
well-suited for Lebesgue constant approximations
on the simplex for mid-range dimensionality.

The rest of the paper is organized as follows.
First, in Sect. 2, we review the literature related
to this work. Then, in Sect. 3, we describe the
system of coordinates that allow the neighbor
queries and the core point refinement operations.
Next, in Sect. 4, we detail the adaptive minimiza-
tion method. In Sect. 5, we illustrate with sev-
eral examples the main features of the presented
method. Lastly, in Sect. 6, we present some con-
cluding remarks of this work.

2. RELATED WORK

One of the most immediate estimates of the
Lebesgue constant is given by the maximum value
of the function in an equispaced grid of points.

The size of the sampling determines the accuracy
of the estimation at the expense of increasing the
number of function evaluations. Alternatively, it
is possible to use a sequence of admissible meshes
[6] as sampling points [5]. Admissible meshes
have the property that the maximum value at this
finite set of points bounds the infinity norm of a
polynomial of certain degree overall the simplex.
Unfortunately, none of these methods is adaptive.

An alternative is to estimate the Lebesgue con-
stant by means of a non-deterministic adaptive
method [3]. The method starts with a random
sample of points in the simplex. Next, the func-
tion is evaluated, and the points are sorted in
terms of their function value. Then, new random
samples are generated inside boxes centered at
the points with the largest values. At each itera-
tion, the box edge-length is halved to capture the
maximum more accurately, and thus, a smooth
gradation in the sampling resolution is obtained.
This process is repeated until a prescribed num-
ber of iterations is reached. Finally, the estimate
for the Lebesgue constant is the largest value at
a sample point.

To compute the Lebesgue constant, an alterna-
tive adaptive method [2] named DiTri modifies
the DiRect algorithm [7] to work in triangles. The
method starts with the evaluation of the function
at the centroid of the triangle. Next, the triangle
is subdivided using a quadtree strategy. Then,
the function is evaluated at the centroid of the
three new smaller triangles. At each iteration, the
algorithm chooses a set of potentially optimal tri-
angles to refine in terms of their size and the func-
tion value at their centroid. After the refinement
step, additional elements are refined to ensure a
smooth gradation of the element size. When a
prescribed number of iterations is reached, the
centroid of the triangle with the largest function
value determines an estimation of the Lebesgue
constant. Remarkably, the method exploits the
simplicity of the triangle by uniquely identifying
each element with a triplet of integers, and there-
fore, no explicit mesh connectivity structure is
needed.

Similarly to the DiRect algorithm but based on
simplices, the method named DiSimpl also con-
siders a Lipschitzian optimization approach [4].
DiSimpl is devised to find the global minimum

(a) (b) (c)

Figure 1: Illustration of the method. (a) Initial sampling. (b) Refining the point at the barycenter by
generating six new points (in gray) around it parallel to the triangle edges. (c) To refine the black point
we only evaluate the target function at three new points (in gray).

of an arbitrary function whose domain is a hy-
percube or simplex, and performs particularly
well when the function presents symmetries. Ini-
tially, the search space is decomposed into sim-
plices. Then, two approaches are considered. In
one case, the function is evaluated at the cen-
troid of the simplex, and two hyper-planes cut-
ting the longest edge subdivide the potentially
optimal simplex into three smaller simplices. In
the other case, the function is evaluated at the
vertices of the simplex, and one hyper-plane cut-
ting the longest edge generates two smaller sim-
plices. Interestingly, in any of the approaches,
only two function evaluations per refinement are
performed. Finally, the algorithm stops when a
prescribed number of iterations is reached.

These adaptive methods outperform grid-based
methods but they are not devised to estimate the
Lebesgue constant in the d-dimensional simplex.
The non-deterministic method [3] starts sampling
the function in 10 000 points and generates 10
samples per each 2D box. Thus, to keep the same
resolution we would need 10d/2 points inside the
d-box. Even in 2D, a considerable amount of ap-
proximately 200 000 sample points are required
to accurately estimate the Lebesgue constant,
and we expect a higher value for higher dimen-
sions. Moreover, the non-deterministic nature of
the algorithm makes it difficult to query neighbor
points. The quad-tree subdivision-based method
[2] is devised to estimate the Lebesgue constant
in the triangle. The natural extension of this

method to higher dimensions would subdivide the
d-simplex into 2d subelements and, consequently,
the number of sample points would increase expo-
nentially. Furthermore, the simplicity of the tri-
angle case to uniquely identify each element could
not be exploited. Finally, the DiSimpl algorithm
[4] has not been tested against the Lebesgue func-
tion and the subdivision strategy becomes com-
plicated in high dimensions. Moreover, the re-
sulting mesh is not conformal and the method
does not feature access to neighbor elements.

The method proposed in this work is determin-
istic and exploits a rational barycentric system
of coordinates to uniquely identify each sample
point. The method considers a discrete set of di-
rections to refine which are parallel to the simplex
edges. Every time a point is refined, we evaluate
the function at most (d+ 1) d times. Then, after
refining the potentially optimal points, we gener-
ate new sample points to ensure a smooth gra-
dation of the sampling resolution. Moreover, the
system of coordinates allows accessing to the ad-
jacent points with no need for storing the neigh-
bor structure, which enables a stopping criterion
based on the sampling density and the local Lip-
schitz constant around the extremum.

3. NEIGHBOR-AWARE
COORDINATES FOR POINT

REFINEMENT

Even though the main application is comput-
ing the maximum of the Lebesgue function, we
present the method in a minimization frame-
work. In Sect. 3.1, we schematically illustrate
the method in 2D. Then, we detail the system of
coordinates in Sect. 3.2, and the core refinement
operations in Sect. 3.3 and Sect. 3.4.

3.1 Outline

To estimate the minimum of the target func-
tion, we propose using neighbor-aware sample
points. Consider the set of sample points shown
in Fig. 1(a) and assume that the point at the
barycenter of the triangle is our minimum can-
didate. To improve the estimation of the mini-
mum, we refine the sampling around it by gener-
ating new sample points parallel to the simplicial
edges, see Fig. 1(b). Analogously, if our next min-
imum candidate is the black point in Fig. 1(b),
we generate new sample points at positions par-
allel to the triangle edges, see Fig. 1(c). How-
ever, we only generate three new points (in gray)
since one of them already exists. Applying suc-
cessively this refinement operation to potentially
optimal points, we expect to finely sample the
target function and find an accurate estimate of
the minimum.

3.2 Neighbor-Aware Coordinates

Since we work with simplicial domains, we exploit
the barycentric coordinates system. More pre-
cisely, we consider an equispaced sampling with
q + 1 points on each edge of the simplex, and we
uniquely determine a sample point x ∈ Kd by a
set of rational barycentric coordinates of the form

x =

(

λ1

2rq
, . . . ,

λd+1

2rq

)

, (2)

with
∑d+1

i=1

λi

2rq
= 1, and non-negative integers r

and λi, i = 1, . . . , d + 1. For each barycentric
coordinate, the numerator indicates the position
on a uniform grid and the denominator represents
the level of refinement on the grid. Thus, the

(a) (b)

Figure 2: For a central point (black dot), sur-
rounding stencil points (black dots) for the refine-
ment directions (gray segments) parallel to the
simplex edges (gray edges) in (a) 2D and (b) 3D.

higher the denominator, the higher the resolution
of the sampling around the point.

Aligned with this system of coordinates, for each
simplicial edge we choose a refinement direction.
Each refinement direction has two possible orien-
tations: forward and backward. Thus, we con-
sider nD = 2nE vectors, where nE is the number
of edges of Kd. Each vector is identified by a
pair of integers (i, j) and is written in rational
barycentric coordinates as

u(i,j) =
1

q
(ei − ej) ,

with i, j = 1, . . . , d + 1, i 6= j, and where the
(d+ 1)-dimensional vector ek is a vector with a
one in the kth position and zeros elsewhere. The
set of direction vectors

U = {u(i,j) for i, j = 1, . . . , d+ 1, i 6= j}

defines a canonical stencil that is used for gen-
erating new sample points. More concretely, we
generate at most (d+ 1) d new sample points per
point refinement. These (d+ 1) d refinement po-
sitions provide a reasonable scaling for medium
dimensionality while sampling sufficiently fine the
neighborhood of the point to refine. In partic-
ular, for the equilateral triangle, the six refine-
ment positions are top-left, top-right, left, right,
bottom-left, bottom-right, see Fig. 2(a), while for
the tetrahedron there are twelve positions, see
Fig. 2(b).

The value r in Eq. (2) is strongly related to the
resolution of the sampling. Without loss of gener-
ality, consider the sample point x =

(

1
2
, 1
2

)

in the

Figure 3: Coordinates of a point of resolution r

and its neighbors.

one-dimensional interval [0, 1], and the direction
vector u(1,2) =

(

1
2
, −1

2

)

. The point

y = x+ u(1,2) =

(

2

2
,
0

2

)

corresponds to the point zero in cartesian coordi-
nates, while the point z = x + 1

2
u(1,2) =

(

3
4
, 1
4

)

is between the points x and y. Thus, scaling the
vector u(1,2) with a factor of the form 2−r, r ≥ 0,
leads to the generation of closer points along the
direction described by the vector u(1,2).

The value of q determines the density of the initial
sampling, see Eq. (2). In practice, we favor set-
ting q equal to one. When q is one, the initial grid
contains only the simplex vertices as sampling
points. That is, the initial number of sampling
points is d + 1, and thus, it scales linearly with
the number of dimensions. Bigger values deter-
mine denser initial samplings that might require
less adaptation iterations, but the initial number
of sampling points scales exponentially with the
number of dimensions. This initial offset might
be reflected in a larger number of final sampling
points required to seek the target function mini-
mum.

We store the points in a hash table built
from the rational coordinates. Hence,

the point
(

λ1

2rq
, . . . ,

λd+1

2rq

)

and the point
(

2kλ1

2r+kq
, . . . ,

2kλd+1

2r+kq

)

are identified as the same

point. Moreover, this system of rational barycen-
tric coordinates allows to easily access to the
neighbor points with no need for storing the
neighbor structure. As depicted in Fig. 3,
coordinates of neighbor points with the same

denominator only differ in one unit. Thus, to
query if a neighbor exists, we simply add one
to one component, subtract one from another
component, and search in the set of points.
Therefore, there is no need for storing explicit
connectivity information.

3.3 Point Refinement

Besides the resolution, it is also useful to clas-
sify the points in terms of the completeness of
the stencil. On the one hand, we say a point x

is incomplete of resolution r if the sample point
x + 2−r

u(i,j) exists, for some u(i,j) ∈ U . Al-
ternatively, this means that at least one point of
the stencil of resolution r centered at x exists.
A sample point x may be incomplete in several
resolutions, but it is for the highest resolution
when the representation of the function around
x is more accurate.

On the other hand, if all the points of the sten-
cil exist, we say this point is complete. More
precisely, a point x is complete of resolution r

if the sample point x + 2−r
u(i,j) exists, for all

u(i,j) ∈ U . Similarly to the incomplete case, the
higher the resolution, the more accurate the rep-
resentation of the function around the point.

We remark that a complete point of resolution r

provides a finer discretization than an incomplete
point of resolution r′ with r′ ≤ r, since the neigh-
borhood is denser and sampled along all the con-
sidered directions. Furthermore, a point may be
complete and incomplete at the same time both
providing meaningful information. For instance,
consider a complete point of resolution r which
is also incomplete of resolution r + 1. In this
case, not only the neighborhood is fully sampled
at resolution r, but additional partial information
of the function at resolution r + 1 is known.

Around an incomplete point, this partial informa-
tion has to be enhanced to obtain a more accurate
representation of the target function. Accord-
ingly, we consider an operation that completes
the stencil around an incomplete point. Specif-
ically, to complete an incomplete point of reso-
lution r, we propose to generate all the missing
points of the stencil of resolution r. Thus, the
resulting point is no longer incomplete at level r.

(a) (b)

Figure 4: Completing an incomplete sample
point. An (a) incomplete point of resolution r

becomes (b) complete of resolution r.

(a) (b)

Figure 5: Refining a complete sample point. A
(a) complete point of resolution r becomes (b)
complete of resolution r + 1.

In Fig. 4, for the two-dimensional case, we illus-
trate the completion step for an incomplete point
of resolution r. Since three points of the stencil
exist, Fig. 4(a), we only generate the remaining
missing points to complete the stencil. Once com-
pleted, the point becomes complete of resolution
r, Fig. 4(b).

When the information gathered from a complete
point indicates that there is a minimum nearby,
we should sample the function in a smaller neigh-
borhood to capture it. Thus, we need a point re-
finement operation. Refining a complete point of
resolution r consists in generating all the points
of the stencil of resolution r+1. Thus, the point
becomes complete of resolution r + 1. We high-
light that if the point is incomplete of level r+1,
we only generate those points needed to complete
the stencil of resolution r + 1 and, therefore, we
avoid repeated function evaluation. In Fig. 5, we
illustrate, for the two-dimensional case, the re-
finement of a complete point of resolution r which
is also incomplete of resolution r + 1. Since one

(a) (b)

Figure 6: Smooth gradations of the resolutions.
(a) The gray point is complete of resolution r

(dotted line) and incomplete of resolutions r + 1
(dashed line) and r + 2 (solid line). (b) Smooth
sampling after refining the gray point until it be-
comes complete of resolution r + 1.

point of the stencil of resolution r + 1 exists, see
Fig. 5(a), we generate five points to complete the
stencil. Then, the point becomes complete of res-
olution r + 1, see Fig. 5(b).

3.4 Smooth Gradation

To obtain smooth discretizations of the target
function, we need smooth gradations of the res-
olution of the sampling points. Accordingly, we
only consider sampling configurations where the
resolution between neighbors differs at most by
one unit. More precisely, assume that the finest
complete resolution of a point is r, and the high-
est incomplete resolution is r′, r′ > r. Then, the
sampling is smooth if r′ = r+1. Thus, after com-
pleting or refining a point we check if we have a
smooth gradation of points. If there is a point
such that r′ > r + 1, we smooth it by refining
until resolution r′ − 1.

In Fig. 6(a), we show the sampling after refining
the black point. We observe that the gray point is
complete of resolution r (dotted stencil), but it is
also incomplete of resolutions r+1 (dashed sten-
cil) and r + 2 (solid stencil), and therefore, this
sampling configuration is non-smooth. To obtain
a smooth discretization, we refine the gray point
until it becomes complete of resolution r + 1 by
generating one new point, see Fig. 6(b). Now,
there is a smooth gradation of the point resolu-
tion.

Algorithm 1 Approximating the minimum by
sampling.

Input: Function F , Domain Kd

Output: Minimum x
?, F (x?)

1: function ComputeMinimum(F , Kd)
2: Σ ← InitializeSamplePoints(F , Kd)
3: x

? ← GetMinimum(Σ)
4: while x

? is not a minimum of F do

5: ΣC ← GetCompletePoints(Σ)
6: {xCi

} ← GetPointsToRefine(ΣC)
7: RefinePoints(F , Σ, {xCi

})
8: ΣI ← GetIncompletePoints(Σ)
9: {xIj} ← GetPointsToComplete(ΣI)

10: CompletePoints(F , Σ, {xIj})
11: SmoothSampling(F , Σ)
12: x

? ← GetMinimum(Σ)
13: end while

14: return x
?, F (x?)

15: end function

4. ADAPTIVE POINT REFINEMENT

In this section, we first present our adaptive
method to estimate the minimum of a func-
tion defined in the d-dimensional simplex, see
Sect. 4.1. The rational barycentric coordinate
system described in Sect. 3 is the core of our
method since an explicit point connectivity struc-
ture is not needed. Then, in Sect. 4.2, we detail
the stopping criterion.

4.1 Algorithm

The adaptive point refinement is detailed in Algo-
rithm 1. Given the function to minimize, F , and
the simplicial domain where it is defined, Kd, the
first step of the method is to initialize the set of
sample points denoted as Σ, Line 2. We remark
that function F is an arbitrary target function,
yet in our main application it corresponds to mi-
nus the Lebesgue function. In the second step,
the method gets the first minimum approxima-
tion on the initial sample points, Line 3. This
initialization allows iterating to seek a better ap-
proximation of the minimum until convergence,
Line 4. To improve the minimum approximation,
the iterative process successively refines and com-
pletes the potentially optimal sample points and
smooths the gradation of the sampling point res-

Point resolution

F
u
n
ct
io
n
va
lu
e

Figure 7: Two-dimensional representation of the
complete points in terms of the resolution and
function value. The lower boundary of the convex
hull determines the points to complete.

olution.

First, the method refines the candidate points.
To this end, in Line 5, we retrieve the set of
complete points ΣC and choose the points to re-
fine, Line 6. We determine the points to refine
in terms of their resolution and function value.
More concretely, each complete sample point is
represented in a graph by a dot with the hori-
zontal coordinate given by its resolution, and the
vertical coordinate given by its function value. If
a point x is complete of resolutions r1, . . . , rk,
with r1 < r2 < · · · < rk, then it is represented by
a dot at position (rk, F (x)). In Fig. 7, we show
this graph in an intermediate stage of the algo-
rithm. Similarly to the DiRect algorithm [7], we
choose the points to refine by exploring multiple
Lipschitz constants which, in practice, reduces to
computing the lower boundary of the convex hull
of this point cloud. Then, in Line 7, we refine the
chosen points {xCi

}.

Second, the method completes the incomplete
points. To this end, in Line 8, we obtain the set
of incomplete points ΣI and choose the points
to complete, Line 9. Let x ∈ ΣI be an incom-
plete point of resolutions r1, . . . , rk, with r1 <

r2 < · · · < rk, which is either not complete or
complete with finest resolution r, r < r1. Incom-
plete points provide information about the func-
tion in a local sense since they have been sam-

pled along a particular direction only. In con-
trast, complete points have been sampled along
all the directions and, therefore, global informa-
tion is known. Since we prefer to have first a big
picture of the function landscape before focus-
ing on the higher-resolution detail, we represent
the incomplete point x by a dot with coordinates
(r1, F (x)) instead of (rk, F (x)). Then, we ob-
tain a point cloud similar to the one shown in
Fig. 7. The lower part of the convex hull of this
representation of ΣI determines the points {xIj}
to be completed. Finally, in Line 10, we complete
these points.

Third, the method smooths the gradation of the
sampling point resolution. Specifically, in Line
11, we generate the points needed to ensure the
sampling is smooth, see Sect. 3.4, and retrieve the
minimum point x? from the sampling Σ, Line 12.
These steps are repeated until the point x

? is a
minimum, see Line 4. The details on the stopping
criterion are to be described in Sect. 4.2. Finally,
the algorithm returns the minimum point and the
function value at the minimum, Line 14.

We highlight that the function is evaluated only
in the generation of new sample points, that is, in
the refinement, completion, and smoothing steps.
Further, in the point data structure, we store the
point coordinates and the function value, so it
can be immediately obtained when needed avoid-
ing repeated calculations. To easily access to
the neighbor points, the point data structure also
contains an updated list of the complete and in-
complete resolutions.

4.2 Stopping Criterion

In zeroth-order minimization, it is standard to
stop seeking a minimum when a fixed number of
iterations is reached or when the minimum ap-
proximation is numerically close to a known min-
imum value. In our case, only the value of the
function is known, yet the sample structure al-
lows obtaining an indicator of the flatness of the
function. Accordingly, we can consider a stopping
criterion accounting for the function flatness as
in first- and second-order optimization methods.
The user specifies spatial and functional toler-
ances, and the method automatically stops when
a minimum below these thresholds is found.

The spatial tolerance controls the resolution of
the sampling in the neighborhood of the mini-
mum sample point. Specifically, given a spatial
tolerance δ, there exists a resolution R such that
the distance between a point x and the point
x+ 2−r

u(i,j) is smaller than δ for all r ≥ R and
vector u(i,j) ∈ U . Note that a complete point of
resolution r, r ≥ R, satisfies this criterion.

The functional tolerance ε is used to assess the
flatness of the function around a point in terms
of an estimate of the local Lipschitz constant.
Specifically, consider a complete point x of reso-
lution r, and denote by y the neighbor along the
direction (i, j), y = x + 2−r

u(i,j). We estimate
the Lipschitz constant of resolution r around x

along the direction (i, j) as

K̃(i,j) (x) =
F (x)− F (y)

d (x,y)
,

where d (x,y) = ‖x− y‖2 is the distance be-
tween points x and y. Note that we allow nega-
tive Lipschitz constant estimations. In particular,
K̃(i,j) (x) is negative if and only if F (x) < F (y).
Moreover, the magnitude of the Lipschitz con-
stant is strongly related to the flatness of the
function around x. Thus, the point x is a mini-
mum candidate if K̃(i,j) (x) is negative and

∣

∣

∣
K̃(i,j) (x)

∣

∣

∣
< ε,

for all the directions u(i,j) ∈ U .

In Algorithm 1, at the end of loop, there exists a
sample point x? such that F (x?) ≤ F (y), for all
y ∈ Σ. Then, in Line 4, we check if the point x?

is complete of resolution r, r ≥ R, and the local
estimates of the Lipschitz constant along all the
possible directions for resolution r are less than
ε. If so, we assume that the neighborhood of x?

has been sufficiently sampled and the function
is sufficiently flat there. Thus, the point x

? is
considered an estimate of the function minimum
and the algorithm stops.

Alternatively, it is also possible to limit the num-
ber of iterations. This limit allows the user to
obtain an approximation of the minimum before
the tolerance-based stopping criterion is satisfied.
In both cases, the algorithm returns the sample
point x? with the smallest function value.

Figure 8: Lebesgue function of the warp-and-
blend nodal distribution of polynomial degree 10
in the triangle [3].

5. RESULTS: ESTIMATION OF THE
LEBESGUE CONSTANT

The main application of the method presented in
Sect. 4 is the estimation of the Lebesgue constant
in the d-dimensional simplex. The Lebesgue con-
stant is used to assess the interpolation capabili-
ties of a nodal distribution and is defined as the
maximum of the Lebesgue function, see Eq. (1).
Due to the absolute value, the function is non-
differentiable and, hence, a zeroth-order method
is required to compute the maximum.

In Fig. 8, for a triangle of polynomial degree 10,
we show the Lebesgue function for a warp-and-
blend nodal distribution [3]. Since this nodal
family is symmetric, the Lebesgue function is
symmetric, too. Consequently, it is enough to
find the maximum inside the sextant of the tri-
angle. More precisely, we consider the sym-
metric tile of the d-dimensional simplex deter-
mined by the points with barycentric coordinates
(

λ1, . . . , λd+1
)

,
∑d+1

i=1 λi = 1, such that λi ≥ λj

if i ≥ j.

Equispaced Warp-and-blend
p ΛEq # points ΛWB # points

2 1.67 219 1.67 221
3 2.27 302 2.11 292
4 3.47 280 2.66 283
5 5.45 280 3.12 483
6 8.75 424 3.70 404
7 14.34 356 4.27 378
8 24.01 409 4.96 668
9 40.92 533 5.74 611
10 70.89 397 6.67 685
11 124.53 427 7.90 497
12 221.41 538 9.36 747
13 397.70 422 11.47 735
14 720.69 412 13.97 1142
15 1315.89 599 17.65 885

Table 1: Number of sample points needed to
estimate the Lebesgue constant using the eq-
uispaced distribution, ΛEq, and the warp-and-
blend distribution [3], ΛWB, of polynomial degree
p = 2, . . . , 15 as interpolation set in the triangle.

5.1 Verification in 2D and 3D

To verify the estimated values of the Lebesgue
constant found using our method, we compare
our results with those reported in [3]. In Ta-
ble 1, we report the value of the Lebesgue con-
stant for the equispaced and the warp-and-blend
distribution [3] for several polynomial degrees p,
p = 2, . . . , 15, in the triangle. The initial sam-
pling is composed of the three vertices of the do-
main, q = 1. We set δ = 10−4 and ε = 10−3 for
the stopping criterion, and in all cases the min-
imum is found before the limit of 50 iterations
is reached. We also list the number of sample
points needed. In general, as the polynomial de-
gree increases, also does the number of points.
This is so because, for high polynomial degrees,
the basins of the Lebesgue function that contain
the minima are smaller and deeper and, conse-
quently, more sample points are needed to cap-
ture the minimum with the same precision. In
spite of this fact, we remark that our method is
able to compute a good estimate of the Lebesgue
constant using less than 1200 sample points, yet
the values coincide with those reported in [3] up
to the second decimal place.

Figure 9: Final sampling used to capture the
maximum of the Lebesgue function of the warp-
and-blend nodal distribution of polynomial de-
gree 10 in the triangle [3].

In Fig. 9, we show the final sampling used to
capture the maximum of the Lebesgue function
associated with the warp-and-blend distribution
of polynomial degree 10 represented in Fig. 8.
Since this function features triangle symmetry,
the search space is simply the sextant. We remark
that regions with higher values, blueish areas in
Fig. 8, present a finer sampling in Fig. 9. We
also see that there are three local minima with
similar function values, yet the global minimum
is the one in the interior of the domain.

In Table 2, we report the maximum value and
the number of sample points needed to estimate
the Lebesgue constant for the equispaced and the
warp-and-blend distribution [3] for several poly-
nomial degrees p, p = 2, . . . , 15, in the tetra-
hedron. We use the same initial sampling and
the same tolerances δ = 10−4 and ε = 10−3

for the stopping criterion, and in all cases the
minimum is found before the limit of 50 iter-
ations is reached. As in the two-dimensional
case, more sample points are required to esti-
mate the Lebesgue constant of higher polynomial
degrees. We highlight that the values coincide
with those reported in [3] up to the second dec-
imal place, and only 3519 points are needed to
compute an estimate of the Lebesgue constant
for the warp-and-blend distribution of polynomial
degree 15. In contrast, using an admissible mesh
of 3519(1/3) ≈ 16 points per line, the estimated

Equispaced Warp-and-blend
p ΛEq # points ΛWB # points

2 2.00 398 2.00 398
3 3.02 565 2.93 635
4 4.88 536 4.07 722
5 8.09 581 5.32 990
6 13.66 690 7.01 1040
7 23.38 675 9.21 1671
8 40.55 751 12.54 854
9 71.15 708 17.02 1651
10 126.20 779 24.36 2412
11 225.99 798 36.35 1644
12 408.15 853 54.18 1707
13 742.69 860 84.62 2594
14 1360.49 843 135.75 2635
15 2506.95 926 217.71 3519

Table 2: Number of sample points needed to
estimate the Lebesgue constant using the eq-
uispaced distribution, ΛEq, and the warp-and-
blend distribution [3], ΛWB, of polynomial degree
p = 2, . . . , 15 as interpolation set in the tetrahe-
dron.

value of the Lebesgue constant is 211.07.

5.2 Performance Comparison in 2D

To check the performance, we compare the results
of our method with the results of our implementa-
tion of the DiTri algorithm [2]. For both methods,
we compute in a triangle the Lebesgue constant
for the warp-and-blend symmetric nodal distribu-
tion of polynomial degree 10. To do so, we report,
at the end of each iteration, the number of sam-
ple points and the relative error of the maximum
estimation. In Fig. 10, we show the evolution of
our method, in blue, and the DiTri algorithm, in
red. We observe that both methods show similar
evolution. Moreover, to capture the maximum
with a relative error below 10−4, both methods
need less than 200 sample points. Note that we
do not consider the non-deterministic method [3]
because the initial sampling already consists of
10 000 sample points.

Although the evolution of both methods is similar
in 2D, our method scales better in higher dimen-
sions. We highlight that to refine a point using
our method, we generate at most 6 new sample

0 50 100 150 200 250
Number of points

10−6

10−5

10−4

10−3

10−2

10−1

100
E
st
im

a
ti
o
n
er
ro
r

Our method

DiTri

Figure 10: Error in the estimation of the
Lebesgue constant in terms of the number of sam-
ple points using our method (blue) and DiTri [2]
(red) for the warp-and-blend distribution of poly-
nomial degree 10 in the triangle.

points, while DiTri always requires 3 new sam-
ple points. This difference is almost irrelevant
in 2D and, consequently, the two curves follow
a similar trend. However, this would not be the
case in higher dimensions since we generate at
most (d+ 1) d new sample points per refinement,
while an extension to higher dimensions of DiTri
would require 2d − 1 new sample points. Hence,
for each method, the number of sample points
scales differently with the dimension d, exponen-
tially for an extension to arbitrary dimensions of
DiTri, quadratically for our method.

Moreover, since we only need a point data struc-
ture, the refinement, completion, and smoothing
operations are implemented for arbitrary dimen-
sions and no dimension-specific considerations are
required. Finally, the system of rational barycen-
tric coordinates allows easily accessing the adja-
cent points with no need for storing the neighbor
structure, which enables using a stopping crite-
rion based on the flatness of the function.

5.3 Results in 4D, 5D, and 6D

The values reported in Sect. 5.1 for 2D and 3D
coincide with the ones found in the literature [3].
Thus, we believe that our method is capable of es-
timating the Lebesgue constant accurately using

a moderate amount of sample points. In Table 3,
we show our estimation ΛEq of the Lebesgue con-
stant of the equispaced nodal distribution of poly-
nomial degree p in the d-simplex, p = 6, . . . , 10,
d = 4, . . . , 6. We also show the number of re-
quired sample points. As expected, we observe
that the values increase with the polynomial de-
gree and the dimension.

As an alternative to our method, we can use an
admissible mesh [6] to estimate the Lebesgue con-
stant. Since in dimension d = 4 we provided
an estimate using at most 1572 sample points,
we approximate the Lebesgue constant using an
admissible mesh of approximately 15721/4 points
per line. Analogously, in 5D and 6D, we com-
pute an estimate using approximately 20301/5

and 24661/6 points per line, respectively. In Ta-
ble 3, we denote by Λ̃Eq the maximum function
value at this grid of sample points. We observe
that with the same number of points, our method
captures a higher value and, therefore, it is more
suitable to estimate the Lebesgue constant in
small and moderate dimensionality.

6. CONCLUDING REMARKS

To estimate the Lebesgue constant on the sim-
plex, we have proposed a new specific-purpose
point refinement method. The proposed method
features a smooth gradation of the resolution,
neighbor queries based on neighbor-aware coordi-
nates, and a point refinement that algebraically
scales with dimensionality. Remarkably, by using
neighbor-aware coordinates, the point refinement
method is ready to automatically stop using a
Lipschitz criterion.

In mid-range dimensionality, we conclude that
the point refinement is well-suited to automat-
ically and efficiently estimate the Lebesgue con-
stant on simplices. Specifically, for different poly-
nomial degrees and point distributions, our re-
sults efficiently have reproduced the literature
estimations for the triangle and the tetrahe-
dron. Moreover, we have adaptively estimated
the Lebesgue constant up to six dimensions.

In perspective, for a given polynomial degree, the
proposed point refinement might be relevant to
obtaining a set of simplex points that guarantees

Degree Dimension 4 Dimension 5 Dimension 6

p # points ΛEq Λ̃Eq # points ΛEq Λ̃Eq # points ΛEq Λ̃Eq

6 1126 19.22 19.05 2030 25.49 19.90 1807 32.63 25.45
7 1075 34.08 33.51 1545 46.54 34.43 1790 61.00 50.46
8 1033 60.86 55.75 1578 85.24 65.06 2466 114.13 96.97
9 1175 109.43 90.72 1677 156.62 126.31 2252 213.76 180.24
10 1572 198.08 150.71 1667 288.82 241.51 2381 400.93 323.42

Table 3: Estimation of the Lebesgue constant of the equispaced distribution of polynomial degree p =
6, . . . , 10 in the d-simplex, d = 4, . . . , 6. Number of sample points needed to compute our estimation ΛEq,
and approximation using an admissible mesh Λ̃Eq.

a small interpolation error. That is, it efficiently
estimates the Lebesgue constant, an estimation
that is helpful in two ways. First, to assess the
quality of a given set of interpolation points. Sec-
ond, to evaluate the Lebesgue constant when op-
timizing the interpolation error for the point dis-
tribution as a design variable. We also think the
method might be well-suited to seek optima in the
simplex for functions behaving as the Lebesgue
function.

ACKNOWLEDGMENTS

This project has received funding from the Eu-
ropean Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and in-
novation programme under grant agreement No
715546. This work has also received fund-
ing from the Generalitat de Catalunya un-
der grant number 2017 SGR 1731. The
work of the second author has been par-
tially supported by Grant IJC2020-045140-I from
MCIN/AEI/10.13039/501100011 033 and “Euro-
pean Union NextGenerationEU/PRTR”. The
work of the third author has been partially sup-
ported by the Spanish Ministerio de Economı́a y
Competitividad under the personal grant agree-
ment RYC-2015-01633.

References

[1] Angelos J.R., Kaufman Jr E.H., Henry M.S.,
Lenker T.D. “Optimal nodes for polyno-
mial interpolation.” Approximation theory

VI, vol. 1, 17–20, 1989

[2] Roth M.J. Nodal configurations and Voronoi

tessellations for triangular spectral elements.
Ph.D. thesis, 2005

[3] Warburton T. “An explicit construction of in-
terpolation nodes on the simplex.” Journal of

engineering mathematics, vol. 56, no. 3, 247–
262, 2006

[4] Paulavičius R., Žilinskas J. “Simplicial Lip-
schitz optimization without Lipschitz con-
stant.” Simplicial Global Optimization, pp.
61–86. Springer, 2014

[5] Briani M., Sommariva A., Vianello M. “Com-
puting Fekete and Lebesgue points: simplex,
square, disk.” Journal of Computational and

Applied Mathematics, vol. 236, no. 9, 2477–
2486, 2012

[6] Calvi J.P., Levenberg N. “Uniform approx-
imation by discrete least squares polynomi-
als.” Journal of Approximation Theory, vol.
152, no. 1, 82–100, 2008

[7] Jones D.R., Perttunen C.D., Stuckman B.E.
“Lipschitzian optimization without the Lips-
chitz constant.” Journal of optimization The-

ory and Applications, vol. 79, no. 1, 157–181,
1993

