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ABSTRACT 

This paper presents methods for preparing a geometry model for finite element mesh generation in a Mechanical Computer-Aided 
Design (MCAD) environment. It works by creating a new representation of the model through the application of virtual topology 
operators. The resulting “analysis topology” description is used to abstract the analysis model, enabling automated tools and experts 
to apply an incremental strategy to decompose the model for meshing, without modifying the original CAD model. This work also 
demonstrated how virtual topology enables the integration of multiple model decomposition tools to expand the capabilities of the 
hosting CAD environment, providing support for more meshing strategies and more freedom in how they are applied, while 
bridging the gap between the CAD and analysis models. Herein, the virtual topology operators used to decompose the model are 
checked and propagated based on the required mesh constraints to ensure the resulting mesh is conformal at the interfaces. Finally, 
the methods required to decompose the original CAD model using the analysis topology description and “virtual geometry curves” 
are presented, enabling downstream automation of the mesh.  
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1. INTRODUCTION AND RELATED WORK 

Generating a good quality mesh is a major bottleneck in most 
finite element analysis workflows. The generation of high-
quality hexahedral (Hex) element meshes remains a highly 
skilled and user intensive task, which often requires the use 
of dedicated CAE packages into which the original CAD 
geometry needs to be transferred from the CAD 
environment. Hex elements are preferred over alternatives 
(e.g. tetrahedral elements) when simulating highly non-
linear events, using explicit analysis codes and for accurate 
contact capture between deformable bodies. A 
comprehensive survey by Sarrate et al. [1] highlights a wide 
range of approaches to hex meshing, as well as the benefits 
of using this element type. Decomposition-based approaches 
are widely used and involve partitioning the geometry of the 
model to be meshed into sub-regions with specific 
topological and shape characteristics which can be meshed 
using hex-meshing algorithms like mapping and sweeping. 

With decomposition and meshing accounting for more than 
50% of the time taken for the entire simulation task [2], 
automating aspects of the hex meshing task is a well-
researched ambition. Whilst the push toward fully automated 

hex-mesh generation for arbitrary domains has yet to yield a 
generic solution, it has resulted in many automated tools that 
are applicable to specific classes of geometry. These tools 
use either divide and conquer paradigms to recursively 
extract simple regions [3]–[6], or use intermediate constructs 
to capture the flow of elements and identify partitions [7]–
[10]. An extension of this is to apply the same divide and 
conquer paradigms in an integrated incremental 
decomposition workflow, where simpler tools alleviate the 
task of the more complex and computationally expensive 
ones. While analysts would greatly benefit from combining 
existing tools, their integration is challenging as standards 
for geometry exchange are not tailored for analysis models. 
Dedicated meshing packages such as CUBIT[11] already 
integrate various automated methods, but still resort to the 
judgment of the user to select the best partitioning strategy. 
These packages are also limited by the need to transfer the 
geometry from a CAD environment, and the difficulty to add 
additional decomposition methods. The shortcomings of 
fully automatic tools are also recognized in [12], where the 
benefits of semi-automated decomposition workflows are 
demonstrated using a manual sketch-based decomposition 
method enhanced by geometric reasoning [13]. 
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When a model is decomposed into sub-regions, a conformal 
mesh is required at the interfaces to successfully connect 
their respective meshes. The constraints of conformal hex 
meshing and structured mesh implications are reviewed by 
Blacker [14]. Previous work on generating conformal 
meshes using sweeping is described in [15] and [16]. Even 
though both are mesh-based methods tailored for one type of 
decomposition, they highlight the importance of interface 
management for conformal meshing. 

The benefit of using virtual topology for pre-processing a 
model for meshing has been presented by Sheffer et al. [17]. 
The concept involves creating virtual topology entities by 
applying virtual topology operators to the entities in the 
original CAD model, which are therefore based upon but do 
not alter the underlying CAD definition. To date it has 
mostly been used for correcting minor “defects” (e.g. to 
merge a sliver face with a larger adjacent face), with 
implementations focused on the final steps of the analysis 
model preparation process. Extending the use of virtual 
topology to the entire pre-processing stages would facilitate 
the integration of different automated tools, as the need to 
exchange geometry (e.g. decomposed CAD) and/or pre-
processing operations (e.g. split operation) is replaced by the 
need to exchange virtual topology operations. White [4] used 
virtual decomposition to automate hex mesh generation, 
where surface nodes of an initial mesh are reassigned to a 
virtual sub-region.  

More recently, Tierney et al. used virtual topology operators 
to generate an “analysis topology” based on the outputs of a 
decomposition algorithm [18]. The concept of analysis 
topology enables to streamline pre-processing tasks, by 
adding flexibility to the decomposition while exposing all 
the necessary information to manage interfaces and 
automate decomposition and meshing. However, the 
implementation in that work was limited by the need to edit 
automated tools to work using virtual topology, and the a-
posteriori identification of meshing strategies preventing 
further decomposition in the absence of a mechanism to 
maintain a conformal mesh at interfaces. Finally, generating 
a mesh from a virtually decomposed model requires either 
new meshing tools or robust geometrical decomposition 
capabilities for compatibility with existing meshing tools. 

This work builds on the analysis topology concept to enable 
incremental decomposition of CAD models for automatic 
hex meshing. The main contributions include introducing a 
method to integrate virtual topology with both existing tools 
and manual operations and a method to manage and exploit 
meshing strategies to propagate splits automatically. Finally, 
a method to ensure that the virtual topology decomposition 
can be applied geometrically for compatibility with 
downstream meshing is presented. 

2. INCREMENTAL DECOMPOSITION FOR 
MESHING 

Incrementally decomposing a model for meshing involves 
identifying and extracting individual regions of the geometry 
to which known meshing algorithms can be applied. Once a 
meshing strategy has been identified for each sub-region of 
the domain, each can be meshed in a piecewise manner.  

2.1 Structured meshing requirements 

The quality of a hex mesh is directly related to the geometry 
of its elements and their connectivity. In a regular mesh each 
interior node should connect exactly 4 quad elements or 8 
hex elements. To accommodate complex shapes while 
retaining the quality of individual elements, nodes must 
sometimes connect an irregular number of elements, which 
introduces “singularities” into the structure of the mesh. 

 

Figure 1. Mesh singularities. 

Definition: A mesh singularity is a collection of one or 
more irregular nodes. It can be either positive (more than the 
regular number of connected elements), or negative (less 
than the regular number of connected elements), as shown in 
Figure 1. 

Quad (2D) and hex (3D) meshing algorithms impose strict 
requirements on the presence of singularities, which in turn 
impose constraints on the shapes that can be processed, as 
the number of singularities is directly linked to the shape. 
These requirements are as follows: 

• Mapping (quad): The mesh is generated by mapping 
the template of a unit square onto a local surface 
parametrization [19]. As such, no singularities will 
occur and the face must be 4-sided. It also implies that 
opposite pairs of edges need to have the same number 
of divisions. A sub-mapping variant is also possible 
for non-rectangular faces where all the edges can be 
grouped into two sets of opposite groups.  

• Paving (quad): The mesh is generated by inserting 
rows of quad elements from the boundaries towards 
the interior [20]. There are no specific requirements 
on the structure of the mesh and singularities can be 
present. This means there is no constraint on the shape 
of the face. However, the algorithm may introduce 
pairs of singularities that cancel each other. It also 
requires that the sum of division numbers on each loop 
of edges must be even. 

• Mapping (Hex): The mesh is generated by mapping 
the template of a unit cube on the local i-j-k 
parametrization. This requires the shape to have a 
cube-like topology, with 6 logical faces and 12 logical 
edges, and no singularities can be present.  It implies 
that all bounding faces are mapped meshed, with the 
associated constraints on singularities and edges 
divisions. 

• Sweeping (hex): Hex elements are generated by 
sweeping quad elements on a source face to a target 
face. This means all lateral faces (so-called wall 
faces) connecting the source and the target have 
mapped mesh structures, and hence no singularities 
can exist on wall faces. Also, corresponding edges at 
opposite ends of the sweep must have the same 
number of divisions. There is no mesh structure 
requirement on the source face, which can be either 
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mapped or paved, and therefore singularities can be 
channeled from the source to target face.  

This work focuses on two types of shapes suitable for hex 
meshing with these algorithms:  

• Block shapes, with a cube-like topology that can be 
map (Hex) meshed with 6 faces mappable (quad). 

• Sweepable shapes, with a loop of mappable (quad) 
wall faces in the sweep direction. 

Directly identifying a block decomposition for an arbitrary 
geometry is difficult, as there should be no singularities in 
the blocks. This means all singularities need to be located at 
the edges bounding the interfaces between blocks. 
Sweepable regions are less constraining as they can 
accommodate singularities along the sweep direction and are 
therefore easier to identify. There is a strong correlation 
between the two types, as a block can be swept meshed in 
any of three directions, and sweepable regions can have a 
mappable source face and therefore satisfy block constraints. 
It is therefore easier to identify first a semi-structured mesh 
by identifying sweepable regions, and then decomposing 
their source faces to constrain the singularities and achieve a 
more structured block decomposition. 

2.2 Reasoners 

Manually identifying and extracting block and sweepable 
regions can be a very tedious task for geometries which 
include many details. Various automated tools or reasoners 
have been developed to facilitate this task by extracting 
regions based on specific geometric and topological 
characteristics. These characteristics define in turn a 
meshing strategy which specifies how the regions should be 
meshed. This information is required as the type of the shape 
(block or sweepable) does not contain sizing information and 
can change. 

Definition: A decomposition reasoner refers to an 
algorithm that queries the model to identify regions that can 
be assigned a specific hex-meshing strategy and provides the 
topological and geometrical information to create the 
partitioning entities necessary to extract such regions. 

Definition: A meshing strategy describes the type of 
element (e.g. Hex or Mixed-Tet) along with sizing 
information, symmetries and anisotropic element shape 
metric properties of the region.  

The simplest reasoners are tools that identify regions that are 
already blocks or are sweepable, by checking that the 
topology and geometry match the requirements of that 
region type (described previously). Other reasoners use 
shape properties such as concavities and symmetries to help 
breaking down a model into simpler regions. For example, 
aero-engine models are mostly axisymmetric with cyclic 
patterns that repeat around the circumference. Using a 
dedicated reasoner based on [21], axisymmetric regions and 
regions that can be meshed using cyclic symmetries can be 
identified. The associated meshing strategy stores any 
repetition pattern, to ensure a compatible mesh between each 
occurrence. Other reasoners exploit local anisotropy of the 
shapes to identify sweepable regions. For example, thin-
walled regions with two large dimensions compared to the 

third can be meshed by applying a mesh to a larger face and 
sweeping through the small thickness. A thin-sheet reasoner 
based on Sun’s implementation [22] identifies and extracts 
thin regions by manipulating pairs of opposing faces from 
the CAD geometry. The associated meshing strategy stores 
the aspect ratio of the shape and the thickness, which can 
then be used to infer a target element size as described in 
[23]. Similarly, truss-like structures, or models which have 
had their thin-sheet regions removed, can have many long 
regions with a nearly constant cross-section topology, that 
are also appropriate for hex-meshing by sweeping. These 
can be identified by a long-slender reasoner that processes 
loops of nearly parallel long edges, as described by Sun [5]. 
These reasoners can greatly reduce the number of DOFs of 
the mesh, as the anisotropy of the region can be used to 
stretch the hex elements and reduce their number. More 
complex decomposition reasoners can also make use of other 
types of information, such as temporary constructs (frame-
fields, medial-object), functional and adjacency information 
if available, or AI methods. 

Each reasoner has its strengths and weaknesses in terms of 
speed, accuracy and class of shapes supported. More than 
one may be required to achieve a full hex mesh for a complex 
shape. Therefore, an efficient incremental decomposition 
workflow requires the integration of a diverse range of 
decomposition reasoners. To be of maximum benefit these 
need to work in any order, without any dependencies on the 
preceding reasoners or the package where the CAD model is 
hosted. Preparing a CAD model for meshing can also include 
de-featuring and dimensional reduction operations, which 
can be identified and applied using dedicated automated 
reasoners which are not covered in this paper. 

2.3 Challenges 

Since many meshing workflows start from a geometry that 
has been created in a feature-based CAD environment, and 
to maintain the associativity with the design history in the 
model, the ability to decompose the model for meshing 
within the CAD system is an attractive solution. However, 
there are several challenges to doing so, primarily because 
CAD packages have not been developed for the purposes of 
decomposing a model for meshing.  

First, creating a split operation in CAD may create 
unexpected geometrical defects such as sliver faces and 
result in non-watertight models due to trimming errors [24]. 
Secondly, automating the decomposition and downstream 
meshing requires a robust tracking of B-Rep entities, which 
is challenging due to persistent naming issues inherent to 
CAD packages [25]. Then, incrementally decomposing the 
CAD model will append a sequence of split operations to the 
feature tree of the model, and any edit further up in the tree 
may produce unexpected results further down, including the 
splits. Finally, most commercial CAD environments rely on 
a manifold boundary representation scheme, meaning that 
two bodies cannot share a same face, edge or vertex. Hence, 
two identical faces are created within the CAD system at the 
interface between two bodies after a split operation.  

Even when a CAD system is used to help prepare a geometry 
model for meshing, a transfer to a dedicated CAE package is 
usually still required for meshing. After doing so the 
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decomposition will be converted to a non-manifold 
representation which ensures the resulting mesh is 
conformal at interfaces between regions. It is therefore 
important to ensure that incremental decomposition will 
produce a usable collection of bodies that can be re-
assembled in a CAE package for meshing. 

Another challenge comes from the incremental 
decomposition principle itself. Identifying simple regions 
first means all of the complexity of the meshing task will be 
pushed to the last regions of the geometry to be processed. 
This can become problematic as these regions may harbor 
complex arrangements of singularities. Where these exit 
through an interface, they make any hex meshing strategy in 
connected regions invalid. Therefore, special care must be 
taken when chaining reasoners, as structure modification can 
propagate throughout the decomposition. 

2.4 Proposed workflow 

Since most of the challenges of incrementally decomposing 
a model in CAD come from the application of the successive 
split operations, the idea in this work is to identify regions to 
which a known meshing strategy can be applied, store the 
required partitioning strategy, and then query the 
partitioning strategy to identify the next regions to process. 
This is enabled by virtual topology split operators that will 
topologically partition the model without altering the CAD 
representation, as described in the next section. Each region 
in the model for which a meshing strategy has not yet been 
identified is classed a “residual region”. Eventually, once all 
the reasoning is done and a suitable virtual topology 
decomposition is available, the model can be decomposed 
within the CAD system to be used for meshing. Should any 
residual regions remain at the end of the process a tet-mesh 
can be applied to them, with a layer of pyramid elements at 
interfaces with hex-meshed regions, to produce a mixed 
mesh. To be successful, this workflow requires a simple way 
of integrating existing reasoners with virtual topology, so 
they can identify suitable regions in presence of virtual 
topology and define virtual topology splits. The meshing 
strategies identified by the reasoners need to be robustly 
managed to remain valid after further decomposition of 
neighbor regions. Finally, the ability to robustly convert a 
virtual decomposition into a CAD decomposition is required 
to ensure the virtual decomposition is usable. 

3. ANALYSIS TOPOLOGY 

3.1 Virtual topology 

Virtual topology uncouples the topological representation of 
a model from its geometrical representation in the B-Rep 
scheme [17], allowing manipulation of the topology without 
having to alter the underlying geometry of the model. It 
defines a set of entities and operators to carry out the 
operations associated with model pre-processing for 
meshing, and to formalize the relationships with the original 
host model. 

Virtual topology entities do not require an explicit geometric 
definition and instead use a geometric definition inferred 
from their host entities, or which can be related to simple 

geometrical constructs (e.g. line between two points, least-
square fitted surface, etc.). These are illustrated in Figure 2 
(a), and include: 

• Parasite entities: entities that do not exist in the 
topology of the original CAD model, but lie on an 
entity from the original CAD model of higher 
dimension (e.g., an edge lying on the face it splits).  

• Subset entities: subsets of host entities that are split by 
a topological entity of lower dimension (e.g., faces 
obtained by partitioning a host face with a parasite 
edge). 

• Superset entities: a superset of host entities that are 
merged together by ignoring their common boundary 
entities. 

• Orphan entities: an entity without a host one 
dimension higher, and from which no geometry 
description can be inherited (i.e., an edge through 
volume).  

 

Figure 2. (a) virtual topology entities created after 
virtual decomposition and (b) equivalent geometric 
decomposition and meshing strategies. 

Virtual topology operators relevant for an incremental 
decomposition workflow are the virtual topology split, 
where a host entity is split into several subsets by parasite 
entities, and the virtual topology merge where several 
entities of the same dimension are merged into a single 
superset by ignoring their common boundary entities.  

3.2 Abstracting the analysis model 

Definition: The analysis model is a transformed version of 
the design model that exists within a CAE environment, to 
which mesh, boundary conditions and loads are applied. 

Implementing the decomposition in the CAD system using 
virtual topology operators means that only a topological 
description of the analysis model is created, known as the 
analysis topology.  

Definition: The analysis topology is a representation of the 
boundary topology of the analysis model. 

In this work, the analysis topology is a non-manifold cellular 
model, which means that all interfaces between cells are 
known and are considered cells in their own right. Meshing 
strategies can be attached to cells. The analysis topology is 
initialized by extracting the topological representation of the 
B-Rep from the original design model. It is external to any 
CAD package and can represent topological relationships 
not supported in many CAD environments, but which are 
required for conformal meshing. It is therefore capable of 
acting as the interface between different CAD and CAE 
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packages. However, while the analysis topology can be used 
to represent the topology of the model to be meshed, it does 
not contain sufficient information to be used for reasoning. 
To address this issue, “virtual geometry” is introduced. 

Definition: virtual geometry entities are geometric 
representations of virtual entities that co-exist in the 
modelling space of the design model, but are not associated 
with its B-Rep.  

Virtual geometry entities are used to perform geometric tests 
on the analysis topology and to visualize the virtual volume 
cells. Virtual geometry curves (in red in Figure 2 (a)) are 
combined with the existing edges of the CAD model that 
have not been virtually edited to define a wireframe 
representation of the volume cells. These curves help store 
the partitioning intent of decomposition reasoners and avoid 
deleting and re-creating curves. Whenever the actual CAD 
decomposition is required, virtual geometry curves are used 
to define virtual geometry surfaces that can partition the 
CAD model to generate the equivalent analysis model, 
Figure 2 (b). 

3.3 Reasoning on the analysis topology 

The use of an analysis topology implies that the current 
decomposition state of a model is not explicitly available and 
cannot be directly queried or decomposed. Additional steps 
are required to adapt the decomposition reasoners, which 
depend on the ability to integrate a reasoner. Figure 3 shows 
the integration of 6 different types of reasoners to interact 
with the analysis topology 

    3.3.1 Queries 

Reasoners that are fully integrated with virtual topology can 
directly query the analysis topology. Geometrical queries are 
achieved by inheriting the geometric definition of host 
entities or by querying virtual geometry curves if no 
geometry is linked. Reasoners for extracting thin-sheets, 
long-slender and axisymmetric regions have been fully 
integrated with virtual topology, as described in [26]. Other 
reasoners that are not integrated with virtual topology 
require an explicit geometry description to work with, as 
modifying their implementation to work with virtual 

topology might be tedious, or not even possible. In that case, 
there is no need to commit the entire decomposition, only the 
subset regions of interest can be temporarily extracted from 
the CAD model, as detailed in section 5.1. The temporary 
region can then be processed in either another CAD session 
of the native CAD environment, or a different CAD 
environment after STEP export. 

In the situation where a user wants to manually insert 
partitions by applying CAD split operations, an explicit 
geometry is also extracted. It is then enriched with interface 
and mesh singularity information from neighbors, to help the 
user understand the flow of elements and constraints 
stemming from the meshing strategies of neighbor regions. 
(see Figure 13 (c)). 

    3.3.2 Parasite wireframe 

In the absence of any standard for exchanging virtual 
topology partitions (though one could easily be defined), the 
concept of a parasite wireframe is introduced to integrate the 
output of different reasoners, or manual intervention, around 
a common format. The purpose is to collect the minimal 
information required for applying virtual topology split 
operators that cannot be recovered by reasoning, to 
accompany the transfer of the geometry as a STEP file. 

Definition: A parasite wireframe is a collection of vertices, 
curves and loops of curves that represent virtual topology 
parasite vertices, parasite edges and parasite faces 
respectively. 

Additional information can also be included to reduce 
processing time, such as host entity information for each 
vertex and curve to establish the link with the model to 
decompose, the bounded/bounding relationship between 
vertices and curves and which operation can be used to re-
create a face from the loop of curves (e.g., swept surface, fill 
surface). Since the objective is to apply a virtual topology 
split, and the final position of the nodes on these faces may 
eventually depend on a mesh smoothing algorithm, the exact 
geometry of the partition is not required. Hence, transferring 
the CAD curves only is sufficient and it is more flexible to 
transfer the scaffold required to define the cut faces than the 
cut faces themselves. 

 

Figure 3. Integration of different reasoners with virtual topology.
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    3.3.3 Output processing 

Reasoners that are already fully integrated with virtual 
topology directly define virtual topology splits and produce the 
necessary virtual geometry curves. For other reasoners, with 
some level of scripting available, defining a simple parasite 
wireframe is straightforward. It can then be transferred back to 
the CAD session of the original CAD model and processed to 
define virtual topology splits. The curves contained in the 
parasite wireframe can be used directly as virtual geometry 
curves or can be reconstructed to get a better fitting with the 
CAD model. A user can also directly specify a parasite 
wireframe, although it can be tedious as the curves forming a 
loop of a face need to be grouped manually.  

For reasoners that only output a CAD decomposition, or after 
the user is done splitting the region of interest, the dumb 
blocking that results is converted into a parasite wireframe 
using an automated routine. It first queries all the edges and 
faces of each block, to identify and match coincident entities 
stemming from the manifold nature of the splits. Then entities 
are classified as existing, subset or parasite entities by 
comparing them with the entities of the region of interest 
before splitting, that are matching the analysis topology. Only 
parasite entities are kept to define the parasite wireframe and 
their host entity is also recorded. This parasite wireframe is 
then transferred to the original CAD environment to define the 
virtual topology splits.  

4. SPLIT PROPAGATION 

In the analysis topology, each face of each body has its own 
meshing strategy assigned, which is inferred from the meshing 
strategy of the parent body or bodies in the case of an interface. 
Whenever the topology of a face is modified to accommodate 
imprints, either to decompose the face or because of further 
decomposing neighbor regions sharing the interface, the flow 
of elements or the net number of singularities on the face may 
change. This implies that decomposing a body to extract hex-
meshable regions can invalidate the meshing strategies 
previously identified on adjacent regions. As a result, special 
care must be taken to maintain meshing strategies as the model 
is incrementally decomposed. 

4.1 Imprints and interfaces 

Each face of the analysis topology is assigned one of the 
following meshing strategies:  

• unstructured triangular mesh: this only exists on or 

between residual regions.  

• unstructured quad mesh (e.g., paved): on source and 

target faces of sweepable regions. 

• structured quad mesh (e.g., mapped): faces of block 

regions, walls of sweepable regions. 

Unless it is an interface with a hex meshed region, there is no 

limitation on partitioning the faces of residual regions. In the 

case of source and target faces, singularities can be channeled, 

therefore there is no limitation on partitioning these faces. 

However, doing so may transform a simple one-to-one sweep 

into a many-to-many sweep that is not supported by many 

meshing tools. The condition on mapped interfaces is the most 

stringent, as it implies that the result of a split/imprint on the 

face must be a collection of faces with the same mappable 

properties. Otherwise, the sweepable/block strategy of the 

bodies will become invalid and reprocessing will be needed. 

The validity of an imprint on mapped interfaces is assessed by 
checking how it modifies the flow of elements associated with 
the interfaces. The direction of the flow of elements is only 
modified by the introduction of negative or positive 
singularities on the face, which either stem from a subset with 
a non-null net singularity number, or from the topology of the 
imprint itself. Figure 4 shows various imprints on a wall face 
of a swept region (which must be 4 sided). The imprints in 
Figure 4 (a), (b) and (c) do not perturb the flow of elements 
from top to bottom and left to right, so they are valid, and the 
body bounded by the face is still sweepable. The imprints in 
Figure 4 (d) introduce two triangular faces that would require 
negative singularities (in blue). In Figure 4 (e), while all the 
subset faces are 4 sided, the connectivity of the imprints 
introduce a negative singularity that redirects part of the top-
down flow of elements to the left. Figure 4 (f) is inconclusive 
when considering the bottom subset as a logical rectangle, as 
all the subsets have 4 corners and are mappable.  

 

Figure 4. Valid imprints (a-c) do not modify the mesh 
flow, (d-e) introduce singularities making the sweep 
invalid, and (f) is inconclusive.  

Even if all the imprints on all individual wall faces are valid 
and only result in mappable faces, sweepable regions require 
that the wall faces form a loop of mappable faces. This 
introduces an additional constraint on the flow of elements, 
which is assessed by solving the mapping constraint on the 
number of elements. In Figure 5, two mappable faces forming 
a loop receiving valid imprints are laid flat. In Figure 5 (a), 
solving the equality constraint on opposite edges yields 
Ne2=Ne5=0 (where Ne# is the number of element edges on 
edge e#) which implies that the loop cannot be meshed unless 
the imprints are moved. On the other hand, the configuration 
in Figure 5 (b) is valid, but will result in elements being 
stretched on e3 and compressed on e4. 

 

Figure 5. Loop of mappable faces with (a) invalid and 
(b) valid edge division balancing. 
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Block topology is a special case of sweepable regions with 3 
pairs of opposite faces resulting in 3 possible sweeping axes, 
and all faces mappable. Therefore, the same approach for 
checking invalid imprints can be used. The only difference is 
that some invalid imprints can be handled by reclassifying the 
shape type from block to sweepable, provided there is still a 
loop of valid mappable faces. 

If the imprints are valid, the decomposition of the face or 
volume can go ahead. If the face is an interface the question of 
the propagation of the split arises. For single imprints on wall 
faces aligned with the sweep as shown in Figure 4 (a), there is 
no need to propagate the imprint as all the wall faces of the 
sweep remain 4-sided. 

4.2 Aligned split 

The process of splitting a sweepable region by propagating 
imprints along the sweep direction is illustrated in Figure 6 (a), 
where a sweepable body has had its source face imprinted to 
match quad meshing requirements (in this case, imprints have 
been created by mid-point decomposition reasoner applied to 
the face). A new parasite wireframe is created to store the split 
information. The curves of the imprint are added along with 
their host face, and vertices are processed to identify host 
curves and merge coinciding ones. Wall edges are discretized 
and are used to trace discretized curves aligned with the sweep 
on wall faces and inside the volume, as shown in Figure 6 (b). 
Curves that are lying on a wall face are re-projected if an 
explicit surface is available, and all the curves are added to the 
parasite wireframe. Finally, the curves matching the imprint 
curves on the opposite target face are created by joining the 
last points of the newly created curves to match the topology 
of the imprint. This completes the parasite wireframe with one 
loop of curves identified for each imprint, producing 3 parasite 
faces, as shown in Figure 6 (c). The resulting analysis topology 
after virtual topology split and the equivalent geometric 
decomposition are shown in Figure 6 (d) and (e) respectively, 
with three simple sweepable regions without imprint 
generated. 

 

Figure 6. Imprints on the source face are propagated 
along the sweep direction to create virtual parasite 
faces splitting the sweepable region into 3 parallel 
sweepable regions. 

4.3 Perpendicular split 

Since sweepable regions are defined by a loop of mappable 
wall faces around the sweep direction, the propagation of 
imprints that are perpendicular to the sweep direction is 
achieved by exploiting mapping constraints to trace loops of 

curves. The resulting curves partition the loop of wall faces 
into two or more loops of mappable faces, effectively splitting 
the original sweep region into a chain of sweepable regions, as 
described in Figure 7. As for the propagation of aligned splits, 
a new parasite wireframe is first created and the imprint curves 
on wall faces (Figure 7 (a)) are added. Then, all coincident 
vertices are merged, and the parameter of each vertex lying on 
a wall edge is extracted. These parametric values are clustered 
within a tolerance range and new vertices are created for each 
cluster on wall edges without a vertex using the mean value of 
the cluster. In Figure 7 (b), vertices with parameters !" and !# 
are clustered, and a new vertex with parameter !$ is created. 
Once all vertices are created, the loop of wall edges is 
traversed for each cluster, and vertices without existing 
parasite curves are joined by tracing a new curve on the wall 
face. The resulting loop of curves are added to the parasite 
wireframe and used to define a parasite face, as shown in 
Figure 7 (c). The resulting analysis topology after virtual 
topology split and the equivalent geometric decomposition are 
shown in Figure 7 (d) and (e) respectively, with a chain of two 
simple sweepable regions without imprint generated. This 
algorithm enables processing of multiple imprints on multiple 
wall faces and to propagate cuts on wall edges only. 

 

Figure 7. Perpendicular imprint on a wall face is 
traced around the loop of mappable wall faces to 
create a virtual parasite face splitting the sweepable 
region into 2 stacked sweepable regions. 

4.4 Identifying propagation order 

As the model is incrementally decomposed, the number of hex 
meshable regions increases throughout the process and their 
interaction becomes more complex. Since propagating 
imprints to partition sweepable bodies also produces new 
imprints on adjacent bodies, special care must be taken when 
propagating splits. If the meshing strategies assigned result in 
a valid mesh, propagating the imprints following the meshing 
constraints will also produce a valid mesh. As such, the order 
in which imprints are propagated in the sweep direction and 
perpendicular to it does not matter. However, since imprints 
on source faces can modify the number or position of 
singularity lines, it is better to propagate aligned splits first, to 
ensure proper channeling of the singularities.  

In Figure 8 (a), the model is decomposed into one thin region 
and 4 sweeps. The source face of one sweepable region is 
decomposed resulting in the imprints in Figure 8 (b), which are 
first propagated to split the region (Figure 8 (c)) introducing 
both perpendicular and aligned imprints on neighbor sweeps. 
The imprints on the source faces are processed first (Figure 8 
(d)), followed by the lateral propagation (Figure 8 (e)). 
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Eventually, the last sweep has compatible imprints on both its 
wall face and source face, which are propagated in the sweep 
direction, Figure 8 (f)).  

 

Figure 8. Imprints on the source face (b) are first 
propagated to the connected sweepable body (c) 
resulting in new imprints on neighbor regions that 
are recursively propagated (d-f) until no more splits 
can be found on sweepable bodies.  

In some cases, additional meshing constraints stemming from 
symmetry properties and patterning can arise, where not only 
the topology but also that actual geometry must be matching 
between faces to reconnect everything. This is handled by 
applying the symmetry/patterning transform to the imprint 
curves before propagating them, to ensure they are correctly 
located. 

5. DECOMPOSITION IN CAD 

Once the incremental decomposition is complete with all the 
splits correctly propagated, and when no more hex meshable 
regions can be identified, the virtual volume cells can be 
extracted to generate a meshable analysis model. Rather than 
trying to apply a sequence of split operations matching the 
virtual topology operators applied, the model is decomposed 
by querying and using all the interfaces between bodies as 
cutting faces. This provides a more flexible way of partitioning 
the model that does not rely on the history of the 
decomposition process, while allowing a single region to be 
extracted in the model without having to perform the entire 
decomposition. 

The final analysis model must be contained within a non-
manifold CAE environment to ensure a conformal mesh is 
created at interfaces. The partitioning of the geometry can 
either be applied in a CAD environment or a CAE 
environment. In the first case, the virtual geometry curves are 
used to create the cutting surfaces, and the final blocking is 
exported to the destination meshing environment. In the 
second, virtual geometry entities are exported, and the model 
is decomposed by applying split operations through an API.  

If the geometry decomposition is performed in a non-manifold 
environment the process is straightforward, and the topology 
of the resulting analysis model will exactly match the analysis 
topology. If the decomposition is carried out in a manifold 
CAD environment, the limitations from the manifold 
representation and the split capabilities of the CAD engine 
must be taken into consideration. 

5.1 Split ordering 

Extracting all the subset regions identified in a single split 
operation has a high chance of failing in current tools, even for 
reasonably simple splits such as decomposing a cube into 8 
octants (Figure 9 (a) and (b)). For this reason, an incremental 
decomposition approach is preferred, extracting regions of 
interest one after the other. This however produces 
intermediate bodies that can exhibit invalid non-manifold 
touch configurations even though all the final extracted bodies 
would be valid manifolds. In Figure 9 (c), if the green octant 
is removed first, extracting the yellow octant would create a 
non-manifold edge on the intermediate body (in translucent 
grey), hence the extraction would fail. Similarly, in Figure 9 
(d), extracting the green octant first followed by the blue would 
create a non-manifold vertex on the intermediate volume. 

 

Figure 9. Invalid manifold condition on the 
intermediate body for different extraction order. 

This issue is eliminated by prescribing a decomposition order 
that avoids invalid intermediate volumes and maintains the 
manifold condition at all times. The process starts by querying 
all the internal vertex and concave edge neighborhoods to 
initialize the list of connected volumes. If the neighborhood is 
complete, e.g., a vertex is fully surrounded by geometry, any 
touching body can be removed. If the neighborhood is 
incomplete, e.g., a concave edge, the touching faces that are 
not interfaces define a front, and only bodies bounded by faces 
on that front are valid candidates for extraction. For each 
volume to be removed, the relevant neighborhoods are 
checked to ensure no touching condition will be created. If the 
extraction is valid the body is added to the decomposition 
sequence and the neighborhoods are updated. Else the 
candidate bodies are re-ordered before the current bodies and 
assessed in turn.  

While this process results in a propagation of the partitioning 
front from the boundary, it also enables the extraction of a 
single region, by identifying the minimal number of regions 
that must be extracted first where the extraction would create 
an invalid intermediate volume. It also reduces the number of 
intermediate bodies, as these are difficult to manipulate since 
they do not match any volume cells in the analysis topology. 

5.2 Cut definition 

Once the order in which the regions need to be extracted is 
known, the sequence of split operations and cutting geometry 
required to perform the decomposition need to be generated. 
The cutting geometry is inferred from the interfaces between 
bodies recorded in the analysis topology. Virtual geometry 
curves are combined with the existing edges bounding each 
interface to generate a face by fitting a surface through the 
curves (in effect a fill surface operation). The resulting cutting 
faces are then clustered to match each successive split 
operation. This is achieved by querying all the interfaces of the 
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body to extract and removing the ones that have already been 
used. Adjacent faces with coincident edges are sewn together 
within each cluster. 

 shows the decomposition process for the model in Figure 9 
(b). The first row shows the decomposition order identified, 
while the second row shows the different clusters of cutting 
faces generated for each split operation associated with this 
order. The third row shows the anticipated results from the 
incremental splitting, with all intermediate bodies being valid 
manifold representation in CAD. 

 

Figure 10. Cluster of faces identified for the 
extraction sequence. The intermediate body at each 
step is a valid manifold model. 

5.3 Subset mapping 

 

Figure 11. Persistent naming issue on edges. 

When automatically applying the sequence of split operations 
in a CAD package, special care must be taken at each step to 
identify which bodies need to be split and to remap entities on 
the subset corresponding to the region to extract. The 
remapping consists in matching the B-Rep entities that have 
been generated by the split operation with their topological 
analogue that already exists in the analysis topology. This is 
critical to ensure downstream automation of meshing but is 
made difficult by the way many CAD modelers implement 
split operations and how they suffer from the persistent naming 
problem. In Figure 11 (b), a common CAD practice is to merge 
faces that have the same underlying surface. As a result, the 
bold edge e1 is extended to bound the merged face. When the 
merged faces are split to recover imprints or to extract the next 
region, one subset inherit the attributes of the parent, which 
may not match the original entity. In Figure 11 (c), the edge e1 
as moved to the right following the split. 

When it comes to linking the representation in the CAD system 
with the analysis topology description, since the topology of 
the region being extracted matches the analysis topology it can 
be identified by looking first for the CAD bodies that have the 
same topology. If several CAD bodies are identified, the 
coordinates of the mid-point of the edges can be used to match 

the correct subset. The re-mapping of the new CAD edges and 
faces is also recovered by matching the mid-point of edges.  

When several intermediate bodies are created after a split, the 
host entity information is used to identify which one needs to 
be partitioned to extract the next region. All the faces and 
edges of the region to extract, that are subsets, are queried to 
get the list of host CAD entities. The intermediate CAD body 
that has the most matching CAD entities is then identified as 
the target for the splitting operation. If this test is not sufficient, 
point in volume methods are used to differentiate the bodies  

Once all the regions have been extracted and remapped, a 
manifold collection of bodies will exist in the CAD 
environment, with all the coincident entities (e.g., bodies 
sharing a non-manifold interface in the analysis topology now 
have coincident faces in CAD) identified and labelled to 
automate the conversion to a non-manifold representation 
once transferred to a CAE package. 

6. RESULTS 

The incremental decomposition workflow is demonstrated 
within a virtual topology framework built around a relational 
database used to store the analysis topology, and the Siemens 
NX [27] CAD package, as described in [26]. In addition to 
various decomposition reasoners, the framework includes a 
meshing strategy reasoner to identify a meshing recipe from 
the meshing strategies. It uses integer programming to resolve 
mapping constraints and identify edge division numbers 
directly on the analysis topology. After the geometric 
decomposition is applied, another meshing reasoner is used to 
transfer the model to the NX CAE environment, recover the 
associativity with the analysis topology by merging coincident 
faces, and transfer the meshing recipe to automatically 
generate the mesh.  

Within the current framework, fully automated workflows 
from the CAD model of the design to the mesh are only limited 
by the decomposition reasoners available and in identifying in 
which order they must be applied. In this work, this decision 
is left to the user, who applies the automated decomposition 
reasoners one after the other, and can also manually 
decompose the regions left by automated reasoners. Once 
satisfied with the analysis topology obtained, the user can 
adjust the meshing sizing parameters before the model is 
automatically decomposed geometrically and meshed. Further 
details on the virtual topology framework and automatic 
meshing are available in [26], and will be presented in a future 
paper. 

6.1 Boss plate 

Figure 12 presents different decompositions for a simple 
model of a plate with a boss that has fillets that introduce mesh 
singularities. All models are first processed using the thin-
sheet decomposition reasoner, followed by a reasoner that 
identifies sweepable regions that are embedded in thin-sheets. 
In Figure 12 (a), a mid-point subdivision [28] reasoner is 
applied, resulting in a block decomposition but with all 
singularities meeting at the body mid-point. In Figure 12 (b), 
the residual is exported to CADFix [29] to use a reasoner based 
on the medial object. 
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Figure 12. Different decompositions and meshes 
obtained for various combinations of decomposition 
reasoners and manual intervention. 

 

Figure 13. (a) Crescendo vane model, (b) result of 
automated decomposition, (c) residual for manual 
processing, (d) manual split converted to virtual split 
and (e-f) resulting automated mesh.

In Figure 12 (c), the user has specified a cutting plane to create 
two sweepable regions that channel the two singularity lines. 
In Figure 12 (d), 4 cutting planes are manually specified to 
extract sweepable regions, followed by automatic mid-point 
subdivision of the source faces to constrain the location of the 
singularity lines. In Figure 12 (e), the same manual 
decomposition is used but cube-shaped sweeps are re-
classified as blocks, resulting in a full blocking of the residual. 

6.2 Crescendo vane 

Figure 13 shows the manual processing of a vane geometry to 
achieve a full hex mesh. After extracting symmetries and 
applying thin-sheet and long-slender tools (Figure 13 (b)), a 
complex residual region is left at the root of the leading edge. 
This is extracted (Figure 13 (c)) and manually partitioned into 
three sweepable regions, one to channel the singularity lines 
from the left and right long-slender regions, one to channel the 
singularity coming from the sharp leading edge, and one in 
between to channel the singularity coming from the yellow 
triangular face through the thickness. The operation is then 
converted into virtual splits resulting in Figure 13 (d), and the 
model can be automatically decomposed and meshed as seen 
in Figure 13 (e) and (f). 

7. DISCUSSION 

The robustness of the incremental decomposition based on 
virtual topology depends on several aspects. The robustness of 
the decomposition reasoners is not critical, as checks are 

carried out after the regions have been extracted to ensure they 
are suitable for hex meshing. Failed reasoners can either be re-
applied with different parameters or another reasoner can be 
used. As a result, prototype reasoners can be added without 
jeopardizing the entire decomposition process. The variety of 
decomposition reasoners available is more important, as some 
reasoners might define hex-meshing strategies resulting in 
poor element quality, and regions that are not covered by any 
reasoner will either need manual decomposition or receive a 
tet mesh. The current limitation comes from the ability to apply 
virtual topology split operations, as the workflow requires the 
application of many operations successively and any failed 
operation will make any subsequent split invalid.  

Beyond facilitating the integration of the different tools, 
having a pre-processing workflow based on virtual topology 
makes this approach compatible with traditional applications 
of virtual topology for de-featuring and geometry clean-up. 
The update of the decomposition is also made simpler. Sub-
regions can be recombined by the virtual topology merge 
operator without rolling back the entire decomposition (e.g. 
the decomposition in Figure 12 (a) can be obtained from the 
one in Figure 12 (b)). The constraints associated with the 
meshing strategies can also be used to automatically propagate 
CAD design updates to the decomposition [30]. 

One can argue that using virtual geometry curves and 
extracting explicit regions for some reasoners is incompatible 
with the notion of virtual topology. Even simple geometries 
can result in complex block decompositions (see Figure 14 (a)) 
and inferring cutting geometry solely from the topological 
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requirements would create skewed angles and potentially 
inverted geometry that are easily avoided using virtual 
geometry curves. Extracting temporary geometric regions is 
the only realistic way currently available for a user to interact 
with the analysis topology and allows integration of a wide 
range of off-the-shelf tools within a given CAD environment. 

 

Figure 14. (a) Fully blocked model and (b) mesh file 
generated directly from CAD using virtual entities. 

The analysis topology is essential to maintain the meshing 
strategies at interfaces in manifold environment and ensure 
that the final decomposition is suitable for meshing. Meshing 
strategies translate downstream meshing constraints into 
constraints on the decomposition that are available from within 
a CAD environment. The process of propagating imprints and 
decomposing source faces of sweepable regions may create 
more subset regions than necessary for achieving a good 
quality hex mesh, but this results in sub-regions that are 
simpler to mesh and compatible with a wider range of meshing 
tools. Eventually, a model that has been fully decomposed into 
block regions is in itself a very coarse hex mesh. It can be 
refined and meshed directly from the virtual decomposition in 
CAD, without having to commit the geometric decomposition 
and transfer to a CAE environment. In Figure 14 (b), all edges 
are discretized as per the meshing recipe and nodal positions 
on surface and inside the volume are identified using 
transfinite interpolation [31], before being written to a Nastran 
deck input file to define a mesh. On the other hand, sweepable 
regions with paved source faces can accommodate pair of 
singularities that cancel each other, redirecting the flow of the 
elements. This offers more freedom for node location and 
avoids the propagation of small element size from small details 
to the entire mesh.  

Automatically propagating imprints is also beneficial for semi-
automated decompositions workflows, as automatic partition 
of neighbor regions reduces the amount of work for the 
operator. Manual intervention can also unlock regions that are 
suitable for automatic processing, hence the impact of user 
input is maximized and no time is wasted carrying out 
repetitive decomposition tasks. 

8. CONCLUSION 

A method to integrate various automated decomposition 
reasoners in a single incremental decomposition workflow has 
been presented. All the split operations are applied using 

virtual topology to build an analysis topology that stores and 
maintains interface information and meshing strategies. This 
analysis topology along with virtual geometry curves are used 
to abstract the actual analysis model, enabling reasoners and 
manual users to operate on a model that is equivalent to the 
analysis model before it is created. Each reasoner identifies 
and extracts sweepable and block regions, and the meshing 
strategies associated with each region are used to propagate 
splits across interfaces to ensure everything remains hex-
meshable. With all the necessary information for mesh 
automation available, the CAD model is decomposed to create 
an analysis model that can be exported to a meshing tool. 

9. FUTURE WORK 

Future research directions include: 

• Extending the range of decomposition reasoners, in 
particular frame-field based methods that also focus on 
the handling of singularity lines. 

• Integrating automatic de-featuring reasoners to remove 
small fillets and holes using virtual topology. 

• Further investigating virtual topology meshing 
capabilities, including sub-mapping and paving. 
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