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ABSTRACT

The conversion of digital models from computer–aided design (CAD) to meshes for computer–aided engineering
(CAE) is a well–known bottleneck, because of the amount of human intervention required in the cumbersome de–
featuring process. This paper introduces the strategy to address this issue by generating the geometric-persistent
volume mesh tailored for the NURBS–enhanced finite element method (NEFEM). The NEFEM has been developed
to decouple the geometry representation and the numerical approximation to address this issue. NEFEM uses CAD
data, the non–uniform rational B–spline (NURBS) that describe the boundary representation (B–rep), to describe the
geometry of the computational domain, and it adopts polynomial shape functions for the numerical approximation
of the unknown solution. The need for de–featuring is avoided by NEFEM, and the geometric error is completely
removed. As a dedicated NEFEM mesh generator is crucial for problems involving complex geometries, this paper
introduces the strategy devised to generate volume meshes tailored for NEFEM solvers. The proposed approach is
based on previously developed NEFEM surface mesh generation method, and new requirements for validity checks
are imposed for the volume mesh generation. A layer of NEFEM volume elements is firstly created, followed by the
interior volume mesh which can be obtained from a standard mesh generator. The resulting mesh maintains the exact
geometric B–rep, and the element sizes are fully dominated by the user–defined spacing and not by the presence of
small geometric features. Examples are presented for an illustrative demonstration of the proposed technique.
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1. INTRODUCTION

Contemporary industrial design requires building com-
puter aided engineering (CAE) models suitable for
simulation. This task is known to be a major bot-
tleneck due to the excessive human intervention re-
quired when processing the upstream computer aided
design (CAD) model[1, 2]. This is mainly due to the
fact that CAD models often contain excessive details,
which prevent generating a mesh that leads to an effi-
cient numerical simulation [3, 4].

In general, the generation of meshes from complex
CAD models largely depends upon the type of sim-
ulation, because of the numerous multiscale features
which may or may not be negligible for the physical

problem of interest. Traditional mesh generators pro-
duce small, often distorted, elements, when the mesh
size desired by the user significantly exceeds the di-
mension of the geometric features. Large research ef-
forts have been made into methods of de–featuring
complex CAD models [5, 6]. However, fully automa-
tised de–featuring has not yet been achieved. Firstly,
it is not always possible to make an accurate predic-
tion of the effect of the de–featuring before actually
performing simulations. Secondly, the de–featuring
requirements differ from problem to problem, due to
their physical nature. For instance, a small feature can
be negligible in a low frequency acoustic analysis, but
could have a significant impact on the same problem
at higher frequencies. Finally, de–featuring also relies



on the desired approximation level, and this is highly
dependent on the perspective of the analyst.

This problem has been addressed by the virtual topol-
ogy concept [7], that provides the capability to mod-
ify topological entities without changing the geome-
try. The strategy is particularly attractive for meth-
ods involving high–order interpolation, where coarse
elements with a high–order polynomial approxima-
tion [8] are preferred to exploit the potential benefits.
Nevertheless, the mesh has to be refined to guaran-
tee accurate and reliable results at features involving
abrupt geometric changes in terms of the normal to
the boundary representation (B–rep) [9].

It is known that the commonly used isoparametric el-
ements discretise the boundary of the computational
domain as an approximation of the true B–rep. The
accurate CAD data, typically the curves and sur-
faces parametrised by non–uniform rational B–splines
(NURBS), are not used during the numerical simula-
tion. This is also true for a simulation with high order
methods. As a result, the polynomial approximated
boundary representation will introduce unavoidable
geometric error, which can be the dominating error
in the simulation [10, 11, 12, 13].

Isogeometric methods replace the approximating poly-
nomial functions with NURBS functions, trying to
make use of the exact representation of the do-
main [14]. However, it requires a fundamental change
in the way CAD models are prepared. Tradition-
ally, geometry modelling kernels embedded in all in-
dustrial CAD platforms [15] focus on the B–rep of a
CAD geometry, while isogeometric methods require a
tri–variate NURBS description of the solid domain.
Furthermore, in isogeometric methods, small elements
are still required when small geometric features are
present in the original CAD model.

The NURBS–enhanced finite element method (NE-
FEM) [16] addresses this problem by a complete
separation of the concepts of geometry and solu-
tion approximation. Within NEFEM, the NURBS
parametrised B–rep, available from the CAD model, is
used only for the geometric description of the domain
boundary, whereas standard polynomials are used for
the approximation of the solution. With such a sep-
aration, the error due to geometric approximation is
completely removed. In addition, the introduced NE-
FEM elements are able to traverse curves and sur-
faces in the B–rep. This implies that the element sizes
are not restricted by small geometric features, but are
entirely controlled by the user specification, and the
need for de–featuring is consequently avoided. Pub-
lished solutions to electromagnetics, fluid dynamics,
solid mechanics and heat transfer problems demon-
strate the potential of the method [17, 18, 19, 20], but
the lack of a dedicated mesh generator for NEFEM

has hampered its application to complex problems.

An automatic NEFEM mesh generator for two–
dimensional simulations was introduced in [21]. The
NEFEM surface mesh generation in three–dimensional
space was recently presented for the first time in [22].
This paper presents the latest efforts made towards
the development of a three–dimensional volume mesh
generator tailored for NEFEM. The boundary discreti-
sation is first performed by remeshing a standard sur-
face mesh, allowing faces traversing multiple surfaces
whilst maintaining the exact B–rep. The generation
process for the NEFEM volume mesh is discussed in
detail, including the new entities that have been de-
vised to store the information required by NEFEM el-
ements. Several illustrative examples will be presented
to show the potential of the proposed technique.

2. NEFEM FUNDAMENTALS

Let us consider an open bounded domain Ω ¢ R
3. The

boundary of the domain, denoted by ∂Ω, is described
by a collection of NURBS curves C := {Ci}

nc

i=1
and

surfaces S := {Sj}
ns

j=1
. In particular, each boundary

curve or surface can be parametrised as

Ci : [0, 1] −→ Ci([0, 1]) ¦ ∂Ω ¢ R
3;

Sj : [0, 1]2 −→ Sj([0, 1]
2) ¦ ∂Ω ¢ R

3.

A standard FEM mesh is typically generated in a
bottom–up manner, following the point, curve, sur-
face and volume hierarchy of the CAD model. In
this process, the geometric entities are associated with
the meshing entities. Specifically, points of the CAD
model define mesh nodes, curves are discretised into
edges, surfaces are discretised into facets such as trian-
gles or quadrilaterals, and volumes are divided into ele-
ments such as tetrahedra, prisms, pyramids or hexahe-
dra. This procedure naturally induces small elements
if the CAD model contains short curves or small sur-
faces. NEFEM is dedicated to lifting the restriction of
the small geometric features inducing small elements,
and a new class of elements is introduced.

2.1 NEFEM rationale

The key idea of NEFEM [16] is the separation of the
geometric approximation and functional approxima-
tion that are tightly coupled in isoparametric finite
elements and isogeometric methods. By decoupling
these two concepts, NEFEM generalises the definition
of a finite element: the geometry is exactly described
by means of the NURBS parametrised B–rep that can
be directly obtained from CAD models, whereas the
functional approximation is defined using polynomials,
as in standard FEM. As a result, the introduced NE-
FEM element requires new quadrature rules to ensure
that the exact B–rep is accounted for by the solver.



In two dimensions, a typical NEFEM element can be
defined as a curved triangle where at least one edge
is geometrically defined as a combination of trimmed
NURBS curves. Similarly, in three dimensions, a typ-
ical NEFEM element can be defined as a tetrahedron
where at least one edge or face is geometrically defined
as a collection of trimmed NURBS curves or surfaces,
respectively. The new concept of element design is il-
lustrated in Figure 1 and a detailed discussion can be
found in [16].

Low-order elements

High-order elements

NURBS-Enhanced elements

Figure 1: Illustration of the generalisation introduced by
the concept of NEFEM elements.

In the illustrative example of Figure 1, it can be ob-
served that the exact B–rep is always preserved by
the corresponding NEFEM element, regardless of the
order of approximation used in the element. In partic-
ular, a NEFEM element with low–order interpolation
nodes is capable of representing a curved boundary.
In addition, Figure 1 also shows that the face of a
NEFEM element can be comprised of a collection of
NURBS surface patches, even with abrupt changes of
the normal within the face.

It is worth noting that NEFEM elements are restricted
to a layer of elements in contact with the boundary of
the domain. The large majority of elements in a NE-
FEM mesh do not have any edge or face on the bound-
ary, and the standard isoparametric FEM approach is
used. This implies that NEFEM elements are only
used near the boundary, and a negligible computa-
tional overhead will be introduced when compared to
the cost of standard finite elements.

2.2 Geometric mapping of NEFEM ele-
ments

In standard FEM, the shape functions and their
derivatives are defined and evaluated at the integra-

tion points in the reference element. This information
is stored and used to compute the elemental matrices
and vectors required by the solver. For each element,
the isoparametric mapping between the reference and
physical element is used.

In NEFEM, the shape functions and the derivatives
are defined and evaluated at the integration points of
each individual element, directly in the physical do-
main, and the elementwise matrices and vectors are
computed in an ad hoc manner. Therefore, the incor-
poration of NEFEM elements into an existing solver
can be easily achieved by creating a new element type
that encloses the CAD data and is accompanied by
tailored quadratures for NEFEM elements.

To facilitate the quadrature scheme for volumetric
NEFEM elements, a particular geometric mapping is
devised to encapsulate the NURBS parametrisation
of the geometric entities. For instance, in three–
dimensional space, a mapping between a polygonal
prism and a NEFEM tetrahedron is defined as

Ψ : R −→ Ωe

(λ, κ, ϑ) �−→ Ψ(λ, κ, ϑ) := (1− ϑ)S(λ, κ) + ϑx4,
(1)

where S(λ, κ) is the parametrisation of the curved
boundary face, which might be piecewise when in-
volving multiple NURBS surfaces, and x4 denotes the
node interior to the domain. This mapping is illus-
trated in Figure 2 for a tetrahedral element with one
face traversing three trimmed NURBS surfaces that
are rendered in distinguished colours.
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Figure 2: Illustration of the NEFEM geometry mapping
for a tetrahedral element with one face defined on three
trimmed NURBS surfaces.

In practice, the piecewise definition of a NEFEM el-
ement face, as the bottom face shown in Figure 2, is
described by a subdivision based on the surfaces. This
leads to a sub–mesh with each constituent cell stick-
ing onto one of the involved surfaces. This elementwise
sub–mesh is further discussed later in Section 3.3.



3. NEFEM SURFACE MESH
GENERATION

In this section, the generation of NEFEM surface mesh
is briefly recalled. In addition, newly developed checks
that are performed to ensure that a valid volume mesh
can be generated from the surface mesh are presented.
Triangle and tetrahedron elements are considered in
this work.

The NEFEM surface mesh is a prerequisite for gener-
ating the volume mesh, as it provides the boundary
discretisation tailored for NEFEM solvers. The sur-
face mesh is desired to satisfy the following require-
ments:

1. The characteristic element size is dominated by
the user–specified spacing, and it is not restricted
by the size of geometric features in the CAD
model;

2. The surface mesh must not introduce geomet-
ric discretisation error as it must encapsulate the
NURBS definition of the geometry;

3. The surface elements should pass visibility checks
to enable the efficient creation of volume elements
avoiding self–intersections.

The first two requirements have been addressed in pre-
vious work [22]. The last requirement is posed to fa-
cilitate the volume mesh generation, and it will be
detailed later in Section 4.3.

3.1 Surface meshing strategy

The NEFEM surface mesh generation starts from an
initial surface mesh obtained by a standard mesh gen-
erator with a user–defined mesh size. Despite that this
initial mesh is likely to contain numerous elements vi-
olating the user–specified spacing, it is required to be
watertight and free of self–intersections. A remeshing
is then performed on the initial surface mesh, with a
dedicated process to allow creating elements traversing
multiple surfaces around geometric features, so that
the element sizes become compliant with the user spec-
ification.

3.2 GS–points

To register the intersection between an element edge
traversing multiple surfaces and a geometric curve, the
so–called geometric supporting points, or GS–points
are introduced. The GS–points are associated with
their parent elements and are used for mesh gener-
ation purposes. It is worth emphasising that they
do not introduce any additional degrees of freedom in
the solver. However, they will be used when devising

piecewise quadratures for numerical integration over
the faces traversing multiple surfaces and the associ-
ated elements.

During the surface mesh generation, GS–points are
typically created using operations such as edge col-
lapse, edge split or edge flip. Besides, the GS–points
can slide along the parent intersection curve, so that
the element could achieve a better quality. In this
paper, a convention is introduced to render all vertex
nodes in black dots, while all GS–points are illustrated
with green dots, as illustrated in Figure 9.

3.3 The sub–mesh

As mentioned in Section 2.2, the sub–mesh is re-
quired for the definition of a surface element or a face
of a volume element that traverses multiple surfaces.
The sub–mesh, along with the GS–points, is used for
quadrature as it naturally forms the integration cells.
The sub–mesh can also be used to represent physi-
cal interfaces inside a NEFEM element [19]. It is
worth noting that an integration cell cannot traverse
surfaces, and an element traversing multiple surfaces
must contain at least two integration cells.

In addition, the sub–mesh also plays an important
role during the NEFEM mesh generation. Operations
like edge split and edge flip are common in a mesh
generation process. Unlike the operations in stan-
dard mesh generators, the sub–mesh is required during
the NEFEM mesh generation because the operations
may involve multiple surfaces and their intersection
curves. For instance, when flipping an edge between
two NURBS–enhanced triangular elements, the subdi-
vision of both elements is necessary for searching the
new diagonal traversing multiple surfaces. In this pro-
cedure, the GS–points also play a role as the nodes for
the sub–mesh of each element.

A typical example of the sub–mesh of a NEFEM sur-
face element is shown in Figure 3. The definition of the
triangular surface element with three nodes x1, x2 and
x3, where edges E(x1,x2) and E(x1,x3) are travers-
ing a NURBS curve, requires the two GS–points, g1

and g2, to register the edge–curve intersections. The
two GS–points and three nodes have defined the ver-
tices for three sub–cells that belong to two different
surfaces.

3.4 Validity check

Validity checks are performed during the creation of
NEFEM surface elements to facilitate the creation of
volume elements in the next stage.

The first check is performed before collapsing an ele-
ment edge that traverses multiple intersection curves
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Figure 3: Sub–mesh of a typical NEFEM surface ele-
ment. Sub–cells belong to different surfaces are filled
with distinguishing colours. The intersection curve is
coloured in blue.

or surfaces. This check is closely related to the vis-
ibility check in Section 4.3 to avoid possible self-
intersection in the volume elements. In addition, a
second check is performed, after having created or up-
dated the NEFEM elements, and this check will also
try to fix self–intersections by curving the sub–edges.

The first check is carried out when trying to create a
new NURBS–enhanced edge. The angles between nor-
mals to the surfaces at each node and each GS–point
are computed and checked, as detailed in Algorithm 1.
As illustrated in Figure 4, a local feature appearing to
be a U–shaped channel involves five surfaces {Si} for
i = 1, . . . , 5. When trying to collapse the short edges
inside the channel, all related surface normals at the
involved nodes of the sub–mesh are compared with
the normal at the target node. The criterion for the
validity check is chosen as

�

ni · nj g −1/2, ⇒ pass;

ni · nj < −1/2, ⇒ fail,
(2)

where ni is the normal to surface Si, and the normals
are computed locally at the corresponding nodes of the
sub–mesh.

Figure 4(b) presents two examples when testing possi-
ble new NURBS–enhanced edges before the edge col-
lapse. The first candidate edge, E(x5,x7), is obtained
from collapsing node x6 to x7, and the normal n3

at the target node x7 is compared with all normals
involved in this collapse, such as n4 at GS–point g2

and n5 at node g5. This case will pass the valid-
ity check. A second option involves the candidate
NURBS–enhanced edge E(x1,x4), the normal n4 at
target node x4 is opposite to n2 at x1. Therefore, the
second configuration will fail the validity check and
thus the collapse of edge E(x2,x4) will be prevented.

In the rare case that a sub–edge intersects with an

Algorithm 1: Validity check routine.

Input: Edge to collapse E(xb,xt), with base
node xb, target node xt

Output: Boolean value isValid

1 Collect the set, St, of all parent surfaces of the
target node;

2 Collect the set, Sc, of all traversed surfaces for
the collapse;

3 for Si ∈ St do

4 if Si /∈ Sc then

5 Remove Si from St;
6 end if

7 end for

8 Identify the involved normals at the target node
Nt;

9 Collect the set, Nc, of all normals at involved
sub–nodes for the collapse;

10 Initialise isValid = true;
11 for ni ∈ Nt do

12 for nj ∈ Nc do

13 if ni · nj < −1/2 then

14 isValid = false;
15 return;

16 end if

17 end for

18 end for

intersection curve, as shown in Figure 5(a), the second
validity check will detect it and fix it by curving the
sub–edge. The intersection between edge E(xa,xb)
and the intersection curve of surface S1 and S3 can
easily be detected by seeding a number of sampling
points along the intersection curve. This type of self-
intersection occurs because surface S3 is trimmed by
a circle. The trimming circle is the image of a circle in
the parameter space of the NURBS surface S3(λ, κ),
as shown in Figure 5(c). A simple fix to this problem
is performed by replacing the straight edge E(xa,xb)
in the parametric space by a cubic curve, as shown

(a) Collapsing scenarios (b) Normals for validity check

Figure 4: Illustration of the validity check at a U–channel
feature. (a) Two edge collapsing scenarios: from x6 to
x7, and from x2 to x4. (b) Proposed new NURBS–
enhanced edges, showing selected normals for validity
checks.



in Figure 5(d). The fixed scenario after the second
validity check is shown in Figure 5(b).

(a) Edge intersecting with curve (b) Fixed by curving the edge

(c) Parameter space of (d) Isoparametric cubic curve

Figure 5: Illustration of the self–intersection fix at the
bottom of a cylindric feature. (a) Edge E(xa,xb) inter-
secting with an intersection curve at the red arrow. (b)
Fixed the intersection by curving E(xa,xb) within sur-
face S3. (c) The parameter space of surface S3 featuring
intersection with the trimming circle. (d) The cubic curve
to fix the intersection.

4. NEFEM VOLUME MESH
GENERATION

This section presents the latest efforts made towards
the generation of NEFEM volume meshes.

According to the geometric entity that is part of the
B–rep, the tetrahedral element that is of interest falls
into one of the two types:

• An element with at least one face located on the
boundary.

• An element with at least one edge but with no
faces located on the boundary.

An element of each type is further classified in terms of
the number of intersection surfaces of the CAD model
that it traverses. Elements with faces or edges not
traversing multiple surfaces are grown using the same
technique available in standard mesh generators. They
are still flagged for the purpose of accounting for the
NURBS boundary representation by the solver. How-
ever, special care must be taken for elements with faces
or edges traversing multiple surfaces.

4.1 Volume meshing strategy

The volume mesh generation starts from a valid NE-
FEM surface mesh which already encapsulates the
GS–points as well as the integration cells.

The strategy for the volume meshing is to first gener-
ate a layer of NURBS–enhanced volume elements that
covers the featured surface. Next, the exterior facets
of the first layer of volume elements are extracted to
form a new surface mesh. This extracted surface mesh
will only contain standard elements, so that it can be
sent to a standard volume mesh generator to obtain
the volume elements of the remaining part of the do-
main. The NEFEM volume mesh is finally achieved by
stitching the NEFEM layer and the standard interior
elements. In this work, the FLITE mesh generator [23]
is used to create standard meshes, and the procedure
is listed in Figure 6.

FLITE

Stitch

Stitch

NEFEM Surface Mesh

NEFEM Volume Layer

Extracted Surface Mesh

Interior Volume Mesh

NEFEM Volume Mesh

Figure 6: NEFEM volume mesh generation procedure.

Remark 1 The stitching of boundary layer mesh and
interior mesh, as discussed in [24, 25], is an established
procedure in standard mesh generation. The presented
strategy is dedicated to generating the geometric-
persistent mesh layer that is valid for NEFEM solvers.
As the interior mesh is generated after the boundary
layer mesh, the stitching of the two meshes is natu-
rally done with merely renumbering the corresponding
nodes.

4.2 Growing volume elements

To guide the growth of volume elements into the three–
dimensional domain, the normal vectors are firstly
computed based on the surface mesh. Unlike standard
triangle elements, a NEFEM triangle element can have
a non-unique definition of its normal as it can traverse



multiple surfaces. Thus, it is not trivial to evaluate
the normal for a face or its edges.

As mentioned in Section 3.3, each integration cell is
associated to a unique parent surface. Therefore, for
each integration cell, the normal vector is unique to
that parent surface, and a smoothed normal can be
obtained at each node of the sub–mesh that may be a
node of the mesh or a GS–point. This also implies that
a sequence of normal vectors can be extracted along an
element edge as it traverses multiple surfaces. Several
smoothing options have been tested, such as surface–
based averaging, weighted averaging and Laplacian. It
was found that the surface–based averaging provides
satisfactory normal vectors in the tested geometries.

The possible choices of the normal to grow a volume
element from a typical NEFEM surface element are
illustrated in Figure 7. The surface element with ver-
tices {xa,xb,xc} traverses surfaces {S1,S4,S7}. The
smoothed normal at GS–points g1 and g2 are shown
in Figure 7(a), the naive normal evaluated using only
the vertices is plotted in Figure 7(b) at the apparent
centroid. In contrast, Figure 7(c) shows the four nor-
mal associated to each integration cell depicted at the
centroid of each integration cell.

(a)

(b) (c)

Figure 7: Choices of normal vectors to grow a tetrahedral
element. (a) Normal vectors at GS–points. (b) Normal
vector at plane element centroid. (c) Normal vectors at
integration cell centroids.

The major process used to grow volume elements
based on the surface mesh is finding a suitable nor-
mal. The first attempt is to loop through all edges in
the surface mesh, and check the dihedral angle θ. A
tetrahedron will be created by linking the two vertices
when θ < 2π/3, closing the two triangles joint by the
edge. In most cases, it is necessary to find a normal on
the edge to create a top node above the edge and try to

link it with all vertices and GS–points of the two trian-
gles sharing the edge. During this linking process, the
self–intersection checks are performed via evaluating
the volume of the newly formed sub–cell tetrahedra.
If a self–intersection is identified, the normal vector is
tuned by scaling. The base point of the normal vector
is changed by sliding along the edge to find another
suitable location that is free from self–intersection.

A typical scenario for volume element growth is illus-
trated in Figure 8. Three surface elements are travers-
ing surfaces S1 and S2 that are rendered in red and
yellow. During an edge-based loop, a suitable normal
vector ng7 is found at GS–point g7 of edge E(x2,x4),
as depicted by Figure 8(a). Two tetrahedral elements,
coloured in blue and green, are grown with the guid-
ance of ng7 , sharing the same new vertex x6, as shown
in Figure 8(b). Other tetrahedra are grown during this
edge-based loop, including the one with a new vertex
x7. A second edge loop will be performed to close the
edges between two grown tetrahedra where the dihe-
dral angles between element faces are checked. In the
scenario presented in Figure 8(c), a new tetrahedron
will be created by simply linking the existing vertices
x6 and x7.

(a)

(b)

(c)

Figure 8: Typical scenario to grow tetrahedral elements.
(a) Normal vectors at GS–point to guide the growth. (b)
Two tetrahedra grown. (c) Other grown tetrahedra, ver-
tices x6 and x7 to be linked to form a new tetrahedron.

As a tetrahedral element is grown based on a sur-
face element, such as shown in Figure 3, it inher-
its the subdivision of the surface element and three
sub–tetrahedra are grown to form the integration cells



for computing quadrature over the NURBS–enhanced
tetrahedron. This can also be viewed as a straight-
forward subdivision of the tetrahedron element with
the guidance of the sub-cells on a traversing face, as
illustrated in Figure 9.

Volume element

Subdivide

Integration cells

Surface element

Grow

Figure 9: Sub–mesh of a typical NEFEM volume element
grown from a NEFEM surface element.

4.3 Self–intersection check

Taking the creation process of triangle to tetrahedron
as the example, the objective is to ensure the top ver-
tex of the tetrahedron is visible to any point in the
base triangle. When the visibility requirement is met,
all ridges of the tetrahedron, excluding the ones corre-
sponding to edges of the base triangle, will be straight,
and this enables an efficient subdivision of the volume
element into volumetric integration cells.

It is worth noting that the visibility requirement is
not mandatory for a valid NEFEM element, a self–
intersecting element can be fixed by curving the in-
terior edges to maintain the validity. However, the
strategy presented here tries to maintain the maxi-
mum number of interior edges as straight with the
objective to accelerate the solver.

At some convex geometric features, special care has to
be taken to ensure the visibility from the top node to
the bottom sub–nodes. The feature of a sharp step in
Figure 10 presents a scenario in which a violation oc-
curs, resulting in a self–intersecting NEFEM volume
element. The volume element shown in Figure 10(a)
is based on the surface element in Figure 10(c), which
traverses surfaces {S1,S2,S3} as well as intersection
curves {C1,C2}, and four GS–points have been in-
cluded. It can be seen that the dihedral angles on
the intersection curves are considerably sharp and in-
clude both convex and concave instances. Besides, sur-
face S2 appears to be a narrow strip folding between

(a) Volume element

(c) Surface element (d) Surface Sub-element

(b) Volume Sub-element

Figure 10: Illustration of visibility issue for a NEFEM
volume element and its base surface element at a step
feature. (a) Volume element based on surface element
in (c). (b) A volume sub–cell based on (d) exhibits self–
intersections within the volume element. (c) Surface el-
ement. (d) A surface sub–cell.

surfaces S1 and S3. A surface integration cell with
nodes {g1,x2, g2}, as shown in Figure 10(d), forms the
bottom face of the volume integration cell illustrated
in Figure 10(b). As highlighted by red dashed lines,
the edges E(x4, g1) and E(x4, g2) penetrate both S1

and S2. In other words, the top node x4 lacks vis-
ibility to the bottom nodes of the sub-mesh g1 and
g2, and results in a self–intersecting subdivision for
the volume element. This self–intersecting volume el-
ement can be fixed by curving the edges E(x4, g1) and
E(x4, g2), and potentially E(x4,x2) and E(x4,x3).

5. EXAMPLES

This section presents some examples to demonstrate
the strategy described in the previous section to gen-
erate NEFEM volume meshes.

5.1 A flat plate with two cylinders

The first example considers a flat plate with two cylin-
ders, as shown in Figure 11. The geometric data is
listed in Table 1. The original FEM mesh, not com-

Table 1: Geometric data of the flat plate with cylinders
model.

Number of NURBS Surfaces 12
Number of NURBS Curves 24
Minimum curve length 0.019
Maximum curve length 2.000

plying with the user–defined spacing, is shown in Fig-



Figure 11: NURBS surfaces in the CAD model of a flat
plate with two cylinders.

ure 12. The NEFEM surface mesh, obtained by using

Figure 12: FEM surface mesh of the flat plate inter-
sected by two cylinders, showing elements not complying
with the user–defined spacing.

the strategy proposed in [22], is generated with a uni-
form mesh size that is independent of the thickness of
the plate and the heights or diameters of the cylinders,
as presented in Figure 13(c). Based on this boundary
discretisation, with the desired element size, the first
layer of NEFEM volume elements is generated with
the strategy described in Section 4, as shown in Fig-
ure 13(d). The volumetric elements are rendered in
green. The interior volumetric elements are gener-
ated based on the extracted exterior faces of the NE-
FEM volume layer and the surface mesh, which form a
standard triangulation, with the Delaunay method for
tetrahedral mesh. For this model, there are 121 tetra-
hedra in the NEFEM volume layer, and 50 815 interior
volumetric elements. As it can be seen in Figure 13(e),
there are much fewer NEFEM volume elements than
the standard elements, thus the computational cost
introduced by the NEFEM elements would have mi-
nor impact to the solver, while the minimum element
size is significantly improved. As it is listed in Table 2,
the minimum element edge length normalised with the
user-specified spacing for NEFEM mesh has increased
more than 10 times. This is considered crucial when
transient simulations using an explicit time marching
are of interest.

(a) NEFEM surface mesh

(b) NEFEM volume layer

(c) NEFEM volume mesh

Figure 13: NEFEM meshing process for the flat plate
intersected by two cylinders. (a) NEFEM surface mesh.
(b) NEFEM volume element layer rendered in green. (c)
Clipped NEFEM volume mesh including the interior vol-
umetric elements.

Table 2: Normalised edge lengths for the flat plate in-
tersected by two cylinders.

Minimum edge length in FEM mesh 0.045
Minimum edge length in NEFEM mesh 0.458
Increase factor 10.18

5.2 A wing with a blunt trailing edge

This example considers the generation of the NEFEM
mesh for a wing with a blunt trailing edge. In this
example, the ability to handle a user–specified non–
uniform mesh spacing is also considered.

The NURBS surfaces defining the wing are presented
in Figure 14 and the geometric data for this model is
summarised in Table 3. A non–uniform mesh spacing
has been specified using two line sources at both the
leading and trailing edges with a stretching ratio equal
to five. Though refinement is introduced by the line
sources, the prescribed mesh size is greater than the
length of the shortest curve. The resulting FEM mesh,
shown in Figure 15, contains numerous small elements



Figure 14: NURBS surfaces in the CAD model of a wing
with blunt trailing edge.

Table 3: Geometric data of the wing model.
Number of NURBS Surfaces 5
Number of NURBS Curves 9
Minimum curve length 7.27
Maximum curve length 1 381.12

Table 4: Normalised edge lengths for the wing.
Minimum edge length in FEM mesh 0.06
Minimum edge length in NEFEM mesh 0.46
Increase factor 7.67

at the blunt trailing edge as well as the wing tip. The

Figure 15: FEM surface mesh of the wing, showing ele-
ments not complying with the user–defined spacing.

NEFEM surface mesh shown in Figure 16(c) has elim-
inated the small elements, where the NURBS volume
layer are created at the blunt trailing edge feature as
presented in Figure 16(d). The number of NURBS–
enhanced tetrahedral elements is 179, while that of the
interior volumetric elements is 1 458 208. From Table 4
it can be seen the normalised minimum edge length in
NEFEM mesh exceeds 7 times compared to the FEM
mesh. This again demonstrates that the NEFEM ele-
ment takes only a negligible portion of the whole mesh,
but can improve the minimum element size to enable
large time–stepping in explicit solvers.

5.3 Falcon aircraft

In this example, a full aircraft model is considered to
demonstrate the capability of handling complex ge-
ometries. A variety of geometric features are present
in the CAD geometry, such as very short curves and
small surfaces, particularly at the wing tips. The char-

(a) NEFEM surface mesh

(b) NEFEM volume layer

(c) NEFEM volume mesh

Figure 16: NEFEM mesh process for the wing with a
blunt trailing edge. (a) NEFEM surface mesh. (b) NE-
FEM volume element layer rendered in green. (c) Clipped
NEFEM volume mesh including the interior volumetric el-
ements.

acteristic thickness of the wing is about 0.2, which is
shorter than the minimum curve length, and this poses
a challenge especially for the surface mesh generation.

The NURBS surfaces of the CAD model are presented
in Figure 17 and the geometric data is summarised
in Table 5. The original FEM mesh, not complying

Figure 17: NURBS surfaces in the CAD model of the
Falcon aircraft.

with the user–defined spacing, is shown in Figure 18.
Despite all surface elements are NURBS–enhanced as
they discretised the complex B–rep, only a few ele-
ments are traversing multiple surfaces. Therefore, the



Table 5: Geometric data of the Falcon model.
Number of NURBS Surfaces 48
Number of NURBS Curves 100
Minimum curve length 0.37
Maximum curve length 10.61

Figure 18: FEM surface mesh of the Falcon, showing
elements not complying with the user–defined spacing.

Table 6: Normalised edge lengths for the Falcon model.
Minimum edge length in FEM mesh 0.06
Minimum edge length in NEFEM mesh 0.27
Increase factor 4.50

first layer of NEFEM volume elements, as it focuses
on the growth of traversing volume element, contains
a small number of tetrahedral elements, as presented
in Figure 19. The total number of tetrahedral elements
in the volume mesh is 229 693, in which the number
of NEFEM tetrahedron involving multiple definition
during integration is 28. In Table 6 it is presented
that the normalised minimum edge length in NEFEM
mesh has improved 4.5 times than the FEM mesh. It
is worth noting that, a very small number of elements
with a spacing well below the user–defined spacing is
enough to make unfeasible the solution of a transient
problem with explicit time marching. Therefore, the
ability to lift this restriction has massive implications
for the solver.

6. CONCLUDING REMARKS

A method dedicated to generating volume meshes tai-
lored for NEFEM has been presented for the first time.
The technique is capable of generating volume meshes
where the exact boundary representation, provided by
the NURBS parametrisation from the CAD model, is
encapsulated in the geometric definition of NEFEM
elements. As a result, the small geometric features
present in the CAD model no longer restrict the el-
ement size in NEFEM meshes. This completely re-
moves the need for the time–consuming de–featuring
process on complex CAD models and, at the same
time, eliminates the geometric error introduced by the

(a) NEFEM surface mesh

(b) NEFEM volume layer

(c) NEFEM volume mesh

Figure 19: NEFEM mesh process for the Falcon. (a)
NEFEM surface mesh. (b) NEFEM volume element layer
rendered in green. (c) Clipped NEFEM volume mesh
including the interior volumetric elements.

de–featuring process or by traditional mesh genera-
tors.

Given a CAD geometry in the form of B–rep, the pro-
posed strategy starts by generating an initial surface
mesh using a standard mesh generator. Guided by
the user–defined spacing, elements near the under-
sized geometric features are remeshed, and the new
elements are allowed to traverse multiple surfaces, pro-
vided they pass the dedicated validity check. This
process results in a NEFEM surface mesh suitable for
the volume mesh generation stage. Various normal
vectors are defined and are computed on the NEFEM
surface elements to guide the growth of volume ele-
ments. During the growth of each volume element,
self–intersection checks are performed to ensure the
element validity. The volume elements grown from
traversing surface elements form the first layer of NE-
FEM volume elements, whose exterior faces are ex-
tracted and merged with the NEFEM surface mesh,
so that a standard volume mesh generator can be used
to obtain the remaining of the interior volume mesh.



Examples have been presented to demonstrate the ap-
plicability and potential of the proposed method. For
completeness, the CAD model, the initial FEM sur-
face mesh, the NEFEM surface and volume meshes
are shown. The examples involve geometries where
the CAD model contains very small edges, such as the
wing with a blunt trailing edge. The resulting NE-
FEM meshes demonstrate a spacing closely matching
the user–specification, even when the CAD model con-
tains small features.

Future work will involve the new definition and im-
provement of the element quality, the extension to
high–order interpolations, and the integration with a
NEFEM solver for practical applications.
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