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ABSTRACT

Quadrilateral/prismatic boundary layer meshes are believed to combine precision with ease of use. However, the
generation of full-layer boundary layer meshes without transition elements still needs to encounter the problem
of robustness. This paper proposes a novel and robust full-layer boundary layer mesh generation scheme, which
constructs an orthogonal target mesh and an extremely thin initial mesh and then iterates the initial mesh until its
rigid mapping energy to the target mesh is minimal. A positive area/volume-preserving rigid mapping method is
applied iteratively to ensure robustness. This method has been partly validated in 2D and has achieved preliminary
results in 3D.
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1. INTRODUCTION

1.1 Prismatic Mesh Generation

A boundary layer mesh is a semi-structured layered
mesh around a given geometry. The early genera-
tion methods of boundary layer meshes are mainly
PDE-Based methods, which have been widely used in
early structured mesh methods [1, 2, 3, 4]. Later, as
the geometry model became more and more complex,
the semi-structured mesh gradually developed, and a
separate boundary layer mesh concept was gradually
formed, along with the unstructured mesh filled in be-
tween the boundary layer mesh and the bounding box.

Among different schemes of meshes for solving par-
tial differential equations (PDE) by numerical meth-

ods near the boundary, the generation of a layered
prismatic(in 3D) and quadrilateral(in 2D) mesh with
isotropic mesh has gained popularity due to its good
compromise between viscous accuracy and ease of
use [5]. In this mesh, layered elements are configured
on the near field of viscous walls to resolve high flow
gradients normal to the walls. In contrast, the re-
maining domain and the surface geometry are filled
with unstructured meshes.

The most widely applicable method for generating lay-
ered meshes is the Advancing Layer Method (ALM).
This method is usually generated in a layered man-
ner, and premature stopping caused by global inter-
sections may occur, requiring pyramid transition ele-
ments to handle mesh continuity. Generally, pyramids



used for transitions are highly twisted, and their ex-
posed faces are not conducive to the following isotropic
mesh generation. Therefore, full-layer boundary layer
mesh without transition elements is more sought af-
ter. However, full-layer generation usually encounters
problems, the most serious of which is the negative
volume cell. This paper proposes a global method
with strictly positive volume guarantees for generating
full-layer boundary layer mesh under arbitrary input.
One of the resulting meshes in 2D is shown in Figure
1. We can see that the algorithm handles the nar-
row gap well and do well in both the boundary layer
mesh completeness and normal orthogonality. Here
mesh completeness indicates the area/volume covered
by the boundary layer mesh. Usually, the larger the
boundary layer region is covered, the higher the accu-
racy of the solution.

The global technique entails solving marching nor-
mal information globally, typically via the use of a
set of linear equations or numerical methods. Some
of the study [6, 7] still rely on or partly rely on the
ALM framework, and some [8, 9] do not. The widely-
recognized advantage of the global method is that its
normals are globally optimized. Practically, the short-
comings of this method are also pronounced: 1. the
technique is usually time-consuming, whether for the
explicit or implicit way. 2. since the normal is glob-
ally optimized, unsuitable normal may be generated
locally, such as the singularity [8] or negative elements.

PDE-based One of the methods for normal smooth-
ing is the PDE-governed approach, and the equation is
often solved by the implicit method. The PDE-based
method provides a new global angle to view the normal
smoothing problem, such as Laplacian equation [7],
Eikonal equation [9, 10] and level set equation [11],
which models ALM as a hyperbolic differential equa-
tion. The computation of marching normal directions
is defined in the solution space of the adopted govern-
ing equation. Since the solution is smooth in the flow
domain, the marching normal is naturally smoothed
following the corresponding equation. For instance,
the marching direction at a point could be defined as
the gradient vector of the solution proposed by Wang
et al. [12], based on a variation of Eikonal equation so-
lution about minimum Euclidean distance. Zheng et
al. [7] proposed a method to solve the Laplace equation
of three components of marching normal respectively
by boundary element method (BEM).

Variation-based Another global method is optimiz-
ing regeneration elements globally based on the vari-
ational method, which relies on a valid initial mesh.
Variation-based methods are usually solved by ex-
plicit methods. This approach relies on a partial [6]or
full [13] background mesh and then achieves both
mesh orthogonality and mesh untangling in a quality-

optimized manner. In general, weighted energy will be
defined, including orthogonality and normal smooth-
ing energy, and minimizing the energy will be used
to obtain the normals. Two typical applications
of this approach are the method proposed by Dye-
dov et al. [13], which minimizes the control triangle
shapes energy and side-edge orthogonality. Garanzha
et al. [6], which minimizes the objective function re-
lates to the Jacobian matrix of all prisms from La-
grangian coordinates to Eulerian coordinates.

Local Method The local method means there is no
global function solved during the normal calculation,
and smoothing is performed on each layer or each cell.
The smoothing is often locally optimized by authors’
extensive experience [14, 15, 16, 17]. The biggest ad-
vantage of the local method is its high flexibility in
the normal direction so that it perfectly coincides with
the idea of local greed in the ALM. Moreover, the pro-
cess is usually not time-consuming since the smooth-
ing is performed locally. However, since the smooth-
ing problem is usually non-convex, the local optimal
usually cannot lead to the global optimal. Herefore,
the final mesh may need more advantages of the global
method, such as mesh completeness. Loseille et al. [18]
proposed a 3D local operator that combines several
local topology operations and uses it to generate an
anisotropic boundary layer tetrahedron mesh.

1.2 Rigid Transformation

Rigid Transformation(also called Euclidean transfor-
mation or Euclidean isometry) is a geometric trans-
formation of a Euclidean space that preserves the
metrics of Euler spaces [19]. This concept is widely
studied in computer graphics, especially parameter-
ization [20, 21, 22] and mesh deformation [23], and
also shape interpolation [24, 25]. Similar to the ap-
plication of boundary layer meshes, the most diffi-
cult goal in the study of rigid transformations is flip-
free mapping with non-intersecting boundaries, also
known as bijective in the field of surface parameter-
ization. However, boundary layer mesh generation
is more complex than parameterization because the
quality of the initial mesh usually needs improvement.
In addition, the application of air mesh can handle
the self-intersection of rigid mapping at the free outer
boundary [21]. The idea of air mesh is straightfor-
ward. The air mesh is an isotropic tetrahedral mesh
between the outermost triangle mesh of the boundary
layer mesh and the bounding box. When the mesh is
deformed, the fold-free isotropic mesh is equivalent to
the self-intersection-free boundary layer mesh. After
that, Müller et al. [26]extends the technique of [27] to
add the concept of triangle flipping based on a quality
measure during the optimization instead of retriangu-
lating the air mesh.



Figure 1: The final 2D viscous mesh of three-letter model generated by the proposed method. Full-Layered boundary layer
meshes are colored green.

1.3 Contribution

This paper proposes a robust boundary layer mesh
generation algorithm based on rigid mapping that has
been partly validated in 2D and 3D. This work is
mainly inspired by surface parameterization. Our con-
tribution can be listed below:

1. Innovatively introduces the rigid mapping into
layered boundary layer mesh generation, along
with the air mesh technique, which is used to pre-
vent negative elements. The introduction of these
technologies makes high-quality full-layer bound-
ary layer mesh generation with positive volumes
guaranteed under arbitrary input theoretically
possible.

2. This paper proposes the generation scheme of the
target mesh and the initial mesh of rigid trans-
formation. Besides, by introducing an adaptive
vertical target mesh adjustment and multiple nor-
mals configuration, the quality of the boundary
layer mesh has been significantly improved.

3. The experimental 2D version of the algorithm
open sourced at github1.It is encouraging that
the 3D version of the algorithm has achieved good
preliminary test results.

2. METHODS OVERVIEW

Figure 2 presents the proposed workflow of 2D layered
boundary layer mesh generation. It inputs a Planar

1https://github.com/HongviYe/2D-viscous-mesh-
generation

Straight line Graph (PSLG) and a few user parameters
defining the preferred property of the output mesh. A
typical set of these user parameters includes the height
of the first layer and the ratio between the heights of
neighboring layers. In addition, the loops in PSLG
should be properly wound out by the winding num-
ber [28] to determine the direction of boundary layer
growth.

1. Initial Mesh Iteration start from the initial
mesh M = (V,F), where V is the set of ver-
tices’ coordinate and F is the set of all connec-
tion between vertexes. First, marching normals
are defined on each node in PSLG as the aver-
age front normal of both edges that share this
node, which ensures normal visibility. Second,
an extremely small initial marching step length
is defined, which must be small enough to free
the mesh from global and local intersections. The
value can be given by the user and obtained by
the dichotomy method. Third, a layered quadri-
lateral mesh with the same number of layers is
generated with respect to the user input param-
eters and the marching normal.

2. Target Mesh The target mesh M′ = (V ′,F ′)
defines our ”expectation” for boundary layer
mesh. For each segment in PSLG, two normals
orthogonal to the segment are generated, and the
length of the two normals are identical, which is
specified by the user. Then, two normals and the
segment can form a rectangle. Layer by layer,
the entire target mesh is generated with respect
to the user input parameters. As illustrated in
Figure 2, the target mesh cells are all rectangular
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Figure 2: Overview of the proposed method (2D).

and arranged for easy visualization. All target
mesh cell has no neighbor relationship since it
is only used to define the ”expectation”, which
means the deformation target.

3. Air Mesh Regeneration Auxiliary 2-
simplicies/3-simplicies MA = (VA,FA) are used
to fill the domain between the bounding box and
the boundary layer mesh. The primary purpose
of the application of air mesh is to prevent the
fold and self-intersection of the boundary layer
mesh in subsequent iterations. We only need to
maintain the positivity of the volume of the air
mesh cell during the iteration process. The idea
of auxiliary 2-simplex/3-simplex comes from
the Air Meshes [26], which is widely used for
collision handling. After each iteration, the air
mesh may need to be regenerated to improve its
quality.

4. Rigid Transform Iteration The quadrilat-
eral/prismatic meshes in the initial mesh and the
target mesh have the same number of simplices
||F|| = ||F ′||. The purpose of the transformation
is to minimize the rigid mapping energy between
the initial and target mesh to make them ”sim-
ilar”. The word ”rigid” means the meshes are
similar in size and shape.

5. Final Mesh With Refinment At the end of
the process, the air mesh can be discarded, and
an unstructured high-quality isotropic mesh can
be generated around the boundary layer mesh.
The quality of the air mesh is limited since it is
only used to avoid intersections of the boundary
layer mesh.

It is worth noting that in order to simplify the al-
gorithm, the authors used 2-simplex/3-simplex Jacobi

in 2D and 3D, respectively, to compute the energy.
Therefore, every quadrilateral mesh in both the initial
mesh and target mesh is decomposed into 2 × 2 = 4
triangles as shown in Figure 3. Compared with only
decomposition into two triangles by diagonals, this de-
composing scheme has its advantage: we only need
to preserve the positivity of the triangle’s area to en-
sure the convexity of the final quadrilateral mesh. In
3D, similarly, a triangular prism can be decomposed
into three tetrahedrons, as shown in Figure 4. Be-
cause there are six possible schemes for decomposing
a triangular prism into tetrahedrons, every triangular
prism is decomposed into 6×3 = 18 tetrahedrons with
overlapping regions in implementation.

Figure 3: Decomposition of a quadrilateral mesh.

3. INITIAL MESH AND TARGET MESH
GENERATION

3.1 Initial Mesh Generation

The existence of the initial mesh is the fundamen-
tal guarantee of robustness. Similar to conventional
ALM, the initial mesh depends on the marching nor-
mal and distance. The critical point is that no self-
intersection is allowed in the initial mesh. For the
marching distance, we can prove that the mesh is free
of fold and intersection as long as the marching step
size is small enough. Algorithm 1 shows the procedure



Figure 4: One of the decomposition schemes of a pris-
matic mesh.

of generation:

Algorithm 1 Initial Mesh Generation

Calculate the initial normal.
Generate only one thick layer boundary layer mesh
following the fixed initial normals and initial march-
ing step length Hall.
while there exists fold or self-intersection in the out-
ermost loop/surface in 2D/3D do

Hall = 0.5 ∗Hall.
Split the one layer boundary layer mesh into ini-

tial mesh.

For the marching normal, in 2D, a reasonable choice
for point normal is the average of neighbor front nor-
mal. In 3D, the ”most normal” [29] is introduced for
calculation. Sometimes one normal may not be enough
for extremely complex corners, and a multiple normals
configuration must be introduced to solve the problem
of the existence of the initial mesh.

3.2 Target Mesh Generation

The target mesh is the combination of ideal mesh ele-
ments, which define the target of iteration. The design
of the target mesh will directly determine the effect
of the final mesh. The intuitive idea is that the cor-
responding input PSLG’s segment length determines
the horizontal size. The vertical size, in turn, is de-
termined by the user input parameters, including the
first layer’s height, height ratio, and layer number.

This intuitive idea may lead to low-quality mesh in
narrow gap areas. Figure 5 shows the target mesh of
the model and its corresponding boundary layer mesh
and compares the effect with and without adaptive
target mesh adjustment. Because the large area tar-
get mesh and narrow gap are incompatible, the rigid
transformation algorithm must balance the mesh qual-
ity and area by increasing distortion.

The target mesh in 2D is rectangular. Since the target
mesh is rotationally-invariant, it has only two degrees
of freedom: the horizontal size H and the vertical size
V , i.e., V ′ = (V,H).

Horizontal The horizontal size is the rectangular
mesh that parallels the boundary. In general, the hor-
izontal size of segment/facet e is decided by the ini-
tial size H0

e and the ideal size Hkmax

e , where kmax is
the maximum number of layers. H0 is equivalent to
the length of the corresponding segment in the input
PSLG, while Hkmax

e can be obtained by the Laplace
smoothing with H0

e as the initial value. Finally, the
horizontal size of kth layer can be linearly defined as:

H
k
e =

kHkmax
e

kmax

+
(kmax − k)H0

e

kmax

(1)

Figure 6 shows the example of target mesh after ad-
justing the horizontal size; a pronounced sawtooth can
be observed between the adjoint edge of two rectan-
gular.

Vertical The vertical size defines the height of the
target mesh. Figure 5 shows the comparison between
with and without adaptive vertical size adjustment.
Figure 5(b) shows the fixed target mesh and its cor-
responding final mesh after infinite iteration. Some
twisted elements are generated since the narrow gap
constraint. Figure 5(a) shows the target and final
mesh after adjustment, and twisting is alleviated. We
can also see that the corresponding target mesh is com-
pressed.

The vertical size adjustment of the target mesh is usu-
ally achieved by shrinking the step length. An overly
aggressive shrinking step length strategy usually re-
sults in a slow convergence, while an overly loose strat-
egy cannot achieve the desired goal. The author pro-
poses a strategy of shrinking layers. For segment e in
each iteration, suppose the ideal vertical height calcu-
lated by user input as V ideal

e =
�kmax

k=0 αγk, where α is
the height of the first layer, and γ is the growing ratio.
Then, the distance between the 0 layer and kmax layer
center of e as V current

e = 1
dim

�dim

j=1 ||v
0
e,j − vkmax

e,j ||,
where ve,j) denoted the coordinate of vertex of sim-
plex e. We can calculate the vertical size in the next
iteration as follows:

V
k
e =
�

V current
e V ideal

e (2)

Since equation 2 is related to the current height, af-
ter each iteration, the target mesh needs to be re-
calculated, including the gradient. Obviously, V k

e >

V current
e , so the height of the target mesh is higher

than the height of the existing iteration mesh. After
several iterations, this value will eventually converge.



(a) (b)

Figure 5: Illustrative example of the adjustment of the vertical size of target mesh and final mesh. The subfigure connected
by the solid line in the upper right corner of each figure shows the zoom-in view of triangles, and the subfigure connected
by the dotted line in the lower right corner shows the corresponding target mesh (a) the final mesh with vertical size
adjustment. (b) the final mesh without vertical size adjustment.

Figure 6: Illustrative example of the adjustment of the
horizontal size of the target mesh.

3.3 Multiple Normals Configuration

Multiple normals configurations enhance the initial
mesh generation in both 2D and 3D. The configura-
tion adopts the notion of virtual input for PSLG. In
an extremely sharp convex point, a segment of zero
length is inserted at the sharp corners of the PSLG,
i.e., extra coincident points are generated at the sharp
corners so that the subsequent algorithm requires only
slight modification.

Figure 7 shows the mesh comparison after infinite iter-
ations between with and without multiple normal con-
figurations. An obvious extra normal can be observed
in Figure 7(a) compared with Figure 7(b). Figure 7(c)
shows the target mesh with multiple normal; We can
observe three extra target mesh straps marching from
the degenerated segment. It is worth noting that de-
generate triangles are discarded for the first layer of
extra straps of the degenerate segments, and only one
triangle is generated instead.

4. RIGID MAPPING

4.1 Problem Statement

Suppose the rigid mapping can be defined as φ : V ′ →
V, our target is to minimize the mapping energy:

min
V
E (φ)

s.t.M is self-intersection free.
(3)

Air mesh [26] is widely used to solve the global inter-
section problem of M, while the M is local intersec-
tion free if there are no flipped or negative oriented
area triangles in it. MA share the same nodes in the
outermost layer M. Therefore, the MA without fold
is equivalent to the M without global self-intersection.
Formally, suppose A(t) is the oriented area of trian-
gle (simplex) t, the problem 3 can be rewritten as:

min
V
E (φ)

s.t.∀t ∈ M, A (t) > 0

∀tA ∈ MA, A (tA) > 0

(4)

The energy function determines the shape of the final
mesh. And proper energy function and precise control
of step size by line search [30], e.g., energy function
with zero barriers, can prevent negative simplex.

4.2 Energy Definition

4.2.1 Rigid Mapping Energy

Rigid distortion energy has been well-studied in mesh
deformation and surface parameterization. Suppose
the Jacobian of the map φ computed from each sim-
plex f ∈ F :

Jf := ∇φf (5)
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Figure 7: The final mesh and target mesh of a sharp convex example with and without multiple normals configuration. (a)
the final mesh with multiple normal generates an extra normal on the convex point. (b) the final mesh without multiple
normals. (c) the target mesh with multiple normal, the mesh size of the extra segment gradually increases with height. In
particular, the first layer’s target mesh only has one triangle.

Where φf is the restriction of φ over the simplex f ,
which is an affine map. Then we can denote the energy
as:

E (φ) =
 

f∈F

D (Jf ) (6)

Where D(·) is the distortion energy of each simplex.
The slight difference from the application in parame-
terization or mesh deformation is that we do not need
weight coefficients such as mesh area, etc. The phys-
ical properties of the boundary layer mesh determine
that the unweighted equation is enough.

Generally, conforming mapping contains those,
whether preserving the angle or preserving the scale,
and under the boundary constraint, these two condi-
tions conflict. The most popular form of rigid mapping
energy called ”as-rigid-as-possible” (ARAP) mapping
was proposed by Liu et al. [31], which is a famous map-
ping method that balances those two conditions, and
the distortion energy of it can be defined as:

DARAP (Jf ) = ||Jf −R (Jf )||
2
F (7)

Where R(Jf ) is the closest rotation to Jf , and || · ||F
denotes the Frobenius norm. The idea of finding the
closet rotation R is that if we use SVD to decomposite
J = UΣVT , R(J) = UVT as a rotate matrix, while
Σ stand for scaling. One of the advantages of this
energy is that it can be performed by the local/global
method [31].

4.2.2 Local/Global Iteration

The Local/Global Iteration method was first published
by Liu et al. [31]. This method unprecedentedly de-
composes the global deformation energy optimization
into local and global linear calculations, which makes
it possible to optimize the global energy by solving
only linear systems. The iteration is decomposite into
two steps:

1. Local the computation of the closest rotation
to Jacobian for complex f in k iteration Rk

f :=
UVT . (U and V is the first and the third part of
SVD decomposition of the Jacobian)

2. Global the computation to solve a global linear
equation 7 that minimizing the distortion energy
as:

argmin
Vk

(
 

f∈ (F∪FA)

||Jf (Vk)−R (Jf (Vk−1))||2F )

(8)
This equation is simple quadratic energy if R is
known since we can rewrite it as the most cele-
brated weight recipes are the so-called cotangent
weights [32]. Thus the extreme point of the en-
ergy can be obtained by solving a linear equation.

4.2.3 Symmetry Dirichlet Energy

According to the author’s experiment, DARAP did not
apply to the boundary layer mesh. In this manuscript,



we chose one of its variants: another rigid mapping
energy called Symmetry Dirichlet Energy proposed by
Jason Smith [30] is utilized to measure the distortion,
which has been proved rotation invariant:

DSDE (Jf ) = ||Jf ||
2
F + ||J−1

f ||2F =

dim
 

i

(σ2
i + σ

−2
i ) (9)

Where σi is the eigenvalue of Σ, or say the singular
value of J, dim means the dimension of the problem.
Apparently, the equation 9 is singular when σ is taken
to 0. Moreover, the geometrical meaning of σ = 0 is
that the triangle has completely degenerated, and the
area is 0.

In order to take advantage of the local/global method
while using the symmetry Dirichlet energy, Jiang et
al. [22] proposed the Weighted Proxy Functions, which
extended the method to the anisotropic weights. We
can rewrite the distortion measure as follows:

DW

SDE (Jf ) = ||W (Jf −R (Jf ))||
2
F (10)

Where W is the 2 x 2 proxy matrix. The proxy matrix
arbitrary energy D (J) can be written as:

W = (
1

2
∇JD (J) (J−R)−1)

1

2 (11)

Suppose J = UΣVT is the singular value decomposi-
tion of J and I is the identity matrix. Since then the
energy of equation 9 is rotate invariant, the equation
12 can be rewritten as:

W = U (
1

2
∇ΣD (Σ) (Σ− I)−1)

1

2U
T = UΣWU

T

(12)

For the energy of equation 9, the proxy matrix is:

ΣW = (
σi − σ−3

i

σi − 1
)
1

2 (13)

Come back to equation 10, both R and W can be
calculated by the current State, thus minimizing the
equation 10 is also equivalent to solving a linear equa-
tion. Therefore, local/global method is also available:

1. Local the computation of the R and W

2. Global the computation to solve a global linear
equation.

4.2.4 Air Mesh Energy

The intersection detection of the air mesh is also
handled by equation 9. No self-intersection happens
by controlling the energy away from the singularities
without crossing over it in each iteration. Therefore,
the two constraints of Problem 4 are both held by the
equation 9.

The air mesh quality is not as important as the bound-
ary layer mesh; thus, in each iteration, the air mesh
in the last round is chosen as the target mesh of the
air mesh. Formally, suppose the Mk−1

A = (Vk−1
A ,F)

as the air mesh in k − 1’s round of iteration, the rigid
mapping of air mesh can be defined as ψ : Vk−1

A → Vk
A.

By putting the air mesh and boundary layer mesh into
the same frame of consideration, the proposed method
is implemented by optimizing the following equations:

min
V
E (φ) + λE (ψ)

s.t.∀t ∈ F , A (t) > 0

∀tA ∈ FA, A (tA) > 0

(14)

Because we only care about the singularity of ψ, the
choice of λ is small enough to guarantee the function-
ality of Air Mesh with little to no effect on the final
result. In our experience, λ = 1

10000||F||
, where ||F||

represents the number of simplexes in F .

The computation of E(ψ) follows the same pattern as
E(φ). Because they share points on the boundary,
they are calculated together, and the only difference
is the weights, which are decided by the flexible factor
λ.

4.3 Positive Volume Gurantee

Since the solution of equation 14 may cause flip or
self-intersection(The simplex f with det(Jf ) < 0 may
still have small energy according to equation 9), the
simple application of the solution is not enough. In the
same way as the method used in the above papers,
the authors also used the Line-Search to avoid self-
intersection mesh. The Line-Search is a widely-used
technique for optimization first published as detailed
in Nocedal et al [33]. Suppose the Vk and Vd is the
coordinate of kth and k + 1th iteration, and if we can
guarantee that the direction of optimization must lead
to energy reduction, then there must exist an α such
that the energy of Vk+1 = αVk + (1− α)Vd is smaller
than Vk while ensuring the there is no flip or self-
intersection.

This is a guarantee of the robustness of the whole algo-
rithm. Negative cells are fatal to the simulation. Also,
the algorithms using line search are usually sensitive
to the choice of the optimization direction.



5. POST PROCESS

5.1 Retention Layer

Generally, one of the common criticisms of the bound-
ary layer mesh is that anisotropic meshes leave too
small of a gap after generation, making high-quality
isotropic mesh generation a hard problem. Therefore,
the top layer of the boundary layer mesh is used as the
retention layer to avoid narrow gaps. Thus, boundary
layers will retain a gap height of at least two preserv-
ing layers. A control parameter β is used to control
the ratio between the height of the reserved layer and
the default height. Figure 8 compares the retention
layer and the final mesh at β = 0.1 and β = 2.

Figure 8: The retained layer schematic and final mesh
at β=0.1 and 2.

5.2 Mesh Refinement

After removing the retention layer, the proposed al-
gorithm fills the remaining domain with an isotropic
mesh. Unlike the air mesh, the calculation of the size
field is driven by boundaries (Figure 1), and the num-
ber of mesh cells is significantly increased, which may
be more conducive to simulation calculations.

6. RESULT

6.1 IMR

The model contains three English letters, ”I”, ”M”
and ”R”. sharp concave corner can be found in ”M”,
and there exists a nested ring in ”R”. There are both
straight and curved turns in this example, as well as
sharp concave corner. There is also a narrow gap
at the bottom of the ”M” letter, making it difficult
to generate high-quality full-layer meshes. Figure 9
shows the mesh with air mesh under the different num-
ber of iterations. It can be seen that the mesh grad-
ually expands from the initial mesh, and after about
100 iterations, the mesh gradually expands to the ideal
height. There are also no extremely twisted elements
in the narrow gap.

The model contains three English letters, ”I”, ”M”
and ”R”. sharp concave corner can be found in ”M”,

and there exists a nested ring in ”R.” There are both
straight and curved turns in this example, as well as
sharp concave corner. There is also a narrow gap
at the bottom of the ”M” letter, making it difficult
to generate high-quality full-layer meshes. Figure 9
shows the mesh with air mesh under the different num-
ber of iterations. It can be seen that the mesh grad-
ually expands from the initial mesh, and after about
100 iterations, the mesh gradually expands to the ideal
height. There are also no extreme, twisted elements
in the narrow gap.

Iteration:0 Iteration:5

Iteration:10 Iteration:20

Iteration:30 Iteration:40

Iteration:100 Iteration:inf

Figure 9: The initial mesh and the air mesh of the IMR
English letter model by a different number of iterations.

6.2 30P-30N airfoil

To further verify the method, a complex configuration
of a 2D three-element airfoil, the 30P-30N airfoil, is
tested. Figure 11 shows the initial and target mesh
under the different number of iterations. In this ex-
ample, after 300 iterations, the mesh quality at the
narrow gap increases as the height of the target mesh
decreases. Figure 10 shows the final layered mesh, the
details of the gaps are shown in the two subfigures at
the bottom, and the algorithm in this manuscript can
handle the narrow gap at the cross-region of different
assemblies.

6.3 U-shape

An academic example named U-shape is introduced to
demonstrate the preliminary results obtained by the
program in 3D. The U-shape model is a small box
obtained by the Boolean subtraction of two cubes of



Figure 10: The final mesh of 30P-30N airfoil.

different sizes. As shown in Figure 12, the input sur-
face mesh contains 3,102 points and 6,200 triangular
meshes, and 45 layers of prismatic mesh generate ini-
tially. Figure 12 shows the final prismatic mesh after
the different number of iterations. The result indi-
cates that at least 100 iterations are required for the
program to obtain a high-quality mesh.

To demonstrate the effectiveness of the proposed al-
gorithm, the author compares the final mesh with the
commercial software Pointwise, a piece of prevalent
commercial software for meshing tasks with the same
surface input. Figure 13 shows the cut-view compar-
ison between the two meshes, and we can see that
Pointwise cannot generate a complete mesh near the
concave corner. In addition, Equiangule Skewness2

is utilized to measure the mesh quality. Figure 14
shows the quality distribution of the two meshes. Since
lower-quality meshes are more harmful to simulation,
a logarithmically vertical axis is presented in the com-
parison. It can be observed that the algorithm pro-
posed in this manuscript is ahead of Pointwise in this
indicator. Moreover, the worst quality usually plays a
decisive role in the simulation convergence speed and
accuracy. The author compares the maximum prism
equiangle skewness of the two meshes, and the results
of the proposed algorithm (0.9914) outperform Point-
wise (0.9504).

6.4 DLR F6(One Layer)

The method proposed in this manuscript is very time-
consuming in 3D. Due to the limitation of running
time, we only generate one layer thick boundary layer
mesh in the F6 model. This is a challenging task for
highly curved surface [34]. Figure 15 shows the com-
parison of the input surface mesh (the green part) and
the outermost surface mesh (the white part) of the fi-

2https://www.pointwise.com/doc/user-
manual/examine/functions/equiangle-skewness.html

nal prismatic mesh. Figure 16 shows the detailed pris-
matic mesh around the connection point of the aircraft
hanger from different views. It can be seen that the
prismatic mesh is full around complex corner points.
The generation of this example takes about 15.0 hours,
and the mapping energy is reduced from 1.5× 1016 to
6.5× 108. A single-layer mesh is simulation meaning-
less, but it may open a door for large-scale full-layered
prismatic mesh generation.

7. CONCLUSION AND LIMITATION

This article presents a novel robust method for full-
layer boundary layer mesh generation. By defining
the target mesh and initial mesh Symmetry Dirichlet
mapping Energy, we can gradually expand any thin
initial mesh to the ideal through iterations. In addi-
tion, the proposed algorithm will dynamically adjust
the size of the target mesh for better boundary layer
mesh quality. We achieve good results in 2D and some
preliminary results in 3D, along with multiple normal
configurations.

However, the current version of the proposed method
in 3D has a huge time bottleneck. This is because Vk

of equation 8 needs to be obtained by solving a linear
equation. This linear equation system has a sparse
matrix with a row of (number of prisms × 18) and a
column of (number of mesh points). Considering the
boundary layer meshes in real industry, the quantity
of mesh often exceeds one million. Whether the iter-
ative or direct solution is used, it will be very time-
consuming to solve this linear equation system. In
addition, its convergence speed is also relatively slow,
and it takes more than 500 iterations to obtain good
results. Though the current version has a time bot-
tleneck, the proposed algorithm may have engineering
potential due to its robustness if we can overcome the
time performance issue in the future.
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