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ABSTRACT

Many high-performance computing applications involve sophisticated finite element simulations on complex domains
and, for this reason, often cannot use a single structured grid for the entire domain. A popular alternative are
block-structured grids (BSGs) that are more flexible geometrically but still o↵er a significant amount of structure.
However, the standard generation process for BSGs relies heavily on manual input to define the segmentation of the
computational domain – a rather di�cult task to perform for complex geometries. Ocean domains often contain
fractal boundary shapes and details such as islands and channels that cannot be accurately represented using BSGs.
We present a method to automatically generate BSGs with an exactly specified number of blocks for real-world
domains arising in 2D ocean simulations. Our BSGs consist of quad blocks refined via structured triangular grids and
employ masks to accurately represent small features. The performance of the proposed BSG generation method is
evaluated for realistic ocean domains and validated using simulations of the two-dimensional shallow water equations
discretized by the discontinuous Galerkin method.

Keywords: mesh generation, block-structured grids, high-performance computing, discontinuous
Galerkin method, ocean simulation, shallow water equations

1. INTRODUCTION

The accuracy and the computational performance of
finite element models is strongly a↵ected by the type
and the quality of the employed computational mesh.
Structured grids enable memory access in repeated
regular stencils and therefore o↵er nearly optimal
e�ciency [1]. Discretizations utilizing unstructured
meshes need to additionally load indexing data and
they access memory in irregular fashion resulting in
cache misses which reduce performance [2]. Never-
theless, unstructured meshes are often favored due to
their geometrical flexibility – many domains with com-
plex boundaries and varying element sizes cannot be

accurately represented by structured grids at all – and
the ability to adapt resolution in accordance with the
application requirements. Furthermore, the grid struc-
ture also plays an important role for load balance in
distributed computations. As pointed out in [3], the
grid should be adapted to the hardware that is used
for the simulation. In addition, the size of mesh ele-
ments determines the maximum admissible time step
in explicit simulations of time-dependent problems,
whereas the element shape critically a↵ects the sta-
bility of a finite element discretization. A triangular
element, for example, is considered optimal if it is equi-
lateral; the more it is distorted the worse its quality.
Element quality can be measured by the mean ratio
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metric [4, 5],
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where A is the signed area of the triangle (the sign
indicates flipped triangles), and li are the lengths of
its edges. Numerical errors caused by low-quality ele-
ments degrade the results or may even cause a blow-up
of the simulation. Also, the element size has an influ-
ence on the discretization error.

A compromise between the performance of a struc-
tured grid and the flexibility of an unstructured one
is a block-structured grid (BSG). It consists of an
unstructured block-mesh where each block contains
a structured grid. BSGs certainly alleviate the prob-
lem with complex domains but do not solve it com-
pletely. Since BSGs are complicated to generate au-
tomatically they are mostly used for simple domains,
and the block structure is usually optimized for specific
applications (e.g. turbine blades). For ocean domains,
no such simple segmentation is possible; in addition,
real-world geometries often contain application-critical
small-scale features. This presents a major di�culty
for the BSG methodology: Given a certain minimum
block size, islands or other domain features smaller
than this size cannot be represented.

In the current work, we introduce and evaluate a mask-
ing approach aiming to solve this issue: Our BSGs
are generated for simplified geometries that do not
resolve features smaller than the given block size; in-
stead, the excessive elements (those outside of the cor-
rectly resolved geometry) are masked, i.e. excluded
from the simulation. Starting from a user-provided
unstructured triangular mesh, our method automati-
cally generates a BSG of a given density with a pre-
scribed number of topologically uniform blocks. Op-
timal load balance in a parallel simulation is achieved
by choosing the number of blocks to be a multiple
of the processing units. Complex boundaries and
small islands that usually cannot be represented with
BSGs are restored by masking elements and reposi-
tioning boundary vertices. The code is available at
https://github.com/DanielZint/hpmeshgen.

This paper is structured as follows. In Section 2, we
describe related work. The generation of the block
structure is presented in Section 3. The refinement
of blocks, the masking, and the adaptation to the do-
main are described in Section 4. BSGs for selected
real-world domains and simulation results used for val-
idation of our approach can be found in Section 5, and
a short Conclusions & Outlook section wraps up this
work.

2. RELATED WORK

Considering that BSGs are used in many high-
performance computing applications, e.g. [6, 7, 8, 9],
there is surprisingly little literature on generating such
grids. Armstrong et al. showed in [10] that meth-
ods for generating BSGs share the same di�culty,
namely the placement of mesh singularities. Fogg et
al. use cross-fields for generating a block structure
[11, 12]. Lim et al. propose an evolutionary algo-
rithm for block generation [13, 14]. Sánchez and Cruz
present a semi-automatic approach for parametrizing
polygonal regions [15], in which a polygonal region is
decomposed into quadrilateral blocks and refined via
structured quad grids. By enabling manual correction
of the decomposition, the blocks are large and results
look promising. A similar approach was presented in
[16]. However, these methods focus on rather sim-
ple domains which are decomposed into a small num-
ber of blocks. The ocean domains in the focus of the
current study are much more complex geometrically,
and we have additional constraints such as the exactly
prescribed number of blocks and the CFL condition,
Equation (2).

A method for generating BSGs for complex ocean do-
mains was presented in [17]. It takes into account
the CFL condition, but its performance is limited
by the domain geometry: Realistic coastal regions
with fractal shapes and small islands cannot be repre-
sented accurately. In addition, the method in [17] does
not produce an exact number of blocks and therefore
may cause load imbalances. Nevertheless, our current
scheme follows the same idea of generating blocks by
simplifying an unstructured triangular mesh.

BSG generation also appears in geometry processing
where blocks are used for e�ciently storing textures
and the grid itself. Boier-Martin et al. [18] and Carr
et al. [19] use clustering techniques for block creation.
Dong et al. [20] quadrangulate any manifold by ap-
plying a Morse-theoretic analysis to the eigenvectors
of the mesh Laplacian. Daniels et al. present an al-
gorithm for quadrilateral remeshing [21]. It requires
closed manifold meshes and is therefore not transfer-
able to 2D ocean meshes. None of the above methods
considers element quality as the meshes are not de-
signed for numerical simulations.

Campen [22] presented a survey of methods for parti-
tioning surfaces into quadrilateral patches. The meth-
ods presented there have a di↵erent objective. Blocks
do not have a prescribed size, and the number of blocks
is also not fixed. Therefore, these methods are not ap-
propriate for HPC.
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3. GENERATION OF BLOCK

STRUCTURE

To generate a quad block structure with a prescribed
number of blocks, we first simplify the unstructured
triangular mesh, Figure 1a, to twice the prescribed
number of blocks, Figure 1b. The coarse triangles are
then merged into quads to form a quad block structure,
Figure 1c. The quad blocks are refined with structured
triangular grids, Figure 1d. Elements that are outside
the domain are masked, Figure 1e. Finally, bound-
ary vertices are mapped to the original contour, and
element size is restored, Figure 1f.

Quad blocks with structured triangular grids o↵er ad-
vantages and disadvantages: On the one hand, one
needs only half as many quad blocks as triangular ones,
and the communication topology between quad blocks
is simpler to optimize; on the other, it is easier to pro-
duce an accurate representation of complex boundaries
by masking triangular grids. In addition, the genera-
tion process for triangular meshes (used for partition-
ing into blocks) is robust and produces high-quality
partitions, whereas robustly generating unstructured
partitions into quads without degenerated elements is
a much more complex task. A triangular partition
can be converted into a quad one by combining tri-
angles [23, 24]. The resulting quad mesh might have
degenerated quads, e.g. the two quads in the top of
Figure 1c, but the triangles inside the quad blocks are
still valid, Figure 1d. Furthermore, our grid generator
was developed for the ExaStencils [25] code generation
framework with its python front-end GHODDESS [26]
currently limited to quad-type communication topolo-
gies.

Aside from complex boundary regions, also the ele-
ment size must be considered in the mesh generation
process. The CFL condition for shallow water equa-
tions contains a quotient that describes the relation
between element size �x and ocean depth H [27],

cm =
�xp
H

. (2)

The largest possible time step is proportional to cm,

�tmax ⇠ cm =
�xp
H

. (3)

Large elements allow large time steps and therefore
faster computation, but the simulation also becomes
less accurate. Thus, a compromise has to be found
between time step size and accuracy. The element
with the smallest cm determines the maximum time
step �tmax, whereas the discretization error (and thus
the accuracy) is largely controlled by �x. Therefore,
cm should be approximately the same for each element,
whereas the local mesh resolution should be chosen to
provide su�cient numerical accuracy.

3.1 Simplification

Our method for simplifying the triangular mesh is
based on the ideas of [17]. However, we use a di↵erent
error metric and vertex positioning method.

Quadric mesh simplification modifies a triangular
mesh by performing edge collapses using the quadric
error metric [28]. First, the error of all edge collapses
is computed. Simplification is then performed itera-
tively starting with the collapse that causes the small-
est error. After each edge collapse, the error of the
surrounding edges is recomputed. The simplification
terminates when the desired number of triangles is
reached or when no more edges can be collapsed.

Error Metric

Definition 1 The relative distance d̃(pi,pj) between
two points pi and pj is the quotient of the Euclidean
distance kpj�pik and the integral of the size function
h(x) between the two points divided by the Euclidean
distance:

d̃(pi,pj) =
kpj � pik
R pj
pi

h(x)dx

kpj�pik

=
kpj � pik2R pj

pi
h(x)dx

. (4)

A detailed explanation on generating the size function
h(x) from a triangular mesh is given in [17].

Definition 2 The relative length re of an edge e is
the relative distance of its incident vertices vi and vj

with positions pi and pj ,

re = d̃(pi,pj). (5)

Definition 3 The position error ⇢v(x) of a vertex v is
the squared relative distance between its initial position
p and its current position x,

⇢v(x) = d̃(p,x)2. (6)

We derive the simplification error from the position
error ⇢v(x). To ensure that the mesh is simplified uni-
formly we keep track of all vertices that were collapsed
into a single vertex v by storing them in a set Vc(v).
The simplification error Qv(x) of vertex v at position
x is the sum of all position errors of the vertices that
were collapsed into v

Qv(x) =
X

vc2Vc(v)

⇢vc(x). (7)

The error of an edge collapse is the sum of the simpli-
fication errors of its vertices vi and vj ,

Qe = Qvi +Qvj . (8)
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(a) initial mesh (b) simplification (c) blocks (d) BSG topology (e) masking (f) optimized BSG

Figure 1: The BSG generation steps for the Bahamas domain.

When collapsing vj into vi, the set Vc(vj) is appended
to Vc(vi).

Several conditions have to be met for an edge before
it can be collapsed. An edge collapse is considered
invalid if

the collapsing edge connects two boundary ver-
tices but itself is in the interior, or

the resulting elements have poor quality.

The first condition ensures that the mesh is not cut
open. The second condition prohibits flipped and de-
formed triangles. We consider a triangle as low quality
if the mean ratio metric, Equation (1), is below 0.1.
Similar constraints, called link conditions, were formu-
lated by Dey et al. [29].

Once an interior boundary (usually an island) only
contains three edges, it is replaced by a triangle. Thus,
islands disappear if they are too small to be repre-
sented in the block structure. Additionally, we make
use of non-edge contractions introduced in [30]. Ver-
tices that are close but not connected by an edge are
collapsed along a virtual edge.

Vertex Positioning

The computation of vertex positions after an edge col-
lapse di↵ers for interior and boundary vertices. If both
vertices of the collapsed edge are in the interior or the
edge is virtual, the remaining vertex is positioned in
the middle. More elaborate approaches like optimiz-
ing the new vertex position were tested but did not
have any significant impact on quality. If an edge con-
nects an interior with a boundary vertex, the edge is
collapsed towards the boundary. This ensures that the
domain shape remains unchanged.

For boundary edges, we consider several cases depend-
ing on the local convexity of the boundary at the two
vertices. If the boundary is concave at both vertices,
the new vertex is positioned at the midpoint of the

edge, Figure 2a. If both vertices are convex we com-
pute the intersection point of the neighboring edges
and use it as the new vertex position, Figure 2b. If
one vertex is convex and the other is concave, the con-
vex vertex position is preserved, Figure 2c. This only
leads to a valid solution if these edges are not paral-
lel. Otherwise, the edge collapse is considered invalid.
The positioning of boundary vertices ensures that the
initial mesh is fully covered by the simplified mesh.

(a) (b) (c)

Figure 2: Vertex positioning at boundaries. The col-
lapsed edge is marked in red.

3.2 Remeshing

The simplified mesh is improved with standard post-
processing steps like smoothing and edge flipping. We
perform remeshing similarly to [31]. First, we compute
the average of the relative edge lengths r̄e. Then, the
mesh is iteratively improved with the following steps:

1. Split all edges whose relative length is larger than
4
3 r̄e.

2. Collapse all edges whose relative length is smaller
than 3

4 r̄e. Collapses are executed as described in
Section 3.1.

3. Flip edges whenever it reduces the number of ir-
regular vertices. A vertex is considered irregu-
lar if it has a valence unequal to 6. An edge
with the vertices v1, v2 and the incident triangles
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(v1, v2, v3), (v2, v1, v4) is flipped if e0⌘ < e⌘, where

e⌘ = max{|⌘1 � 6|, |⌘2 � 6|}
+max{|⌘3 � 6|, |⌘4 � 6|},

e
0
⌘ = max{|⌘1 � 7|, |⌘2 � 7|}

+max{|⌘3 � 5|, |⌘4 � 5|},

and ⌘i is the valence of vertex vi (i.e. the num-
ber of vertices connected to vi by an edge). The
valence of a boundary vertex vb is increased de-
pending on the boundary angle ↵b,

⌘b  ⌘b + floor(
2⇡ � ↵b

1
3⇡

).

Flips that cause tangling, i.e. triangles with neg-
ative quality, Equation (1), are discarded.

4. Improve mesh quality by smoothing. We use the
DMO (Discrete Mesh Optimization) approach
from [32] with a vertex metric that combines the
mean ratio metric, Equation (1), with Laplace
smoothing

q
(v)
iso(xk) =

(
q
(v)
mrm(xk) , if q(v)mrm(xk) < 0.5

0.5 + q
(v)
lap(xk) , otherwise

q
(v)
lap(xk) =

1
klpk � xkk2 + 1

,

where xk is the position of vertex vk, and lpk de-
notes the center of gravity of the one-ring neigh-
borhood (vertices connected to vk by an edge).
The advantage of this metric over the pure mean
ratio is that the results are smoother, and ele-
ments tend to be locally of similar size. The mean
ratio metric can cause distortions if mesh topol-
ogy is not adequate for the domain.

Remeshing is stopped if either the number of trian-
gles does not change within two iterations or if a cer-
tain maximum number of iterations is reached (cur-
rently, we perform a maximum of 100 iterations). Af-
ter that, the number of triangles is not generally equal
to the number of blocks as prescribed by the user; thus,
the last remeshing iteration is carried out to produce
the exact number of blocks: We force edge splits if we
do not have enough triangles or we collapse them if
there are too many – independently of r̄e.

An example showing the e↵ectiveness of remeshing is
given in Figure 3. Low quality triangles and vertices
with high valence are removed by remeshing, improv-
ing the overall mesh quality. Both, the simplified and
the remeshed mesh consist of 4000 triangles.

3.3 Conversion to Quad Blocks

The triangles in the simplified mesh are merged us-
ing Blossom-Quad [23] which relies on Edmonds’ Al-
gorithm to find a perfect match for the dual graph of

(a) Simplified

(b) Remeshed

Figure 3: Remeshing for domain Mediterranean with
4000 triangles.

the triangular mesh. Unfortunately, not every graph
has a perfect match and therefore some triangles might
be left over. These triangles always appear pair-wise
along mesh boundaries. The solution proposed in [23]
duplicates the vertex between the two triangles. This
solution is not feasible for us because this increases the
number of quads. Instead, we perform triangle merg-
ing as proposed several times in literature [24, 33, 34].
This method moves one triangle towards another by
flipping edges until they can be merged into a quad.

The mesh must have an even number of triangles for
applying Blossom-Quad and triangle merging. The
simplification and remeshing might cause an uneven
number though. In that case, the relatively longest
boundary edge according to Equation (5) is split in
two increasing the total number of triangles by one.

Finally, the quad blocks are refined with structured
triangle meshes, giving the desired block-structured
topology. There are two possible orientations for a
triangle mesh within a quad block. We choose the
orientation which results in triangles of higher quality,
measured with the mean ratio metric, Equation (1).

4. GRID ADAPTATION TO DOMAIN

The grid adaptation consists of three main steps.
First, element size is adjusted by repositioning inte-
rior vertices. Second, the domain shape is restored
by masking triangles. Third, boundary vertices are
mapped onto the domain shape. Finally, interior ver-
tices are repositioned once more to improve quality
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near boundaries.

4.1 Repositioning Interior Vertices

For finding optimal vertex positions in the interior of
the BSG, we define a quality metric and optimize ver-
tex positions with DMO [32]. We use the relative
edge length defined in Section 3.1 to adapt mesh den-
sity. Additionally, we set a minimal mean ratio quality
q̂
(v)
mrm to ensure numerical stability:

q
(v)
d,mrm(x) =

(
q
(v)
mrm(x) if q(v)mrm(x)  q̂

(v)
mrm

q̂
(v)
mrm + q

(v)
d (x) otherwise.

The density quality q
(v)
d (x) of vertex v at position x

depends on the longest and shortest relative length of
its incident edges:

q
(v)
d (x) =

1
re,max � re,min + 1

.

Optimizing for density quality sometimes generates
wiggly lines. We remove them by applying one itera-
tion of DMO with the mean ratio metric.

4.2 Masking

We trim the mesh such that it represents the domain
well by masking elements that are outside of the do-
main. For this, a signed distance function is utilized
to decide which vertices and edges give the best rep-
resentation of the boundaries. In the first sweep, we
mask all triangles that lie outside the domain. This is
determined by checking the signed distance of all inci-
dent vertices and the center point of the triangle. If all
distances are positive, the triangle is masked. Consid-
ering the center point of the triangle prevents masking
those triangles that have all vertices on the boundary
but should not be masked. Due to round-o↵ e↵ects,
boundary vertices may have positive signed distances
even though they lie on the contour.

In contrast to triangles that must be preserved, it
might also happen that triangles lie almost completely
outside the domain. For masking those triangles we
approximate the area fraction of the triangle that is
outside of the domain. If its major part (currently we
use a threshold of 85%) lies outside, it is masked.

Next, we consider boundary vertices. We mask a ver-
tex and its incident triangles if the boundary is ap-
proximated better by the vertices on its one-ring. For
that we compare the distance of the vertex with all its
neighbors. If all neighbors are closer to the contour
than the vertex, it is masked.

One more special case must be accounted for before
mapping the boundary to the contour. Trimming
might cause a zigzag line at the boundary. If this line

is mapped to the contour, triangles might degenerate.
We avoid this by masking triangles that would be of
low quality when mapped to the contour.

4.3 Boundary Adaptation

Producing non-degenerate triangles is more important
than placing boundary vertices perfectly on the do-
main boundary. Thus, vertices are only mapped onto
the contour if the resulting triangles are not degener-
ated. Fortunately, this happens only rarely. Vertices
are mapped by moving them to the closest point on
the contour. Afterwards, all boundary vertices are
smoothed by positioning them in the midpoint be-
tween their neighbors.

5. RESULTS

In this section, we compare BSGs to the initial un-
structured triangular meshes. Element quality is mea-
sured with the mean ratio metric, Equation 1, element
size is evaluated by the CFL quotient, Equation 2. For
the BSG generation, we use a workstation with an In-
tel i7-6700k CPU with 4 cores and 4.0 GHz and an
NVIDIA GeForce GTX 1070 GPU. Vertex reposition-
ing is performed on GPU everything else on CPU. All
runtime measurements cover the whole generation pro-
cess including read and write operations.

The number of triangles |T | in a BSG is the product of
the number of blocks NB and the number of elements
per block U . The structured triangular grid is gener-
ated by refining each block uniformly. The number of
unmasked triangles is denoted by |F | and the relative
amount of masked triangles by µ

µ = (|T |� |F |)/|T |. (9)

5.1 BSG generation for real-world ocean

domains

The first example is called Graysharbor, Figure 4a,
and represents the geometry and topography of the
Grays Harbor in the State of Washington (USA). The
element size varies strongly throughout the domain.
We generate a BSG with NB = 250, U = 128, and
|F | = 27 898. The generation of the BSG took about
15 seconds. The BSG for Graysharbor contains 13%
masked triangles. The minimal mean ratio quality is
0.32. The CFL quotient varies between 83 and 4262. It
is similar to the range of the unstructured mesh that
is between 81 and 5547. The domain is represented
correctly by the BSG, Figure 4b.

The second example is an unstructured mesh repre-
senting the Gulf of Mexico with 14 269 triangles, Fig-
ure 5a. The generation of a BSG with NB = 300,
U = 128, and |F | = 32 635 took 8 seconds, Figure 5b.
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(a) unstructured (b) BSG

Figure 4: Graysharbor with 34 406 triangles in the
unstructured mesh [35] and 27 898 in the BSG.

The minimal mean ratio quality for the BSG is 0.30.
Although the BSG has more than double the number
of elements, the CFL quotient is very similar for both
grids. The unstructured mesh has a CFL quotient be-
tween 36 and 11580 and the BSG between 34 and 7304.
In this BSG, 15% of the elements were masked.

(a) unstructured (b) BSG

Figure 5: The Gulf of Mexico with 14 269 triangles
in the unstructured mesh and 32 635 in the BSG.

5.2 Validation test: Mediterranean

The domain Mediterranean is our most complex ex-
ample; it contains fine-scale geometry features such
as small islands and channels which are only one ele-
ment wide, Figure 6. The unstructured mesh consists
of 112 962 triangles, and we generate BSGs with up
to 8 000 blocks and a higher resolution than the initial
unstructured mesh in order to represent details like the
Bosporus connecting the Black Sea with the Marmara
Sea correctly. Due to the increased number of ele-
ments, the CFL quotient is smaller for BSGs than for

the unstructured mesh. For NB = 4000 with 472 931
triangles, we have a minimal value of cm = 35.1. The
mean ratio metric has its minimal value at around 0.3
for all meshes. BSG generation for the Mediterranean
domain takes between 103 and 141 seconds.

For this domain, we clearly see the advantage of mask-
ing elements. Even small details can be captured by
BSGs with masks. In Figure 7 we illustrate some de-
tails of the BSG with NB = 8000. Regions such as
the Bosporus, where the mesh must be connected, are
represented correctly, Figure 7a. In other regions such
as the Gulf of Corinth, the isthmus is also shown cor-
rectly in the BSG, Figure 7d. The small land bridge
connecting southern Greece with the Peloponnese can-
not be represented on the block level but is restored by
masking in the refined mesh. Sicily, on the other hand,
is correctly shown as disconnected from the mainland
of Italy, Figure 7h. Coastal regions are represented
substantially better by the refined and masked grid
than by the unmasked block grid, Figure 7f. Most of
these details could not be represented without mask-
ing as triangles would be highly distorted, e.g imagine
fitting whole blocks into the Bosporus, Figure 7a.

NB U |F | µ runtime/s
8 000 32 244 295 5% 103
4 000 128 472 931 8% 141
2 000 128 226 350 12% 137

Table 1: BSG configurations for Mediterranean with
masks, whereNB , U , and |F | are the number of blocks,
elements per block, and unmasked elements respec-
tively. µ is the relative amount of masked elements.

To validate the quality of the generated BSGs we
additionally simulate a circulation scenario for the
Mediterranean and compare results between the initial
unstructured mesh and various generated BSGs. The
simulations are performed using the 2D shallow water
equations solver UTBEST [27] based on the discontin-
uous Galerkin (DG) method. The tide-driven flow is
simulated for 5 days starting from the cold start condi-
tions (zero elevation and velocity) and uses piecewise
constant DG discretization combined with the forward
Euler time stepping. Since our BSGs for this test case
have somewhat higher resolution, the used time step
is between 4 and 6 seconds compared to the maximum
time step of 9 seconds for the original unstructured
mesh. The free surface elevation written out at 6 lo-
cations (recording stations), Figure 8, is compared to
the results produced by the unstructured mesh simu-
lation. For all stations – even at Station 6 in the Sea
of Azov and thus the farthest from the open boundary
located in the Straits of Gibraltar – the results match
well, with the largest di↵erence at Station 3 in the
Adriatic Sea. We attribute this di↵erence to a higher
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Figure 6: Unstructured mesh for domain Mediterranean with 112 962 triangles.

resolution of our BSGs.

The relative number of masked triangles, Equation (9),
is low in all presented BSGs and varies between 5%
and 15%. A thorough study of the performance of
BSGs with masks in simulations, especially in com-
parison with unstructured meshes, is yet to come.

6. CONCLUSIONS & OUTLOOK

We presented a method for generating block-
structured grids which relies on an unstructured tri-
angular mesh as the sole input. The BSGs have a
prescribed number of quad blocks refined uniformly
into triangular elements. We make use of the Discrete
Mesh Optimization (DMO) method for repositioning
vertices as we have di↵erent quality metrics through-
out the method. Masking elements allows representing
features much smaller than the block size which is very
important when considering complex domain shapes.
We evaluate our block-structured grids by comparing
them to the unstructured triangular meshes. In future
work, we plan to improve the masking process to rep-
resent fine details like isthmuses and islands that are
even smaller than one element wide. Furthermore, au-
tomatic alignment of vertices to interior features will
be added.
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Figure 7: Detail views of the Mediterranean domain with NB = 8000. Red regions are covered by the block grid
but are not part of the masked BSG.
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Figure 8: Free surface elevation at recording stations on Mediterranean.
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