
EFFICIENT KD-TREE BASED MESH REDISTRIBUTION

FOR DATA REMAPPING ALGORITHMS

Navamita Ray 1
∗
, Daniel Shevitz 1, Yipeng Li 2

†
, Rao Garimella 3, Angela Herring 4,

Evgeny Kikinzon 1, Konstantin Lipnikov 3, Hoby Rakotoarivelo 3, Jan Velechovsky 5

1Computer, Computational and Statistical Sciences, CCS-7,
Los Alamos National Laboratory, Los Alamos, NM, USA

2Department of Applied Mathematics and Statistics, StonyBrook University
3Theoretical Division, T-5, Los Alamos National Laboratory, Los Alamos, NM, USA

4X-Computational Physics, XCP-4, Los Alamos National Laboratory, Los Alamos, NM, USA
5X-Computational Physics, XCP-2, Los Alamos National Laboratory, Los Alamos, NM, USA

ABSTRACT

In this paper, we present a new mesh redistribution algorithm developed for the parallel data remapping library
Portage. During distributed memory parallel remapping, source and target meshes are partitioned independently of
each other, requiring a mesh redistribution so that all cells on the target mesh partition are covered by source mesh
partition cells. Our new algorithm uses a KD-tree data structure to capture the general shape of the target mesh
and find an improved overlap between source and target mesh partitions so as to redistribute fewer cells. We present
numerical results showing that the KD-tree method reduces memory storage requirements for the redistributed mesh
on each partition and is faster than the old bounding box method.

Keywords: mesh redistribution, data remapping, parallel algorithms

1. INTRODUCTION

Data remapping is used in many multi-physics appli-
cations to transfer numerical fields from a source mesh
to target mesh. For example, in Arbitrary Lagrangian-
Eulerian (ALE) methods ([1], [2], [3], [4]) for hydro-
dynamics applications, the Lagrangian mesh is moved
along with the fluid flow for some time steps before
the cells distort excessively. Then, the mesh nodes are
rezoned or smoothed to yield a better quality mesh,
and finally, the fields on the Lagrangian source mesh
are interpolated to the improved target mesh. In other
multi-physics applications ([5], [6], [7]), where differ-
ent physics domains depend on each other through
shared domain boundaries, there is a need to transfer
fields along the domain boundary to solve the govern-

∗Corresponding author
†Current affiliation OneFlow, China

ing equations of that component.

In order to remap data in parallel onto the target
mesh, the target mesh partition on any Message Pass-
ing Interface (MPI) rank should have all the source
mesh cells covering it available on the same rank. This
is a requirement of many remap methods, particularly,
of conservative field remap methods, where quanti-
ties like intersection volumes, field gradients, etc., are
needed for data interpolation. For parallel remapping
on distributed systems, generally the source and target
meshes are partitioned independently of each other.
This can lead to scenarios where the target mesh par-
tition is only partially (or not at all) covered by the
source mesh partition on the same MPI rank. For ex-
ample, Figure 1 shows a partitioning of a simple source
and target mesh on four MPI ranks where the parti-
tions are color-coded, so that source and target mesh
partitions on the same rank have the same color. The



(a) Source Mesh Partitions (b) Target Mesh Partitions

Figure 1: Example source and target mesh partitions on four ranks. The colors correspond to the rank of the mesh
partition.

yellow source mesh partition only covers part of the
yellow target mesh partition, whereas the green target
mesh partition is not covered at all by the green source
mesh partition. To perform the remapping correctly,
we must perform a mesh redistribution, i.e. bring the
necessary source mesh information from all other MPI
ranks to each target rank.

Portage [8] is a numerical library, which provides a
suite of numerical algorithms for remapping fields from
a source mesh to a target mesh. Currently Portage
uses a coarse-grained bounding box based overlap de-
tection algorithm to redistribute the meshes. While
this method is failsafe, it also frequently sends unnec-
essary source data and with increased execution time
and memory usage.

To detect if the target mesh partitions on other ranks
overlap with the source mesh partition on the current
rank, we need to have sufficient information about the
shape of the target mesh partitions. We also need
to figure out how much the source mesh partition on
the current rank overlaps with the target mesh parti-
tions on other ranks. Ideally, the redistribution pro-
cess should send only as much information as necessary
to other partitions. In this paper, we present a new
method to perform better overlap detection and more
precisely control the information copied across ranks.

In [9], two mesh redistribution algorithms are de-
scribed suitable for distributed systems. They use a
rendezvous technique wherein a third decomposition
is computed so that both the source and target mesh
partitions overlap completely on this third decompo-
sition. The recursive coordinate bisectioning (RCB)
partitioning strategy is used to obtain this third de-
composition. The decomposition is primarily for nodal
remap, where one needs to know the source cell con-
taining each target node, so that the nodal values from

the source cell are interpolated at the target node. The
Data Transfer Kit ([10]) a software library designed to
provide parallel services for mesh and geometry search-
ing and data transfer. The algorithms implemented in
Data Transfer Kit are based on the rendezvoud algo-
rithms described in [9]. In [11], a dynamically load-
balancing algorithm for parallel particle redistribution
using KD-trees for particle tracing applications is de-
scribed. In the algorithm, each process starts with a
statically partitioned axis-aligned data block that par-
tially overlaps with neighboring blocks in other pro-
cesses along with a dynamically determined k-d tree
leaf node that bounds the active particles for com-
putation. The particles are periodically redistributed
based on a constrained KD-tree decomposition, which
is limited to the expanded overlapping layers.

Our method differs from these approaches on multiple
aspects. Portage is more general, and supports both
nodal and cell-value remapping algorithms as well as
other remapping algorithms. The mesh redistribution
needs to satisfy the conditions of all such remapping
algorithms. Also, computing a new partitioning of the
source and target meshes might be computationally
expensive as the library might be used as part of a
multi-physics application where a remap needs to hap-
pen every time step of the simulation.

The K-dimensional tree (KD-tree, [12]) is a data struc-
ture that splits K-dimensional data for efficient range
queries and K-neighbor queries. Our method uses the
KD-tree data structure to capture the general shape
of the target mesh partition, which is subsequently
used to detect the specific source cells that intersect
with this target mesh partition shape approximation.
Based on this refined overlap detection, we send only
part of the mesh from an overlapping source mesh par-
tition to the target mesh partition rank. We control
the amount of information copied (sent) across parti-



tions by controlling the depth of the KD-tree on the
target mesh partitions. We performed numerical stud-
ies to show the improvements in both memory and
time by the new method in comparison to the current
approach. In section 2, we start with a brief overview
of the default bounding box algorithm. Section 3 de-
scribes the new approach to mesh redistribution. In
4, we present numerical studies comparing the new
algorithm with the bounding box method.

2. BOUNDING BOX ALGORITHM

The coarsest geometric representation of a general
shape is its axis aligned bounding box. The bound-
ing box algorithm implemented in Portage utilizes
this description, and is a simple rendezvous algorithm.
Bounding boxes of both the target and source mesh
partitions are used to detect overlaps. The key steps
in the algorithm are as follows:

1. On each rank, the axis aligned bounding box of
the target and source mesh partitions are con-
structed.

2. Each rank broadcasts the bounding box descrip-
tion of its target mesh partition to all ranks, so
that each rank has an approximated shape of the
global target mesh.

3. On each rank, if the source bounding box inter-
sects with any received target bounding box, then
all the cells in the source mesh partition are sent
to the target rank.

By design, this method is conservative in its approach.
As a result, it almost always overestimates the num-
ber of cells that must be copied over to the target
partitions. For example, even when the source mesh
partition bounding box is only slightly intersecting any
of the received target mesh partition bounding boxes,
the overlap detection deduces that they intersect, and
sends the whole source mesh partition to the target
rank. Due to this conservative overlap detection, it
can happen that multiple source mesh partitions are
migrated to a target rank which can lead to scenar-
ios where almost the whole global source mesh is on a
target rank after redistribution, resulting in significant
increase in memory usage. In worst cases, the remap
code can fail at runtime due to the large memory over-
load.

3. MESH REDISTRIBUTION USING A
KD-TREE

In the new approach, we focus on improving all compo-
nents of the overlap detection process. First, we use a

KD-tree data structure to generate a better and con-
trollable description of the target mesh shape. The
representation is tunable, ranging from the coarsest
one bounding box covering the target to the finest
depth with a bounding box for each target cell. Sec-
ond, we use an efficient search on the source mesh
partition, again using a KD-tree data structure to ob-
tain the list of candidate cells that intersect with the
target bounding boxes. Finally, we migrate only part
of the mesh from an overlapping source mesh partition
to the target mesh partition rank.

In this section, we describe the key steps (listed below)
of the new algorithm in more detail.

1. Target Mesh Shape Approximation: On
each rank, generate an approximation of the tar-
get mesh partition shape using a KD-tree data
structure and broadcast the approximate target
shape to all ranks. The approximated target
mesh partition shape is a list of target bound-
ing boxes depending on the depth of the KD-tree
representation.

2. Overlap Detection: On each rank, find the
cells in the source mesh partition that overlap
the target mesh partition shapes received from
other ranks. This step results in obtaining lists
of source cells, one list of candidate source cells
for each target rank it detects an overlap with.

3. Mesh Migration: Each rank sends the overlap-
ping source cells along with their field data to the
target ranks.

Figures 1, 2 and 3 show an example of the overlap
detection process. Figures 1a and 1b are a source
and target mesh partitioned into four ranks where the
source and target parts on the same rank have the
same color. The bounding boxes of a depth 2 KD-tree
over the target mesh partitions are shown in Figures
2a, 2b, 2c and 2d. Note that since a KD-tree is a
binary tree at any fixed depth there will be a power
of two number of bounding boxes ignoring incomplete
filling due to an unbalanced tree. In Figure 3a, the
aggregation of target bounding boxes from all target
ranks on each source rank are shown. During the over-
lap detection, these bounding boxes are used to find
lists of source cells that need to be sent to target parti-
tions. For example, in Figure 3b, the source mesh par-
titions on green, blue and red ranks will detect the cells
intersecting with the target bounding boxes from the
yellow rank and select only the subset of the meshes
that overlap these boxes.



(a) Rank 0

(b) Rank 1

(c) Rank 2

(d) Rank 3

Figure 2: Target boxes constructed using a KD-tree
at depth 2. Note the 4 bounding boxes per partition.

(a) All Target Boxes

(b) Source Target Overlap

Figure 3: The target box description of the target
mesh globally as well as overlap of target bounding
boxes on rank 3 with other source mesh partitions.

3.1 Target Mesh Shape Approximation

K-Dimensional tree(KD-tree) is a well-known space-
partitioning data structure for organizing points in a
k-dimensional space and is used for efficient search-
ing. We use KD-trees for two purposes. First, we use
the data structure to create a finer approximation of
the target geometry as a collection of bounding boxes.
Second, we use it to perform efficient searches for over-
lap detection between the target shape approximation
and the source mesh partition as is described in section
3.2.

The KD-tree construction is agnostic to which mesh
it is created on, so the description of the KD-tree con-
struction uses the term mesh instead of target mesh.
Indeed, we compute KD-trees on both the source and
target mesh partitions, albeit for different purposes.
In our KD-tree construction, each node at any depth
is a bounding box. We begin by computing the axis
aligned bounding box of each cell by using the min-
imum and maximum coordinates in each dimension.
For each such box, we next compute its centroid. The
construction algorithm takes as input the set of bound-
ing boxes, the point set consisting of bounding box
centroids, and the depth up to which the tree is to be
constructed. The space partitioning uses the point set
whereas the bounding boxes are used to construct the
nodes of the tree.

At any depth in the tree, the parent node is the encap-
sulating bounding box of a set of cells. We next find
which axis or direction (x/y/z) should be used to par-
tition the point space (consisting of the bounding box
centroids). We choose the axis with the longest side
of the bounding box of the current node as the cut-
ting direction. Once a direction has been chosen, we
group the cells under the node into a left and a right
set, where the left set has cells with centroid values
less than the median along the cutting direction. The
left and right children are now constructed out of the
cells in the left and right sets. The tree construction
is either stopped at the depth provided, or continues
until the full depth of the tree possible for the input
set.

In Algorithm 1, we present the pseudocode for the KD-
tree construction. The algorithm uses a stack data
structure to construct nodes of the tree, where the
root node is the bounding box of the entire mesh. We
also maintain a permutation array of the cell ids which
is used to store the partitioning of the space as the
tree construction progresses. We begin by finding the
longest side of the root node bounding box. The axis
corresponding to the longest side is chosen as the cut-
ting direction. We next permute the cell ids (as stored
in the permutation array), so that the median of the
array is the cell id with median coordinate value of the
centroid corresponding to the cutting direction. This



(a) Depth 0 (b) Depth 1

(c) Depth 2 (d) Depth 3

Figure 4: The KD-tree based representation with in-
creasing depths.

groups the list of cell ids into a left and right part,
where the left part has cell ids with centroid coordi-
nate less than the median along the cutting direction.
Similarly, the right part constitutes of cell ids with cen-
troid coordinate greater than and equal to the median
along the cutting direction. The left and right child
node bounding boxes are now computed by gathering
all the bounding boxes of the cells making up that
child. For each child, the pointers to the minimum
and maximum of the permutation array are stored, so
that for the next level, the median is found only for
that part. These steps are followed until the desired
of the tree is obtained or the full tree is constructed.
Figures 4a, 4b, 4c and 4d show four depths of KD-tree
based shape approximation. As we can see, with in-
creasing depths the tree leaf bounding boxes capture
better the shape of the mesh which leads to better
overlap detection.

Using the above process, we construct a KD-tree over
the target mesh partition. We construct the tree over
the owned cells of the target mesh partition as there
may be ghost layers during initial partitioning, which
are owned by other ranks. The output of the construc-
tion is a list of leaf bounding boxes at a fixed depth in
the tree. This list is then broadcast across all ranks,
at the end of which each rank has an approximate de-
scription of the global target shape.

3.2 Overlap Detection

After the broadcast of the bounding boxes of the tar-
get mesh partition across ranks, each rank now has
an approximate description of the whole target mesh
shape in the form of bounding boxes and the target
partitions they belong to. We next want to detect
the list of source cells that intersect the target bound-
ing boxes from a received rank. Instead of nested lin-
ear loops over all received target boxes, and over the
source cells to detect which cells in the source inter-
sect target bounding boxes, we use another KD-tree,

Algorithm 1 KD-tree Construction

Input: B: N bounding boxes
Input: C: N centroids of the bounding boxes
Input: L: depth of the tree
Output: leaves: Leaf bounding boxes

P ← Permutation array of size N
root← Bounding box encompassing all input boxes
if L = 0 then return root
else

stack: array storing tree node ids
min idx: array storing minimum index into

leaves array for a node
max idx: array storing maximum index into

leaves array for a node
leaves: array storing leaf boxes
current depth = 0
top ← 0
stack[top] ← 0
nextp ← 1
min idx[top] ← 0
max idx[top] ← N
while top ≥ 0 do

current depth = current depth + 1
min = min idx[top]
max = max idx[top]
top--
cut dir = cutting direction based the longest

side of the node
mid = (min+max)/2
Reorder part of P such that ∀i :

C[i][cur dir] ≤ C[mid][cut dir]
if mid = min ‖current depth= L then

box = construct bounding box encom-
passing using boxes from min to mid

Add box to leaves
else

box = construct bounding box encom-
passing using boxes from min to mid

Add box to leaves
top++
stack[top] = nextp
min idx[top] = min
max idx[top] = mid
nextp++

end if

if mid+1 = max ‖current depthL= L then

box = construct bounding box encom-
passing using boxes from mid+1 to max

Add box to leaves
else

box = construct bounding box encom-
passing using boxes from mid+1 to max

Add box to leaves
top++
stack[top] = nextp
min idx[top] = mid+1
max idx[top] = max
nextp++

end if

end while

end if



this time for efficient searching. We create the full tree
on the source mesh partition (so that the leaf nodes
are the bounding boxes of the source cells), and per-
form the search between the source tree and target
bounding boxes. Since the average cost of look up
is O(LogN), we can avoid a linear search over source
cells. The pseudocode for the overlap detection algo-
rithm is shown in Algorithm 2.

After the search, we end up with candidate lists of
source cells that need to be sent to specific ranks. The
candidate list to be sent to a specific rank is conser-
vative because any given source cell may not actually
intersect any target cell due to our use of bounding
boxes of a chosen granularity to represent the target
shape. Importantly, we also add cells that are neigh-
bors of the cells in this list based on the requirements
of second or higher order remapping algorithms. Such
methods need to construct gradients of the numeri-
cal field over the source mesh partition and require a
complete stencil (set of cells surrounding the cell) for
any source cell. Adding the neighbors completes the
stencils of the source cells that intersect a target cell
on its partition boundary.

Algorithm 2 Overlap Detection

Input: TB: target bounding boxes from all ranks
Output: candidates: list of candidate cells

src tree: Construct the full KD-tree on the source
mesh partition
candidates: list of candidate cells
for r : target ranks do

for b: TB[r] do
cells = intersect target bounding box b with

the src tree
for c: cells do

Add c to candidates[r]
ngbs = find node connected cell neighbors

of the cell c
Add ngbs to candidates[r]

end for

end for

end for

3.3 Mesh Migration

After overlap detection, we finally do a mesh migra-
tion to send the partial source mesh partition to the
required ranks. During overlap detection, the candi-
date lists can include both owned and ghost cells and
we ensure uniqueness of entities on a particular rank
after mesh migration. Our mesh migration algorithm
is based on a two-pass communication strategy.

1. First pass: We send the number of total counts
(owned plus ghost entities) and the number of

ghost counts to all ranks using all-to-all commu-
nication mechanism. At the end of first pass, all
ranks have received the total number of new cells
(as well as nodes, topology and numerical fields)
they are going to receive on their rank. Based on
this information, the receiving data buffers are
set to the correct size.

2. Second pass: In this round of communication, we
perform a point-to-point blocking send to trans-
mit the actual data, and a non-blocking receive
to receive the data from other ranks.

We start by sending the global ids of the candidate
source cells on the current rank. After this round of
communication, each rank now might have cells with
the same global ids, requiring de-duplication. We per-
form a de-duplication based on the unique global ids
so that each entity has only one instance and no du-
plicate data is stored. We do the same for node global
ids as well as other auxiliary mesh entities like edges,
faces, etc. We then continue to communicate all the
necessary mesh information such as node coordinates,
adjacencies such as cell to node connectivity, node to
cell connectivity, etc. as well as the numerical fields.

4. NUMERICAL RESULTS

For our numerical studies, we use two sets of geome-
tries. The first shape, shown in Figure 5a, is part of a
spherical shell. The second shape, shown in Figure 5b,
is of a notional tesseract with six pyramids covering a
cube. We chose this shape because while the exterior is
a cube, the bounding boxes of the pyramids are highly
intersecting. We are trying to represent a worst case
example for intersecting partitions. The mesh details
for these geometries are provided in Table 1.

We compare the KD-tree method with the bounding
box method. Our parameter space for the study con-
sists of:

1. the depth of the KD-tree representation of the
target mesh partition, and

2. total MPI ranks (from 2 to 36).

For each point in the parameter space, we collect two
pieces of data:

1. the number of new cells received on a rank after
redistribution, and

2. the total time to perform the redistribution.

The count of only the new cells provides an approx-
imate estimation of how much extra memory would



Table 1: Mesh Details

Mesh Source Target

Sphere Tetrahedral Hexahedral
#Cells 1523150 44160
#Points 283924 50952

Tesseract Tetrahedral Tetrahedral
#Cells 231828 695805
#Points 45742 130467

need to be stored after redistribution. By varying the
number of MPI ranks, we can get very different qual-
ities of partitioning. If the number of ranks respects
the symmetries of a mesh we can get a quite good
partitioning, but if this is not the case, we can get
poor partitioning because cells can be ”just stuffed”
anywhere. Our study is intended to evaluate all pos-
sibilities and not just best case. We use the ParMetis
partitioner ([13]) for initial partitioning of both source
and target meshes.

4.1 Sphere Shell Mesh

Figures 6a and 6b show the number of migrated cells
which is a proxy for the memory estimates of each
method after redistribution. The x-axis is the number
of ranks on which the test is run, and the y-axis is the
depth of the tree. In the waterfall plots, the depth axis
has no meaning for the bounding box distributor but
we keep it in the figures to make comparisons easier.
At each x and y point, we plot the maximum among all
the ranks corresponding to the worst case rank. The
color map in each plot is a monochromatic palette with
the deeper color represent a higher value.

In comparison to the bounding box algorithm, the new
method copies significantly fewer source cells to target
partitions resulting in substantial reduction in mem-
ory usage and network traffic. With increasing depths
of the target KD-tree, the target mesh partition rep-
resentation becomes finer, and as a result the overlap
detection improves until it gets to a point where the
optimal overlap is detected. We see this behavior in
the plot. Each KD-tree representation is a subset of
the representation at any coarser depth. Due to this
fact, the number of migrated cells is monotonically
decreasing with increasing depth. Also note in the fig-
ures that there is no data for higher depths and higher
ranks. This is because as the number of ranks increase
the average number of cells per rank decreases and the
maximum depth of the KD-tree on the smaller parti-
tions are less than the maximum depth of partitions
on lower number of ranks, so we don’t run those cases.
Clearly, for a particular number of ranks, increasing
the KD-tree depths leads to better overlap detection
in comparison to the bounding box algorithm. We

also observe that as the number of ranks increase, KD-
tree based overlap detection improves the cell counts
when compared to bounding box algorithm which does
not improve as it is too conservative. With increasing
ranks and depths, we see savings around one order of
magnitude with the KD-tree algorithm.

We observe a similar pattern in the time taken by the
redistributors as shown in 7a and 7b. The KD-tree al-
gorithm outperforms the bounding box algorithm both
in terms of memory savings and time as the number of
ranks and depths increase. We also observe a slightly
concave pattern with regards to the KD-tree depth, es-
pecially on the lower ranks and higher depths, due to
increased computation needed for overlap detection.

4.2 Tesseract Mesh

Figures 8a and 8b show the surface plots of the num-
ber of migrated cells which is a proxy for the mem-
ory estimates and network traffic of each method after
redistribution. The surface plot shows a more com-
plex landscape. Repeating what was stated earlier,
the tesseract is designed to be representative of a worst
case scenario because of the highly intersecting nature
of the bounding boxes by construction. Figures 9a and
9b show another view of the same data. Here, we plot
the values for all depths at each point on the x-axis.

In comparison to the bounding box algorithm, the new
method performs significantly better in terms of mem-
ory savings. The target mesh partition representation
becomes better resolved with increasing target KD-
tree depths, and subsequently the overlap detection
becomes optimal after a certain depth. Note both
the monotonically decreasing number of migrated cells
with increasing depth and the generally improved per-
formance of both algorithms when the number of par-
titions is a multiple of 6 which is a natural symmetry
of the mesh giving ”nicer” partitions. We see this be-
havior in both plots. The bounding box algorithm, on
the other hand, does not improve even when the num-
ber of ranks is increased, as the bounding box based
overlap detection is too conservative. Again, depth has
no meaning in the bounding box redistributor. This
results in receiving entire source mesh partitions for
many ranks where only small pieces are needed. This
behavior is due to how the tesseract mesh is parti-
tioned. For example, Figure 10a shows the target part
on rank 3 of a four rank run, the source partition is
shown in Figure 10b which does not cover the target
part at all. This disconnected partitioning is generated
by the ParMetis partitioner and is not a pathological
construction. As the bounding box (shown in Figure
11a) is the whole cube, clearly all the other mesh parts
would be migrated to this rank.

We also observe a similar pattern for the KD-tree al-



(a) Spherical shell.

(b) Tesseract with six pyramids covering
a cube.

Figure 5: The geometry of two test cases used for the numerical studies.

(a) Counts using the Bounding Box redistributor.

(b) Counts using KD-tree redistributor.

Figure 6: The maximum count of new cells received
among all ranks at each number of ranks and for each
KD-tree depth of the sphere mesh.

gorithm when the depth is zero, but, as we increase
the number of depths, for example as shown in Figure
11b where the bounding boxes of depth 3 tree is over-
layed on the target mesh partition, we see significant
gains due to better capturing of the target mesh parti-
tion shape and finer overlap detection. As we increase
the number of ranks and the number of depths, we
obtain from 50% reduction to an order of magnitude
improved savings.

Figures 12a and 12b show the surface plots of timings
of each method after redistribution. Here the timing
landscape is complex, and shows concavity. In Figures
13a and 13b, we plot another view of the same data.
The bounding box algorithm takes relatively the same
amount of time independently of the number of ranks
it is run on. This is consistent with the number of new
cells received. However, the KD-tree algorithm perfor-
mance shows greater variability. Overall KD-tree algo-
rithm outperforms the bounding box algorithm both
in terms of memory savings and time as the number
of ranks and depths increase.

On lower number of ranks, the higher the number of
depths, the longer it takes in comparison to the bound-
ing box algorithm. Overall, we observe a concave pat-
tern along the y-axis (the number of depths). Upon
investigation, we found the detection was the biggest
contributor to the increased timing. As the depths
increase, the granularity of the target mesh partition
representation also increases. Because the global tar-
get mesh is around 700k cells, the overlap detection
works with almost that many cells on each rank for
higher depths, and thus takes more time. This ef-
fect is more prominent on lower ranks as they have
significant number of source cells as well to compute



(a) Timing of Bounding Box redistributor. (b) Timing of KD-tree redistributor.

Figure 7: The maximum time across ranks for each KD-tree depth of the sphere mesh.

(a) Bounding Box redistributor. (b) KD-tree redistributor.

Figure 8: The maximum count of new cells received across ranks for each KD-tree depth of the tesseract mesh
shown for both KD-tree redistributor and bounding box redistribution. There the depth do not have any meaning
for the bounding box algorithm.

(a) Counts using the Bounding Box redistributor. (b) Counts using KD-tree redistributor.

Figure 9: The maximum count of new cells received across ranks for each KD-tree depth of the tesseract mesh.



(a) Target mesh partition on rank 3.

(b) Source mesh partition in grey on rank
3.

Figure 10: Target and source mesh partitions on rank
three on a four rank partition.

their intersection. We also observed this pattern for
the sphere mesh, though not this pronounced as the
size of the global target mesh is comparatively small
around 44k cells. Finally, as the number of ranks is
increased, the KD-tree algorithm becomes comparable
or faster than the bounding box algorithm.

5. CONCLUSION

We present a new approach to mesh redistribution for
data remapping algorithms. Our method utilizes the
KD-tree data structure to improve overlap detection
between source and target partitions. We demonstrate
the significant savings both in terms of memory and
timing by the new algorithm in comparison to the de-
fault bounding box algorithm. We observe that, in
general, sending the full tree of the target mesh parti-

tions leads to both optimal memory savings and total
time to redistribute the mesh. For a coarse target
mesh, the shape of the mesh on an individual rank
becomes regular and has only a few elements as the
number of ranks become large, there probably won’t
be much gain in describing the geometry using depth
zero or the full tree. However, if the target mesh is
fine enough so that even on large ranks, the mesh
part consists of hundreds to thousands of elements,
the over estimation of overlap between target can be
significantly reduced by using higher depths. However,
if the global target mesh is large, then it might take
a lot more time to compute the optimal overlap. In
such scenarios, an intermediate depth would perform
decently both in terms of memory savings and time.

ACKNOWLEDGMENT

This work is supported by the U.S. Department of En-
ergy for Los Alamos National Laboratory under con-
tract 89233218CNA000001. We thank ASC NGC Ris-
tra and Portage for support.LA-UR-23-21719.

References

[1] Hirt C., Amsden A., Cook J. “An arbitrary
Lagrangian-Eulerian computing method for all
flow speeds.” Journal of Computational Physics,
vol. 14, no. 3, 227–253, 1974

[2] Margolin L., Shashkov M. “Second-order sign-
preserving conservative interpolation (remap-
ping) on general grids.” Journal of Computational

Physics, vol. 184, no. 1, 266 – 298, 2003

[3] Barlow A.J., Maire P.H., Rider W.J.,
Rieben R.N., Shashkov M.J. “Arbitrary
Lagrangian–Eulerian methods for modeling
high-speed compressible multimaterial flows.”
Journal of Computational Physics, vol. 322,
603–665, 2016

[4] Kucharik M., Breil J., Galera S., Maire P.H.,
Berndt M., Shashkov M. “Hybrid remap for
multi-material ALE.” Computers & Fluids,
vol. 46, no. 1, 293–297, 2011

[5] Robinson A., Brunner T., Carroll S., Drake R.,
Garasi C., Gardiner T., Haill T., Hanshaw H.,
Hensinger D., Labreche D., et al. “ALEGRA:
An arbitrary Lagrangian-Eulerian multimaterial,
multiphysics code.” 46th AIAA Aerospace Sci-

ences Meeting and Exhibit, p. 1235. 2008

[6] Painter S.L., Coon E.T., Atchley A.L., Berndt
M., Garimella R., Moulton J.D., Svyatskiy D.,
Wilson C.J. “Integrated surface/subsurface per-
mafrost thermal hydrology: Model formulation



(a) Bounding box corresponding to depth
0.

(b) Bounding box corresponding to depth
3.

Figure 11: Difference in target description based on KD-tree depths.

(a) Timing of Bounding Box redistributor.

(b) Timing of KD-tree redistributor.

Figure 12: The maximum time across ranks for each KD-tree depth.



(a) Timing of Bounding Box redistributor.
(b) Timing of KD-tree redistributor.

Figure 13: The maximum time across ranks for each KD-tree depth.

and proof-of-concept simulations.” Water Re-

sources Research, vol. 52, no. 8, 6062–6077, 2016

[7] Burton D.E. “Lagrangian hydrodynamics in the
FLAG code.” Los Alamos National Laboratory,

Los Alamos, NM, Technical Report No. LA-UR-

07-7547, 2007

[8] Herring A., Ferenbaugh C., Malone C., Shevitz
D., Kikinzon E., Dilts G., Rakotoarivelo H., Vele-
chovsky J., Lipnikov K., Ray N., et al. “Portage:
A Modular Data Remap Library for Multiphysics
Applications on Advanced Architectures.” Jour-

nal of Open Research Software, vol. 9, no. 1, 2021

[9] Plimpton S.J., Hendrickson B., Stewart J.R. “A
parallel rendezvous algorithm for interpolation
between multiple grids.” Journal of Parallel and

Distributed Computing, vol. 64, no. 2, 266–276,
2004

[10] Slattery S.R., Wilson P.P.H., Pawlowski R.P.
“The Data Transfer Kit: A geometric rendezvous-
based tool for multiphysics data transfer.”
American Nuclear Society, 7 2013. URL
https://www.osti.gov/biblio/22212795

[11] Zhang J., Guo H., Hong F., Yuan X., Peterka
T. “Dynamic Load Balancing Based on Con-
strained K-D Tree Decomposition for Parallel
Particle Tracing.” IEEE Transactions on Visu-

alization and Computer Graphics, vol. 24, no. 1,
954–963, 2018

[12] Bentley J.L. “Multidimensional Binary Search
Trees Used for Associative Searching.” Commun.

ACM, vol. 18, no. 9, 509–517, sep 1975

[13] Karypis G. Encyclopedia of Parallel Comput-

ing, chap. METIS and ParMETIS, pp. 1117–1124.
Springer US, Boston, MA, 2011


