
A METHOD FOR ADAPTIVE ANISOTROPIC

REFINEMENT AND COARSENING OF PRISMATIC

POLYHEDRA

Sandeep Menon1 Thomas Gessner2

1Ansys Inc, Chicago, IL, U.S.A. sandeep.menon@ansys.com
2Ansys Inc, Lebanon, NH, U.S.A. thomas.gessner@ansys.com

ABSTRACT

A method is proposed to enable the anisotropic refinement and coarsening of prismatic boundary-layer polyhedra
within the context of unstructured polyhedral meshes for viscous flow simulations using computational fluid dy-
namics. The method is compatible with the Polyhedral Unstructured Mesh Adaptation (PUMA) algorithm for
the isotropic refinement and subsequent coarsening of general polyhedral cells. This allows simulations to leverage
the full flexibility of polyhedral meshes for adaptive mesh refinement, while retaining the benefits of an improved
accuracy-to-computational cost ratio.

Keywords: mesh adaptation, refinement, coarsening, anisotropy, polyhedra

1. INTRODUCTION

Polyhedral meshes have been established over the past
two decades and are now widely supported in commer-
cial and academic CFD codes [1][2][3]. For the finite
volume method [4], polyhedral meshes combine the
ease-of-use of unstructured tetrahedral mesh genera-
tion with the superior numerical properties [5][6] of
hexahedral or structured meshes that are more chal-
lenging to generate automatically. The finite volume
method does not impose any restrictions on the num-
ber of faces bounding a control volume in the mesh and
consequently the number of neighbors per cell. The
larger number of neighboring cells enables an enriched
stencil and therefore the better approximation of gra-
dients. This results in improved solution accuracy and
faster convergence with fewer cells when compared to
tetrahedral meshes [5][6] and an overall gain in com-
putational efficiency.

Adaptive mesh refinement for numerical simulations
has a rich history spanning nearly four decades [7][8],
with the intention of balancing numerical accuracy
with reduced computational cost. Traditional meth-

ods for mesh refinement employ templates based on
cell type, and in the case of isotropic refinement, split
these cells equally along all directions. Anisotropic
methods have also been explored at various times, as
a means of reducing the computational cost further
by preferring certain directions for refinement while
ignoring others that are irrelevant to the physics be-
ing resolved. Metric-based anisotropic methods, in-
troduced for three-dimensional meshes in [9], are most
commonly used. These methods on triangle / tetra-
hedral cells have the attractive ability to align closely
with significant flow features such as shocks and fluid
interfaces, which significantly reduces computational
cost while maintaining accuracy within the bulk of the
domain [10] [11]. But since metric-based methods are
generally tied to specific mesh cell types or grid hier-
archies [12] they do not leverage the full flexibility of
polyhedral meshes that are widely used for finite vol-
ume discretizations. Furthermore, these methods and
are generally unable to recover the original mesh. And
simplicial meshes also come with the drawback of ex-
cessively diffusive solutions (when discretized with a
second-order finite-volume scheme).



Due to the increased popularity of polyhedral meshes
and hybrid meshes that combine polyhedral boundary
layer elements with size-field based hexahedra meshes
away from the boundaries [13], it becomes imperative
to accommodate these types of meshes for adaptive
mesh refinement when possible. This was the impe-
tus behind the PUMA algorithm [14] that was devised
for Ansys Fluent and is widely used for that purpose
today. The PUMA method can be regarded as a gen-
eralization of the hexahedral refinement template for
arbitrary polyhedra and can therefore accommodate
all traditional cell types such as tetrahedra, hexahe-
dra, prisms and pyramids as well.

2. METHODOLOGY

Prior to the description for anisotropic mesh refine-
ment, it is necessary to define terms used for isotropic
refinement, since they become significant during the
discussion of transitions from refined to un-refined
areas of the mesh and the compatibility between
isotropic and anisotropic mesh adaptation. More-
over, the definitions in this section are generalized for
anisotropy at a later stage.

2.1 Isotropic PUMA Terminology

The concept of a “refinement level” is introduced at
mesh elements (such as nodes, faces and cells), which is
a numerical value denoting the hierarchy of refinement
levels (see Figure 1). It is initialized to zero for an
unrefined mesh and is incremented by one for each
additional level of refinement. In general, the mesh
adaptation is constrained such that adjacent cells do
not differ by more than one level of refinement. The
isotropic refinement algorithm begins with the faces of
the original polyhedral cell, referred to in this context
as “parent” faces or cells, which are subsequently split
into “child” faces and cells after refinement. For each
face of the polyhedral cell, a mid-node is introduced.
The coordinate of this mid-node is typically at the
face centroid, but this can be adjusted based on other
conditions such as mesh quality. The quality metrics
used for polyhedral cells is based on the alignment of
the vector pointing from one adjacent cell to the other
and the face normal as in [5]. Avoiding large angles
between these vectors is crucial to obtain acceptable
results for a finite-volume discretization.

For each edge of the face under consideration, a new
mid-node is introduced, typically at the edge centroid.
For anisotropic refinement within boundary layers, it
is sometimes convenient to choose a mid-edge location
closer to one of the nodes. This fraction of the length
to the splitting point over the original edge-length is
defined as the split-ratio. For the edge centroid, the
split-ratio would be 0.5. The refinement level of the

Figure 1: Isotropic refinement levels at nodes

Figure 2: Subtending a child to cell mid-point

new mid-edge node is designated as an increment to
the current face refinement level. For each node in the
parent face, a new quadrilateral child face is created by
connecting the mid-edge nodes along with the mid-face
node and the original face node. A node is introduced
at an appropriate location within the polyhedral cell.
The cell centroid is a convenient choice, but this can
be altered based on the requirements of mesh quality
after refinement. For each node in the parent cell, a
new child cell is created by connecting the mid-edge
nodes along with the mid-face nodes (Xf0,1,2), mid-
cell node (Xc) and the original cell node (Xn) (see
Figure 2).



It is worthwhile to note that the isotropic refinement
of arbitrary polyhedra typically results in a mesh that
is largely hexahedral (see Figure 3), and subsequent
refinements can be optimized to deal with hexahe-
dral cells. At the transition between refined and non-
refined cells, the connectivity of the non-refined cells
must then be updated to account for additional nodes
and faces arising from refinement. This can be done
quite efficiently by tagging adjacent cells as they are
being refined, and then processing tagged cells for up-
dates after the refinement step is complete.

Figure 3: Exploded view of a refined polyhedral cell

2.2 Anisotropic PUMA Terminology

The case for anisotropic PUMA is a specialization of
the isotropic method for prismatic polyhedral cells.
These cells are typically encountered at the bound-
ary layers of viscous polyhedral meshes and consist of
polygonal lower / upper faces with an equal number
of nodes that are connected by quadrilateral faces on
the side. Once these cells have been identified within
the original polyhedral mesh, it is now possible to de-
fine two modes of anisotropic mesh adaptivity, namely,
tangent (Figure 4) and normal (Figure 5) refinement.

It is immediately apparent that both modes of
anisotropic refinement split a prismatic polyhedral cell
in a specific direction while avoiding the other. This
allows mesh refinement to be guided towards flow fea-
tures that have a directional bias, while avoiding in-
creased mesh resolution in directions that do not re-
quire it. Tangent refinement is well suited for tur-
bulent flows with specific y+ requirements, because it
increases mesh resolution in the wall-normal direction,
while keeping the span-wise resolution intact. Normal

refinement is typically used to reduce the aspect ratio
of prismatic cells in a boundary layer. An example
for which high aspect ratio prisms can be challenging
are overlapping overset meshes [15] where local normal
refinement can reduce cell size jumps between meshes
resulting in a robust mesh intersection without orphan
cells [16].

Figure 4: Tangent refinement

Figure 5: Normal refinement

Both modes can also be applied in a sequential manner
to a prismatic parent cell in order to achieve isotropic
refinement within the boundary layer, as shown in Fig-
ure 6. In the upper transition, normal refinement is
applied to the parent cell, followed by tangent refine-
ment on each of the child cells. For the lower tran-
sition, tangent refinement is first applied, followed by
normal refinement on the two child cells. Both transi-
tion modes yield the same isotropic result.

Figure 6: Sequential application of anisotropic modes
for isotropic refinement

The first step while performing tangent or normal re-
finement is to identity the prismatic cells in a given
mesh. Using the cell type makes this trivial for wedge
elements, but hexahedral and polyhedral prisms re-
quire additional flagging of top and bottom faces to
define the normal or tangent direction. This is typi-
cally done by visiting the boundary faces of the mesh
and checking whether adjacent cells are prismatic i.e.,
they possess unique top and bottom faces with an
equal number of nodes and they have quadrilateral
side faces. Thereafter, each subsequent layer of pris-
matic cells is detected and flagged by a face-cell walk



through top and bottom faces discovered in the pre-
vious sweep, until cells are no longer prismatic. In
situations involving hexahedral cells adjacent to mul-
tiple mesh boundaries, the top and bottom faces are
no longer unique and therefore such cells are ineligible
for anisotropic refinement.

Figure 7: Separation of anisotropic refinement levels

While a scalar refinement level is sufficient to describe
isotropic refinement levels, it is required to distin-
guish between levels for each refinement mode in the
anisotropic situation. Every node, face and cell in the
prismatic boundary layer is now described with a nor-
mal and tangent refinement level, with the isotropic
refinement level set to the maximum of both. Tak-
ing the example of tangent refinement, both child cells
will possess a tangent refinement level that is one level
higher than the parent, while the normal refinement
level remains the same. The converse of this situation
occurs for normal refinement. It follows naturally that
the mid-point of a face matches the isotropic refine-
ment level, and this characteristic can be used to seam-
lessly transition between isotropic and anisotropic re-
gions of the mesh for refinement.

This scheme is depicted in Figure 7 for anisotropic re-
finement of a wedge cell, but it can be extended to any
arbitrary prismatic polyhedral shape. The first image
shows the original wedge cell with both normal and
tangent refinement levels at nodes initialized to zero.
The second image shows one level of normal refinement
into three prismatic child cells, where the mid-nodes
possess a normal refinement level of one, but the tan-
gent refinement levels remain at zero. The final image
shows the tangent refinement of one of the child cells,
where the tangent refinement level is incremented by
one, while the normal levels remain unchanged.

Tangent refinement is typically the preferred mode in
the boundary layer, as it aligns with the flow direc-
tion and captures viscous effects quite well. However,
a common scenario is the introduction of isotropic re-
finement via the cell capping the prism layer. In this
situation, it is important to refine the entire prism
stack with normal refinement to maintain the one-level
balance constraint and to avoid a local degradation of
the cell quality as introduced above. Naturally, when
cells in the boundary layer are already marked for tan-
gent refinement, the introduction of normal refinement
results in those cells being refined isotropically. This
is depicted in Figure 8.

Figure 8: Normal refinement through the stack

2.3 Coarsening with PUMA

Coarsening is the process of reverting changes due to
refinement in order to recover the original mesh. This
typically requires the maintenance of some form of re-
finement history, which describes the relationship be-
tween parent and child entities. One possible approach
is to retain all parent entities after refinement and re-
instate them during coarsening after discarding their
children. However, this leads to a significant increase
in memory usage and is only applicable to the hanging-
node style of adaptive mesh refinement [8][17], where



the cell type typically does not change. The coarsening
step is also constrained such that the one-level balance
between adjacent cells is maintained. The PUMA ap-
proach for maintaining refinement history described in
this section is very lean in terms of memory usage and
is applicable to both isotropic and anisotropic coars-
ening.

The first step is to recognize that parent faces and cells
are not stored during the refinement process and must
therefore be recovered by agglomerating children. This
requires the identification of all children that belong
to a given parent. A lean way to achieve this is by
defining a unique “parent index” that will be assigned
to each child face or cell of the parent that is refined.
This can be any arbitrary integer, with the only con-
straint that all children of a parent must possess the
same unique value.

Figure 9: Refinement history for first level

Figure 10: Refinement history for second level

This is depicted in Figure 9 for one level of refinement
of an element (face or cell) into 4 children. During the
refinement step, a unique parent index is generated (in
this example, the integer 735) and assigned to each
child. It is assumed that elements with a parent index
of zero denote the coarsest level of the mesh. For a
second level of refinement in this example, element
2 is refined into 4 children, while other elements are
left unrefined. In this case, another unique index is
generated (integer 842 in this example) and assigned

to each child, as shown in Figure 10.

At this point, however, element 2 no longer exists in
the mesh (since parent elements are not stored) and
therefore, a separate “history map” is introduced with
a single entry which maps 842 to 735. During the
coarsening stage for all elements that share index 842,
the parent is first created by agglomerating all chil-
dren, followed by a lookup in the history map to de-
termine the parent index for the new element (namely,
index 735). This approach can be repeated for each
additional level of refinement, and the only storage
cost incurred for each new element is a single integer
along with a history map entry for each parent.

Once all children of a parent have been determined,
the actual process of coarsening first involves the de-
tection of common interior entities (i.e., interior edges
for child faces and interior faces for child cells) which
are subsequently marked for removal from the mesh.
For groups of child cells, discovering common faces
among them is a trivial step. Once these interior faces
have been identified, they are removed from the mesh,
leaving the bounding child faces on the parent cell.
The next step is to identify whether child faces shar-
ing the same parent index point to the same parent
cells on each side (or just one side for boundary faces),
which indicates that these child faces are candidates
for coarsening into a parent face. Child faces that
point to different cells are left in the refined state.

Figure 11: Edge adjacency while coarsening faces

While coarsening child faces, there is the additional
constraint that resulting edges must form a counter-
clockwise chain around the parent face centroid / nor-
mal, according to the right-hand rule. This can be
achieved by adding directed edges of all child faces into
an edge adjacency graph, as shown in Figure 11. The
next step is to loop through each node, check its ad-
jacency list and remove duplicate edges for each node
on that list. For example, while testing node 0, the
only entry in its adjacency list is node 1, but node 1
only has nodes 8 and 2 on its list but not node 0 and



so, the adjacency list is left unmodified. While check-
ing node 1, it is seen that node 8 is on its adjacency
list, and node 8 also has node 1 on its adjacency list,
indicating that it is a duplicate interior edge that can
be removed. This process is repeated for subsequent
nodes and a single pass through the list is sufficient
to remove duplicates. The final graph contains a list
of nodes with a single entry in each adjacency list, in-
dicating the next node in the chain. At this point,
constructing the parent face is as simple as picking
a node and following its adjacent node, adding each
one to a list until the first node is reached, thereby
completing the chain.

The size associated with this history storage approach
for a sample polyhedral mesh that has been uniformly
refined several times is shown in Table 1. It can be
noted that the memory consumption is a single integer
for each face and cell (for the parent index) and a
tuple of integers for each entry in the face and cell
history maps. The history maps are only required after
the first level of refinement. For most simulations,
the default of two levels of refinement is sufficient as
it provides a significantly improved spatial resolution
while constraining the total cell count over time for
efficiency.

Level Mesh Size History Map Size
(Tuple Count)

Face Cell Face Cell

Initial 660 119 0 0
1 5,944 1,851 0 0
2 46,088 14,858 3,155 1,851
3 362,848 118,964 26,931 16,709
4 2,879,360 951,912 211,283 135,673

Table 1: History storage cost for multiple levels of
uniform refinement on a sample polyhedral mesh

2.4 Distributed Parallel PUMA

Maintaining the scalability of Ansys Fluent [18], a dis-
tributed parallel flow solver, was a requirement for the
PUMA algorithm. This was achieved by embedding
load-balancing and migration into the mesh adapta-
tion algorithm and by avoiding any constraints on the
distribution of cells across partitions. The latter can
easily be achieved for cell refinement which is entirely
local to a partition and can proceed normally. How-
ever, cell coarsening can span several child cells dis-
tributed across multiple partitions, as shown in Fig-
ure 12, which typically occurs as a result of a load-
balancing step that maintains an equal distribution of
cells.

A convenient choice is to encapsulate all children of
a parent cell on the same partition, which effectively

Figure 12: Coarsening of cells distributed across par-
titions

restricts all partitioning methods to use the coarsest
level of the mesh while distributing cells. While this
simplifies coarsening behavior, it can significantly af-
fect flow solver performance, particularly for simula-
tions that involve higher refinement levels.

The chosen approach is to accept non-encapsulated
cells in the coarsening algorithm by extending the
parallel communication layer to include an additional
layer of node-connected cells. The resulting parent
cell after coarsening is assigned to one of the parti-
tions after discarding all children. This removes all
restrictions for mesh partitioning and significantly im-
proves solver scalability, with the minor cost of ensur-
ing that all parent indices are unique across all parti-
tions, which is typically achieved with a few global
communication calls during the mesh manipulation
step.

3. EXAMPLES

This section will demonstrate the use of the isotropic
and anisotropic adaptation algorithms described in
Section 2 with a few examples.

3.1 Refinement of a Tetrahedral Mesh
with Boundary Layers

The first example depicts the refinement of a mixed
tetrahedral mesh with layers extruded from one half of
the bottom boundary that contains quadrilateral faces
as shown in Figure 13. The first layer of hexahedral
cells adjacent to the bottom boundary is subsequently
refined in the tangent direction with a split ratio of 0.3,
while two tetrahedral cells adjacent to the boundary
layers are refined isotropically.

The isotropic refinement of the tetrahedral cell at the
top of the boundary layer forces normal refinement
through the stack. The split ratio of 0.3 is also re-
spected throughout the layer, except at the transition
to the isotropic tetrahedral region at the side, where
a split ratio of 0.5 is maintained. This refinement
scheme also shows the applicability of the method to
situations involving stair-stepping within the bound-



Figure 13: Refinement example of a tetrahedral mesh
with boundary layers

ary layer, where a non-uniform number of layers may
be present adjacent to any mesh boundary.

3.2 Isotropic PUMA for the Dam Break
Problem

This example is a computational fluid dynamics case
depicting the dam break problem with an obstacle
placed within the domain, where the gas-liquid in-
terface is modeled using a Volume-of-Fluid approach,
along with adaptive time-stepping. The fluid is al-
lowed to evolve over time under the influence of grav-
ity. Various stages of the simulation are shown in Fig-
ure 14.

The mesh has an initial count of 111276 cells and is
adaptively refined and coarsened at every other time-

Figure 14: Evolution of dam break problem with
adaptive mesh refinement at time-steps: 0, 5000,
15000

step with a maximum of two refinement levels imposed
throughout the course of the simulation. The crite-
ria for refinement and coarsening are defined by the
normalized gradient of the gas-liquid volume-fraction.
Any cell is refined if the magnitude of this gradient is
larger than a specified threshold value and coarsened



if the gradient falls below a second (lower) threshold
value. Two refinement levels applied globally corre-
spond to a mesh with a cell count of about 18.2 mil-
lion. The dam break results match the fidelity ob-
tained on a mesh of this size with a significantly lower
cell count and computational cost. The mesh is au-
tomatically load-balanced during an adaptation step
when the difference between maximum and minimum
cell count per core exceeds 5% of the total cell count.
The total wall-clock time of the flow-solver and mesh
adaptation for 500 time-steps are shown in Figure 15
for various core counts.

Figure 15: Comparison of flow solver and mesh adap-
tation at various core counts

In this case, the count after 500 time-steps is roughly
4000 cells per core on 64 cores and far from ideal.
Nevertheless, the adaptive mesh refinement step along
with load-balancing, maintains the scalability of the
flow solver at these low cell counts per core as shown
by the blue bars. Since any form of mesh manipulation
comes with a certain fixed cost related to migration,
garbage collection and establishing a parallel commu-
nication layer, irrespective of the number of cells in-
volved in the operation, the performance of the mesh
adaptation shown in the orange bars only improves up
to 32 cores where its cost is comparable to the flow-
solve. It should also be noted that most simulations
can proceed with a lower frequency of an adaptation
every 5 or 10 time-steps, as opposed to 2 in this case.
The relative cost of each of these operations over 15000
time-steps for this simulation using two different con-
figurations of computational cores and adaptation fre-
quencies is shown in Table 2.

The flow solver dominates the simulation time, as
anticipated, with the adaptation and load balanc-
ing steps consuming a relatively small fraction. The
preparation phase involves the estimation of cell qual-
ity after refinement / coarsening. The cleanup phase
encompasses steps related to garbage collection, solver

Operation 16 cores 24 cores
frequency = 2 frequency = 10
Time (s) % Time (s) %

Flow 111989 75.8 47709 87.9
Adaptation 35050 23.7 5799 10.7
- Prepare 14846 10.1 2038 3.75
- Refinement 3233 2.18 687 1.26
- Coarsening 2789 1.89 460 0.85
- Cleanup 12680 8.58 2304 4.24
Balance 680 0.46 771 1.42

Total 147719 100 54279 100

Table 2: Relative cost of individual operations on 16
cores (frequency 2) and 24 cores (frequency 10)

array compaction and parallel communication layer
setup. These phases of the adaptation process con-
sume the bulk of the computation involved, while
the actual refinement / coarsening steps are relatively
cheap. The load balancing step is an expensive step
but it is called infrequently and so, it consumes a very
small percentage of the overall simulation time.

3.3 Anisotropic PUMA for Fuselage, Wing
Configuration

The next example is an external aerodynamics simu-
lation of a hypothetical aircraft with a wing and fuse-
lage. The initial mesh consists of 340223 cells and a
single boundary layer defined throughout the body of
the aircraft as shown in Figure 16. The inlet flow is
defined as Mach 0.6 with a gauge pressure of 35606Pa
and assumed to be steady state. The pressure-based
flow solver is used with SIMPLE for pressure-velocity
coupling and the k − ω SST turbulence model.

Figure 16: Initial mesh of aircraft

Eight successive levels of anisotropic tangent refine-
ment are applied on all surfaces and the minimum /
maximum y+ values are computed at each step to de-
termine whether sufficient mesh resolution is achieved
to compute a reasonably accurate solution within the



boundary layer (see Table 3), demonstrating the de-
sired y+

≈ 1 being achieved with the addition of
only 201809 cells. Achieving the same y+ goal with
isotropic refinement would result in a significantly
higher increase in the number of cells.

Pressure [Pa] y+ Cell
Count

Min Max Min Max

0 12473.3 45153.3 0.52 240.8 340,223
1 13110.6 45310.3 0.34 134.6 382,556
2 15432.4 45481.3 0.12 73.8 424,479
3 17580.6 46318.6 0.03 37.9 464,816
4 17149.7 46927.4 0.06 18.5 495,199
5 17819.9 46948.7 0.06 9.4 517,993
6 17783.7 46888.0 0.07 4.6 532,775
7 17775.8 46887.0 0.09 2.3 538,871
8 17756.6 46887.5 0.08 1.1 542,032

Table 3: Comparison of min / max y+ vs. cell count

Figure 17: Contour plot of y+ distribution across
aircraft body

Figure 18: Tangent refinement detail at Level 8

A contour plot of the y+ distribution across the sur-
face of the wing / fuselage after 8 levels of refinement
is shown in Figure 17. A uniform splitting ratio of 0.5
is used in this case, and the distribution is largely dic-
tated by the single boundary layer on the initial mesh,

but it is also possible to locally adjust the refinement
ratio account for a variable layer height at each cell.
Details of tangent refinements at Level 8 near the front
of the aircraft are shown in Figure 18.

3.4 Combined Isotropic and Anisotropic
PUMA for Space Capsule Re-entry

The final example is the simulation of a space capsule
under hypersonic re-entry conditions with an angle-of-
attack of -25o. The trajectory, velocity and ambient
fluid conditions represent the vehicle passing through
the earth’s atmosphere at an altitude of 50km. The
initial mesh consists of 104581 polyhedral cells includ-
ing 15 prismatic polyhedral boundary layers defined
around the body of the capsule as shown in Figure
19. The inlet flow is defined as Mach 17 with a gauge
pressure of 25Pa and assumed to be steady state.
The fluid is modeled as an ideal gas using the two-
temperature model to account for compressibility and
thermophysical variations. The steady-state density-
based flow solver is used along with the high-speed
numerics. Turbulence is modelled with the k − ω tur-
bulence model.

Figure 19: Initial mesh of the space capsule

The simulation is initially run for 500 iterations, af-
ter which the mesh is adapted periodically every 250
iterations. The error-based Hessian criterion [19] is
used to identify cells in the domain for refinement and
coarsening, along with anisotropic refinement in the
boundary layers as needed. Snapshots of the adap-
tively refined mesh after 750 and 1500 iterations are
shown in Figure 20 and Figure 21 respectively. The
effect of tangent refinement in the prismatic bound-



Figure 20: Refined mesh after 750 iterations

Figure 21: Refined mesh after 1500 iterations

ary layers is immediately apparent. Additionally, nor-
mal refinement through the prism stack occurs due to
isotropic refinement at the transition from boundary
layers to regular polyhedral cells, resulting in the sur-
face refinement of the capsule. A contour plot for the
Mach number is shown in Figure 22, showing details
of the bow-shock captured by the local anisotropic re-
finement in the boundary layer.

The simulation was repeated using identical param-
eters without anisotropic boundary layer refinement,
and the comparison of cell counts at each adaptation
cycle is shown in Table 4. To capture the details of
the shock region, a significant amount of cells in the

Figure 22: Contour plot for Mach number

Iteration Cell Count
Isotropic Anisotropic

Initial 104,581 104,581
500 447,834 350,392
750 1,385,658 857,307
1000 4,478,563 2,227,375
1250 6,964,051 3,649,348
1500 8,963,725 5,335,096

Table 4: Comparison of cell count at each adaptation
cycle

boundary layer are marked for refinement, and the cost
savings of directional anisotropic refinement is imme-
diately apparent.

4. CONCLUSIONS

This paper demonstrates a new procedure to adap-
tively refine arbitrary polyhedral meshes, including
the anisotropic refinement and coarsening of prismatic
polyhedral cells in boundary layers. The refinement
scheme defines a conformal template that seamlessly
transitions between isotropic and anisotropic regions
of the mesh. The implementation is designed for a
distributed parallel environment where it maintains
the scalability of the flow solver via load-balancing.
The applicability of this adaptive refinement scheme
is demonstrated using several computational fluid dy-
namics tests that involve polyhedral meshes, with
the conclusion that reliably accurate solutions can be
achieved with a modest increase in calculation cost.
The introduced mesh adaptation method can be used
with any criterion that provides information where re-
finement and coarsening take place. Heuristic criteria,
error indicators or estimators can all be applied with-
out the need for the respective criterion to provide the
direction of anisotropic refinement.



References

[1] Simcenter STAR-CCM+. Siemens Industries
Digital Software, 2022

[2] Ansys Fluent. Ansys Inc, 2022

[3] Weller H.G., Tabor G.R., Jasak H., Fureby C.
“A tensorial approach to computational con-
tinuum mechanics using object-oriented tech-
niques.” Computers in Physics, vol. 12, 620–631,
1998

[4] Hirsch C. Numerical Computation of Internal and
External Flows (Second Edition). Butterworth-
Heinemann, Oxford, 2007

[5] Peric M. “Flow simulation using control volumes
of arbitrary polyhedral shape.” ERCOFTAC Bul-
letin, vol. 62, 25–29, 2004

[6] Spiegel M., Redel T., Zhang J., Struffert T.,
Hornegger J., Grossman R.G., Doerfler A., Kar-
monik” C. “Tetrahedral vs. polyhedral mesh size
evaluation on flow velocity and wall shear stress
for cerebral hemodynamic simulation.” Computer
Methods in Biomechanics and Biomedical Engi-
neering, vol. 14, no. 1, 9–22, 2011

[7] Berger M.J., Oliger J. “Adaptive mesh re-
finement for hyperbolic partial differential equa-
tions.” Journal of Computational Physics, vol. 53,
no. 3, 484–512, 1984

[8] Rivara M.C. “Algorithms for refining triangular
grids suitable for adaptive and multigrid tech-
niques.” International Journal for Numerical
Methods in Engineering, vol. 20, no. 4, 745–756,
1984

[9] Tam A., Ait-Ali-Yahia D., Robichaud M., Moore
M., Kozel V., Habashi W. “Anisotropic mesh
adaptation for 3D flows on structured and un-
structured grids.” Comput. Methods Appl. Mech.
Engrg., vol. 189, 1205–1230, 2000

[10] Alauzet F., Loseille A. “A Decade of Progress
on Anisotropic Mesh Adaptation for Computa-
tional Fluid Dynamics.” Computer-Aided Design,
vol. 72, 13–39, 2016

[11] Davies D.R., Wilson C.R., Kramer S.C. “Flu-
idity: A fully unstructured anisotropic adaptive
mesh computational modeling framework for geo-
dynamics.” Geochemistry, Geophysics, Geosys-
tems, vol. 12, no. 6, 2011

[12] Freret L., Williamschen M., Groth C.P.T. “En-
hanced anisotropic block-based adaptive mesh re-
finement for three-dimensional inviscid and vis-
cous compressible flows.” Journal of Computa-
tional Physics, vol. 458, 2022

[13] Zore K., Sasanapuri B., Parkhi G., Varghese A.J.
“Ansys MOSAIC Poly-Hexcore mesh for high-lift
aircraft configuration.” 21st Annual CFD Sym-
posium Conference. 2019

[14] Menon S., Gessner T. “PUMA (Polyhedra Un-
structured Mesh Adaption): A Novel Method to
Refine and Coarsen Convex Polyhedra.” 14th
U.S. National Congress on Computational Me-
chanics, Montreal, Canada. July 17-20, 2017

[15] Meakin R.L. Composite Overset Structured
Grids, Chapter 11. Handbook of Grid Generation.
CRC Press, 1999

[16] Parks S., Buning P., Chan W., Steger J. “Col-
lar grids for intersecting geometric components
within the Chimera overlapped grid scheme.”
10th Computational Fluid Dynamics Conference.
1991

[17] Verfürth R. “A posteriori error estimation and
adaptive mesh-refinement techniques.” Journal of
Computational and Applied Mathematics, vol. 50,
no. 1, 67–83, 1994

[18] Wasserman S. “Ansys Fluent
sets record with 129,000 cores.”
http://engineering.com/story/

ansys-fluent-sets-record-with-129000-cores,
2015

[19] Norman A., Viti V., MacLean K., Chitta V. “Im-
proved CFD methodology for compressible and
hypersonic flows using a Hessian-based adaption
criteria.” AIAA SCITECH 2022 Forum. 2022


