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ABSTRACT

We detail how to use Newton’s method for distortion-based curved r-adaption to a discrete high-order metric field. To this end, we
consider three existent ingredients. First, a specific-purpose solver for distortion minimization. Second, a log-Euclidean high-order
metric interpolation. Third, a point localization procedure for curved high-order meshes. We also extend to discrete metric fields
a distortion-based curved r-adaption framework. To extend the framework, we provide, for the log-Euclidean high-order metric
interpolation, the first and second derivatives in physical coordinates. These derivatives are required by Newton’s method to solve
the distortion minimization. The distortion minimization allows properly matching the anisotropic curved features of a discrete
high-order metric. This matching capability might be relevant in global and cavity-based curved (straight-edged) high-order mesh
adaption.
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1. INTRODUCTION

The capability to relocate mesh nodes without changing the
mesh topology, referred to as r-adaptivity, is a key ingredi-
ent in many adaptive PDE-based applications [1–3]. In these
applications, to improve the solution accuracy, an error indi-
cator or estimator determines the target stretching and align-
ment of the mesh. Then, to match these target features, an
r-adaption procedure modifies the whole mesh (global) [4,5]
or a previously remeshed cavity (local) [6–8].

In either case, r-adaptivity contributes to increasing the so-
lution accuracy for a fixed number of degrees of freedom
supported on a straight-edged mesh [3, 4, 6, 9, 10]. However,
straight-edged meshes might not be an efficient support in
many applications. Especially in applications where addi-
tional straight-edged mesh elements are artificially required
to match highly curved solution features [11].

To efficiently match curved features, many practitioners have
recently started to exploit curved high-order meshes. These
meshes can be stretched and aligned in a pointwise vary-
ing fashion through anisotropic procedures [12], geodesic

approaches for curved edges [13, 14], shock-tracking meth-
ods [15–17], and deformation analogies [18, 19]. Alterna-
tively, the curved r-adaption can be driven, as for straight-
edged elements [4, 5], by distortion measures. These mea-
sures are defined point-wise and are aware of either a target
deformation matrix [20] or a target metric [21].

In adaptivity applications, the target deformations and met-
rics are not known a priori. These target fields are recon-
structed a posteriori from the solution on the last mesh.
Specifically, this mesh supports the resulting discrete rep-
resentation of the target field. This discrete representation
is key to interpolate the required field values in the adap-
tive procedure. Hence, to enable high-order adaptivity, we
need the capability to interpolate target fields on a high-order
mesh.

To match a deformation matrix, distortion optimization for
curved r-adaption to a discrete target field is detailed in [20].
The method is really well-suited for simulation-driven r-
adaption [22, 23]. It evaluates the distortion in a physical
point by interpolating the target matrix on a discrete field.
Although the derivatives of the target matrices are not zero,
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the method assumes they are zero. Moreover, the second
derivatives are also assumed to be zero. Since non-null
derivatives are assumed to be zero although the approach
implements Newton’s method, the curved r-adaption mini-
mization corresponds to a quasi-Newton method.

To match a metric, distortion-based curved r-adaption to an
analytic field can be performed with Newton’s minimiza-
tion [21, 24, 25]. The formulation for an analytic metric is
derived in [21], while a specific-purpose globalization and a
pre-conditioned Netwon-CG method are proposed in [24,25]
to minimize the mesh distortion. Since the method deals with
an analytic metric, it does not specify the derivatives for a
metric represented by a discrete high-order field.

Regarding a discrete field representation, a convenient ap-
proach is to use a log-Euclidean [26] high-order metric in-
terpolation [27]. This metric interpolation drives a cavity-
based adaption approach, where the remeshed cavities are
improved by locally smoothing the curved quadratic edges.
To smooth these edges, the method optimizes the mid-node
position. The optimization only uses the first derivatives of
the log-Euclidean metric interpolation in terms of the curved
edge coordinates. Accordingly, the method does not provide
the first and second derivatives of the discrete metric field in
physical coordinates.

Considering the previous open issues, our main contribution
is to use Newton’s optimization for distortion-based curved
r-adaption to a discrete high-order metric field. We need
three existent ingredients. First, to minimize the distortion,
we use the specific-purpose solver in [24, 25]. Second, we
represent the metric field as a log-Euclidean high-order met-
ric interpolation [27] on a curved high-order mesh. Third,
we locate physical points in the curved background mesh
similar to the approach in [22]. We also need to extend to
discrete metric fields a distortion-based curved r-adaption
framework [21].

To extend the framework, the main novelty is to provide, for
the log-Euclidean high-order metric interpolation, the first
and second derivatives in physical coordinates. These deriva-
tives are critical to use Newton’s method for distortion mini-
mization. This minimization leads to unprecedented second-
order optimization results for curved r-adaption for a discrete
high-order metric representation on a curved (or straight-
edged) mesh.

The remainder of this paper is organized as follows. First, in
Section 2 we introduce the metric-aware measures for curved
high-order 2D elements. Next, in Section 3 we introduce
the high-order log-Euclidean metric interpolation framework
and we present the computation of its gradient and Hessian.
Following, we present several examples to illustrate the ca-
pabilities of the proposed framework, Section 4. To finalize,
in Section 5 we present the main conclusions and sum up the
future work to develop.

Figure 1: Mappings between the master, the ideal, and the
physical elements in the linear case.

2. PRELIMINARIES: METRIC-AWARE
MEASURES FOR CURVED
HIGH-ORDER ELEMENTS

In this section, we review the definition of the Jacobian-
based quality measure for high-order elements equipped
with a metric, presented in [21]. To define and compute a
Jacobian-based measure for simplices [5], three elements are
required: the master, the ideal, and the physical, see Figure
1 for the linear triangle case. The master (EM) is the ele-
ment from which the iso-parametric mapping is defined. The
equilateral element

�
E4�

represents the target configuration
in the isotropic case. The physical (EP) is the element to be
measured.

To summarize the results in [21], we present the expression
of the metric distortion measure in terms of the equilateral
element E4. First, we need to compute a mapping from the
master to the equilateral and physical elements, denoted as
f4 and f P, respectively. By means of these mappings, we
determine a mapping between the equilateral and physical
elements by the composition

f E : E4 f�1
4��! EM f P�! EP.

As detailed in [21], we define the point-wise distortion mea-
sure for a high-order element EP equipped with a point-wise
metric M, at a point y 2 E4 as

Nf E(y) =
tr
⇣

Df E(y)
T ·M(f E(y)) ·Df E(y)

⌘

d
⇣

det
⇣

Df E(y)
T ·M(f E(y)) ·Df E(y)

⌘⌘1/d ,

(1)
where the Jacobian of the map f E is given by

Df E(y) := Df P(f�1
4 (y)) ·Df�1

4 (y).

Note that the distortion measure is independent of the com-
putation of the metric M(f E(y)), either using an analytical
or a discretized representation.

We regularize the determinant in the denominator of Eq. (1)
in order to detect inverted elements [28–31]. In particular,
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we define
s0 =

1
2
(s + |s |),

where
s = det(Df E(y))

q
det(M(f E(y))).

Then, we define the point-wise regularized distortion mea-
sure of a physical element EP at a point y 2 E4 as

N0f E(y) :=
tr(Df E(y)T ·M(f E(y)) ·Df E(y))

ds2/d
0

, (2)

and its corresponding point-wise quality measure

Qf E(y) =
1

N0f E(y)
. (3)

Finally, we define the regularized elemental distortion by

h(EP,M) :=

⇣R
E4 (N0f E(y))

2 dy
⌘1/2

(
R

E4 1 dy)1/2 (4)

and its corresponding quality

q(EP,M) =
1

h0,(EP,M)
. (5)

We can improve the mesh configuration by means of relo-
cating the nodes of the mesh according to a given distortion
measure [21, 24, 25, 32]. In [21] it is proposed an optimiza-
tion of the distortion (quality) of a mesh M equipped with
a target metric M that describes the desired alignment and
stretching of the mesh elements. To optimize a given mesh
M, first it is defined the mesh distortion by

F (M) := Â
EP2M

Z

E4
(N0f E(y))

2 dy,

which allows to pose the following global minimization
problem

M⇤ := argmin
M

F (M) , (6)

to improve the mesh configuration according to F . In par-
ticular, herein, the degrees of freedom of the minimization
problem in Eq. (6) correspond to the spatial coordinates of
the mesh nodes.

To evaluate the distortion minimization formulation pre-
sented in Equation (6), an input metric is required. The re-
viewed r-adaption procedure has been applied for analytic
metrics in [21]. In the following section, we detail the in-
terpolation process that is required to extend the presented
framework to dicrete metrics.

3. LOG-EUCLIDEAN METRIC
INTERPOLATION

In this section, we formulate a metric interpolation process
that allows both the distortion evaluation, Eq. (2), and its op-
timization, Eq. (6). In Sec. 3.1 we detail the log-Euclidean

metric interpolation for linear and high-order elements first
presented in [26] and [27,33], respectively. Then, in Sec. 3.2
we present, as a contribution of this work, the gradient and
the Hessian of the log-Euclidean interpolation. Their compu-
tation will be used for the distortion minimization problem.

3.1 Metric Interpolation

In this section, we introduce the definition of the log-
Euclidean metric interpolation at the background mesh.
First, we introduce the required notation of the mappings and
their parameters with the corresponding diagram. Secondly,
we detail the interpolation procedure.

To evaluate the metric-aware distortion measure in Eq. (2)
featuring discrete metrics, two meshes are required. On the
one hand, the physical mesh M, Figure 2(a), is the domain
where the elements are deformed in order to solve the prob-
lem presented in Equation (6). On the other hand, the back-
ground mesh M̂, Figure 2(b), is a mesh that stores discrete
metric values as a nodal field.

To evaluate the point-wise metric-aware distortion measure,
we need to compute the interpolation of the point-wise met-
ric values. For this, the localization between both meshes is
required [22, 34, 35]. In particular, a physical point p 2 M
is located at the background mesh M̂ where the metric is
interpolated, see Figure 2(c). In what follows, we introduce
the elements and the mappings required for this localization
procedure.

We integrate the distortion measure presented in Equation
(2) over the equilateral element via the master element EM .
In particular, for the metric evaluation, we map via f P, each
integration point x 2 EM to a point p of the physical ele-
ment EP, see Figure 3. To compute the metric at p we need
to locate p in the background mesh, where the values of
the metric are stored, see the intersection between EP and
the background element EP̂ in Figure 3. In addition, Fig-
ure 3 shows the procedure to obtain the coordinate to in-
terpolate the metric from the quadrature points. In partic-
ular, we map a reference point x 2 EM to a physical point
p = f P (x ) 2 EP, which we identify it with a point p̂ 2 EP̂

of the background mesh and its preimage is the background
reference point x̂ = f P̂

�1 (p̂) 2 EM̂ .

Given a physical point p, we find it convenient to denote by
y any mapping from a background element containing p that
provides the coordinates in the background master element
EM̂ . Using this notation, we understand that any projection
of a physical point p onto a point x̂ of the background master
element EM̂ corresponds to the evaluation of the non-linear
function x̂ = y(p).

To evaluate this non-linear function, we exploit that the ex-
pression of y|EP , defined in the intersection of a physical
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(a) (b) (c)

Figure 2: Point localization: (a) physical mesh, (b) background mesh, and (c) a point p in the corresponding physical and back-
ground element (bold edges).

Figure 3: Mappings between the master and the physical
elements (below) and their background analogs (above).

element EP and a fixed background element EP̂, is given by

y|EP : EP \EP̂ ! EM̂

p 7! f�1
P̂

(p) . (7)

Specifically, we solve the non-linear inverse expression in
the image term, Equation (7), by applying Newton’s mini-
mization to the squared distance. That is, we solve

x̂ = argmin
ẑ

����

����f P̂

⇣
ẑ
⌘
�p

����

����
2
.

The result is a numerical approximation of the point coor-
dinates in the background master element. An alternative
approach [22] is to seek the zeros of the vector equation

f P̂

⇣
x̂
⌘
�p = 0.

Once the background master coordinates associated to a
given physical point have been computed, it is necessary to
interpolate the metric supported by the background mesh at
the corresponding master coordinate. To do so, we use the
log-Euclidean interpolation proposed in [26, 27]:

M
�
N̂
�

:= exp
�
L(N̂)

�
, L(N̂) :=

n̂

Â
j=1

N̂ j logM j, (8)

where for the j-th node of the master element EM̂ , M j and
N̂ j are the corresponding metric value and shape function,
respectively. In addition, N̂ denotes all the shape functions,
n̂ = ( p̂+1)( p̂+2)

2 is the number of nodes and where p̂ is the in-
terpolation degree which corresponds to the polynomial de-
gree of the master element EM̂ . Finally, M(N̂) is character-
ized by the eigenvalue-based matrix exponential function

M
�
N̂
�
= U · expD ·UT, (9)

where D, U are given from the eigenvalue decomposition
of the matrix L(N̂) =: U ·D ·UT. Finally, for each physical
point p the metric interpolation is given by M

�
N̂(y (p))

�
.

3.2 Gradient and Hessian

This section gives formulas of the gradient and Hessian of
the metric interpolation over a background mesh in terms of
the physical coordinates. For this, we detail first the case for
the metric interpolation at a single element and then for the
background mesh. In particular, our approach uses the gradi-
ent and Hessian of the eigenvalue decomposition presented
in [36].

To compute the derivatives of the metric M we first differen-
tiate the eigenvalue-based exponential matrix function pre-
sented in Equation (9) and then we differentiate the L func-
tion presented in Equation (8). By denoting x j the coordi-
nates of p and ∂ j := ∂

∂x j
, ∂ jk := ∂ j∂k = ∂

∂x j

∂
∂xk

the partial
derivatives in terms of the physical coordinates of p, we can
compute the spatial derivatives of the metric interpolation
of Equation (8). In particular, the first-order derivatives are
given by

∂ jM(N̂) = ∂ j expL(N̂) = ∂ j

⇣
U · expD ·UT

⌘
=

�
∂ jU

�
· expD ·UT +U ·

�
∂ j expD

�
·UT +

U · expD ·
⇣

∂ jUT
⌘
,
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and the second-order derivatives are given by

∂ jkM(N̂) = ∂ jk expL(N̂) = ∂ jk

⇣
U · expD ·UT

⌘
=

�
∂ jkU

�
· expD ·UT +∂kU ·

�
∂ j expD

�
·UT +

∂kU · expD ·
⇣

∂ jUT
⌘
+
�
∂ jU

�
·∂k expD ·UT +

U ·
�
∂ jk expD

�
·UT +U ·∂k expD ·

⇣
∂ jUT

⌘
+

�
∂ jU

�
· expD ·∂kUT +U ·

�
∂ j expD

�
·∂kUT +

U · expD ·
⇣

∂ jkUT
⌘
.

Note that, since the matrix D is diagonal, we have

∂ j expD = exp(D) ·∂ jD,

∂ jk expD = exp(D) ·
�
∂kD ·∂ jD+∂ jkD

�
.

The presented first and second-order derivatives of the met-
ric require the first and second-order spatial derivatives of the
eigenvalue decomposition (eigenvalues and eigenvectors),
respectively. Their computation is appended in Section 7.

In addition, the derivatives of the eigenvalues and eigenvec-
tors depend on the derivatives of the L function presented in
Equation (8). In particular, they are given by

—L = Â
j

�
logM j

�
—N̂ j, —2L = Â

j

�
logM j

�
—2N̂ j,

where — is the gradient with respect to physical coordi-
nates. Therefore, to differentiate the metric interpolation
M

�
N̂(y (p))

�
at a physical point p, the derivatives of the

map y presented in Equation (7) and of the shape functions
N̂ are required.

The derivatives of y|EP are given, at each patch EP \EP̂, by
the ones of the inverse of the physical map f�1

P̂
correspond-

ing to the background mesh. To obtain the derivatives of the
shape functions N̂ in terms of the physical coordinates p, we
consider the chain rule for the composition N̂�y|EP and the
restriction of the map y|EP at each patch EP\EP̂. We finally
obtain the gradient

—N̂ = —x̂ N̂ ·—f�1
P̂ , (10)

where —x̂ is the gradient with respect to x̂ coordinates, and
the Hessian

—2N̂ j =
⇣

—f�1
P̂

⌘T
·—2

x̂ N̂ j ·—f�1
P̂ +—x̂ N̂ j ·—2f�1

P̂ , (11)

where

—f�1
P̂ =

⇣
—x̂ f P̂

⌘�1
,

—2f�1
P̂ = —

✓⇣
—x̂ f P̂

⌘�1
◆

= �—f�1
P̂ ·—2

x̂ f P̂ ·—f�1
P̂ .

4. RESULTS

In this section, we present a 2D and a 3D example to illus-
trate the applicability of our distortion minimization frame-
work for curved r-adaption to a high-order metric interpola-
tion. First, we generate a background mesh M̂ and we eval-
uate the analytical metric M at the background mesh nodes.
Second, we generate an initial physical mesh M and we
measure its distortion (quality) by interpolating the metric.
Finally, by relocating the nodes, we minimize the mesh dis-
tortion problem presented in Equation (6) using the frame-
work presented herein.

To summarize the results, we present a table of the qual-
ity statistics, and the figures for the initial and optimized
meshes, respectively. Specifically, we show the minimum
quality, the maximum quality, the mean quality and the stan-
dard deviation of the initial and optimized meshes. We high-
light that in all cases, the optimized mesh increases the min-
imum element quality and it does not include any inverted
element. In addition, the meshes resulting after the opti-
mization are composed of elements aligned and stretched
to match the target metric tensor. In all figures, the meshes
are colored according to the point-wise quality presented in
Equation (3).

As a proof of concept, a mesh optimizer has been devel-
oped in Julia 1.4.2 [37] with the additional packages: Arpack
v0.5.0, Einsum v0.4.1, EllipsisNotation v1.0.0, ILUZero
v0.1.0, JLD v0.12.1, Plots v1.9.0, Setfield v0.7.0, Spe-
cialFunctions v1.2.1, StatsBase v0.33.2, TensorOperations
v3.1.0 and WriteVTK v1.8.0. In addition, we have used
the MATLAB PDE Toolbox [38] to generate the initial
isotropic linear unstructured 2D and 3D meshes (the struc-
tured meshes are generated by subdivision).

The Julia prototyping code is multithreaded, it corresponds
to the implementation of the method presented in this work
and the one presented in [21,24,25]. In all the examples, the
optimization corresponds to finding a minimum of a nonlin-
ear unconstrained multi-variable function. In particular, the
mesh optimizer uses an unconstrained line-search globaliza-
tion with an iterative preconditioned conjugate gradients lin-
ear solver. The stopping condition is set to reach an absolute
root mean square residual, defined as k— f (x)k`2p

n for x 2 Rn,

smaller than 10�4 or a length-step smaller than 10�4. Each
optimization process has been performed in a single node of
a computing machine. Each node contains two Intel Xeon
Platinum 8160 CPU with 24 cores, each at 2.10 GHz, and 96
GB of RAM memory.

We regularize the objective function to ensure infinite val-
ues for inverted configurations. Furthermore, to globalize the
minimization, we equip Newton’s method with a backtrack-
ing line-search. Whenever the Newton’s update provides an
inverted configuration, the objective function becomes infin-
ity and thus, the backtracking line-search shortens the update
until a valid configuration is reached.
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Following, we first present the target domains to be meshed,
and the considered metrics on the domain, Section 4.1. Next,
in Section 4.2 we present the optimization results comparing
both the proposed discrete based-interpolation procedure and
the analytical one from [21, 24, 25]. Finally, in Sections 4.3
and 4.4, we show the application of the discrete metric ap-
proach to optimize an anisotropic mesh adapted to a given
metric generated by the MMG algorithm presented in [39].

4.1 Domains and metrics

We consider the quadrilateral domain W = [� 1
2 ,

1
2 ]

2 for the
two-dimensional examples and the hexahedral domain W =
[� 1

2 ,
1
2 ]

3 for the three-dimensional ones. Each domain is
equipped with a metric matching a boundary layer. In par-
ticular, our target metric M is characterized by a diagonal
boundary layer metric D and a deformation map j by the
following expression

M = —jT ·D ·—j. (12)

In what follows, we first detail the boundary layer metric D
and then the deformation map j .

The boundary layer aligns with the x-axis (xy-plane) in the
2D case (3D case). It determines a constant unit element
size along the x-direction (xy-directions), and a non-constant
element size along the y-direction (z-direction). This vertical
element size grows linearly with the distance to the x-axis
(xy-plane), with a factor g = 2, and starts with the minimal
value hmin = 0.1. Thus, the stretching ratio blends from 1 :
10 to 1 : 1 between y =�0.5 and y = 0.5 (between z =�0.5
and z = 0.5). We define the metric for the 2D case as:

D :=
✓

1 0
0 1/h(y)2

◆
(13)

where the function h is defined by

h(x) := hmin + g|x|.

Similarly, the metric for the 3D case is

D :=

0

@
1 0 0
0 1 0
0 0 1/h(z)2

1

A . (14)

The deformation map j in Eq. (12) aligns the stretching of
D according to a given curve in the 2D examples and at a
given surface in the 3D examples. In the 2D case, we define
the map j by

j(x,y) =
✓

x,
10y� cos(2px)p

100+4p2

◆
,

and, in the 3D case by

j(x,y,z) =
✓

x,y,
10z� cos(2px)cos(2py)p

100+8p2

◆
.

Figure 4: Anisotropic quotient values in logarithmic scale
of the target metrics.

(a) (b) (c)

Figure 5: Background triangular meshes of polynomial de-
gree 1, 2 and 4.

Figure 4 shows the anisotropic quotient [40] of the met-
ric presented in Equations (13) and (14). Specifically, the
anisotropic quotient of a metric tensor M 2Rd⇥d is given by

quo = max
i=1,...,d

s
det(M)

l d
i

where li, i = 1, ...,d are the eigenvalues of M. The consid-
ered metric M attains the highest level of anisotropy, close
to the curve described by the points (x,y) 2 W such that
j(x,y) = (x,0) in 2D, and close the surface described by the
points (x,y,z) 2 W such that j(x,y,z) = (x,y,0) in 3D.

4.2 Distortion minimization: initial
isotropic straight-edged meshes

In this section, we present the optimization results for ini-
tially isotropic meshes on the domain equipped with the met-
rics presented in Section 4.1. We describe first the initial
meshes M together with the background meshes M̂ where
the metric is interpolated. Next, we present the optimized
meshes M⇤ and to conclude, we present the results obtained
from the optimization process. Herein, both the background
and physical meshes are meshes of the same polynomial de-
gree.

The initial meshes M are of polynomial degree 1, 2 and 4.
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Table 1: Quality Statistics for the initial and optimized meshes with interpolated 2D metric.

Mesh Minimum Maximum Mean Standard deviation
degree Initial Final Initial Final Initial Final Initial Final

1 0.2066 0.4481 0.9973 0.9853 0.6435 0.7558 0.2149 0.0890
2 0.2608 0.5609 0.9890 0.8647 0.6352 0.7706 0.2087 0.0708
4 0.3504 0.6834 0.9156 0.8268 0.6095 0.7661 0.1877 0.0450

Table 2: Quality Statistics for the initial and optimized meshes with analytical 2D metric.

Mesh Minimum Maximum Mean Standard deviation
degree Initial Final Initial Final Initial Final Initial Final

1 0.2058 0.4510 0.9972 0.9846 0.6443 0.7556 0.2145 0.0823
2 0.2590 0.5648 0.9890 0.8734 0.6351 0.7703 0.2089 0.0715
4 0.3485 0.6838 0.9155 0.8417 0.6096 0.7735 0.1873 0.0530

Table 3: Quality Statistics for the initial and optimized meshes with interpolated 3D metric.

Mesh Minimum Maximum Mean Standard deviation
degree Initial Final Initial Final Initial Final Initial Final

1 0.0875 0.2467 0.9841 0.9594 0.5636 0.6240 0.2199 0.1203
2 0.0980 0.4524 0.9810 0.9118 0.5739 0.6763 0.2214 0.0944
4 0.1929 0.5139 0.9228 0.8289 0.5847 0.7002 0.1998 0.0691

The three meshes feature the same number of nodes and they
have the same resolution over the domain. In particular, in
2D the three initial meshes are composed of 481 nodes and
224, 56, and 14 elements, respectively. In 3D, they are com-
posed of and 1577 nodes and 7296, 912, and 114 elements,
respectively. In Figures 6 and 8 we show the initial meshes,
they are colored according to the point-wise stretching and
alignment quality measure, presented in Equation (3). Points
in blue color have low quality and points with red color have
high quality. As we observe, the elements lying in the region
of highest stretching ratio have less quality than the elements
lying in the isotropic region.

We equip each mesh with the metric presented in Equation
(12). We obtain the metric values from the log-Euclidean
interpolation method presented in Section 3. In particular,
we interpolate the metrics from a background mesh M̂, see
Figure 5 for the 2D cases. The background meshes are of
polynomial degree 1, 2 and 4 according to the polynomial de-
gree of the initial meshes M. The three background meshes
feature the same number of nodes and they have the same
resolution over the domain. In particular, in 2D the three
background meshes are composed of 521 nodes and 960, 240
and 60 elements, respectively. In 3D the they are composed
of and 11411 nodes and 59456, 7432 and 929 elements, re-
spectively.

To obtain an optimal configuration M⇤ we minimize the
mesh distortion by relocating the mesh nodes while preserv-
ing their connectivity, as detailed in Section 2. The coordi-
nates of the inner nodes, and the coordinates tangent to the
boundary, are the design variables. Thus, the inner nodes
are free to move, the vertex nodes are fixed, while the rest
of boundary nodes are enforced to slide along the boundary
facets of the domain W. The total amount of degrees of free-
dom for the 2D and 3D meshes is 222 and 3957, respectively.
In Figure 6 we illustrate the optimized 2D meshes. In the 3D
case, Figure 8 shows the interior and exterior of the meshes.
We align the axes according to the ones of Figure 4. We
observe that the elements lying in the anisotropic region are
compressed to attain the stretching and alignment prescribed
by the metric.

Tables 1 and 3 show the quality statistics of both the ini-
tial and optimized meshes for the 2D and 3D cases, respec-
tively. In all the optimized meshes the minimum is improved
and the standard deviation of the element qualities is reduced
when compared with the initial configuration.

To validate the proposed method, we compare 2D curved r-
adaption results for the high-order metric interpolation with
the results corresponding to an analytic metric evaluation.
Considering the initial meshes presented in this section, we
optimize the distortion measure by evaluating the analyti-
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(a) (b)

(c) (d)

(e) (f)

Figure 6: Point-wise distortion for triangular meshes of
polynomial degree 1, 2 and 4 in rows. Initial straight-sided
isotropic meshes and optimized meshes from initial meshes
in columns. The interpolation of the metric has been used for
the distortion minimization. The sub-triangular elements are
the visualization elements. These element vertices are not
the high-order degrees of freedom.

cal metric expression, instead of interpolating it in the back-
ground mesh. In Figure 7 we show the initial and optimized
meshes. They colored according the point-wise quality mea-
sure of Equation (3) using the analytical metric expression.

To compare quantitatively both results, we compute the rel-
ative distance of the node coordinates of the optimized con-
figurations. The relative distance is around 10�2 for all the
tested cases, obtaining comparable nodal configurations, as
it can be observed when comparing Figures 6 and 7.

In Table 2 we present the quality statistics of the initial and
optimized meshes using the analytical metric evaluation. To
compare the quality improvement of both approaches, we
compute the difference between the analyzed quality statis-
tics, obtaining a value for all the statistics below 10�2. Thus,
the quality improvement driven by the optimization using
the proposed metric interpolation procedure is analogous to
the one given by the analytical metric, obtaining in all cases
high-quality configurations with a minimum quality over 0.4.

(a) (b)

(c) (d)

(e) (f)

Figure 7: Point-wise distortion for triangular meshes of
polynomial degree 1, 2 and 4 in rows. Initial straight-sided
isotropic meshes and optimized meshes from initial meshes
in columns. The analytic evaluation of the metric has been
used for the distortion minimization.

4.3 Distortion minimization: initial
anisotropic straight-edged meshes

The results presented in Section 4.2 show the application
of the metric interpolation procedure to optimize isotropic
meshes in a domain equipped with a metric. However, in
practice, anisotropic meshes are generated combining topo-
logical mesh operations that modify the mesh connectivity
and mesh r-adaption procedures [6]. To illustrate a practical
example, we consider an initial straight-sided mesh adapted
by the MMG algorithm presented in [39]. Then, we apply
the anisotropic r-adaption method presented in this work.

First, we consider the target metric presented in Equation
(12) with hmin = 0.01. Second, we generate a linear isotropic
triangular mesh of input size hmin/2= 0.005 with MATLAB.
Then, we couple such mesh with the target metric evaluated
at the mesh vertices and normalized according to different
sizes. These sizes are chosen in order to obtain a comparable
mesh resolution according to the mesh polynomial degree.
Specifically, they are given by 0.0625, 0.125 and 0.25 for
the linear, quadratic and quartic case, respectively. We ap-
ply the MMG algorithm to obtain a straight-sided anisotropic
mesh of polynomial degree 1, 2 and 4, see Figure 9. In par-
ticular, they are composed by 1161 nodes and 2137 triangles,
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Tetrahedral meshes of polynomial degree 1, 2 and
4 in rows. Initial straight-sided isotropic meshes and opti-
mized meshes from initial meshes in columns.

1333 nodes and 624 triangles and, 1525 nodes and 180 tri-
angles, respectively.

The generated meshes are then optimized using the metric
interpolation approach presented in this work. In Figure 9
we illustrate the optimized meshes. We observe that the el-
ements lying in the anisotropic region are compressed to at-
tain the stretching and alignment prescribed by the metric. In
Table 4 we show the quality statistics of both the initial and
optimized meshes. In all the optimized meshes the minimum
is improved and the standard deviation of the element quali-
ties is reduced when compared with the initial configuration.
We conclude that, with the same metric data and hence, the
same inputs, the r-adaption mesh post-processing improves
the quality of the meshes generated with the MMG algo-
rithm. In addition, for the straight-edged case, we have pre-
sented a global method to improve the stretching and align-
ment prescribed by the metric after applying an h-adaption
approach.

4.4 Distortion minimization: curved
boundaries

We following illustrate that our approach is compatible with
curved boundaries. To this end, we consider the holed do-

(a) (b)

(c) (d)

(e) (f)

Figure 9: Point-wise distortion for triangular meshes of
polynomial degree 1, 2 and 4 in rows. Initial straight-
sided anisotropic meshes and optimized meshes from initial
meshes in columns.

main W = 1
2 [�1,1]2\C where C is the circle with radius

equal to 3
16 and centered at the origin. The domain W has

two boundaries, the one of the square 1
2 [�1,1]2 and the

one of the circle C. We equip it with the target metric pre-
sented in Equation (12) with hmin = 0.01. Then, we generate
with MMG a linear isotropic triangular mesh of input size
hmin/2 = 0.005 over 1

2 [�1,1]2. As before, we couple such
mesh with the target metric evaluated at the mesh vertices
and normalized according to size h = 0.2. Finally, we apply
the MMG algorithm to obtain a straight-sided anisotropic
mesh of polynomial degree 2 composed by 672 nodes and
290 triangles, see Figures 10 and 11.

To accommodate the curved boundaries we include, to the
presented functional, a boundary term that takes into account
the mesh approximation to the boundaries of the domain
(both the square and the circle). In addition, to approximate
the metric stretching, we optimize the mesh using the metric
interpolation approach presented in this work. Finally, when
optimizing the mesh functional all mesh nodes coordinates
are free that is, each mesh node moves in R2.

In Figures 10 and 11 we illustrate the optimized mesh. We
observe that the elements lying in the anisotropic region are

9



Table 4: Quality Statistics for the initial MMG and optimized meshes with interpolated 2D metric.

Mesh Minimum Maximum Mean Standard deviation
degree Initial Final Initial Final Initial Final Initial Final

1 0.0365 0.1794 0.9988 0.9989 0.7806 0.7961 0.2273 0.2040
2 0.0624 0.6300 0.9982 0.9913 0.6966 0.8692 0.2558 0.0788
4 0.0424 0.6063 0.9774 0.9965 0.5677 0.9137 0.2681 0.0886

Table 5: Quality Statistics for the initial MMG and optimized mesh with interpolated 2D metric over the holed domain.

Mesh Minimum Maximum Mean Standard deviation

Initial 0.0489 0.9877 0.6058 0.2512
Optimized 0.3042 0.9927 0.7397 0.1821

(a) (b)

Figure 10: Point-wise distortion for triangular meshes of
polynomial degree 2. Initial straight-sided anisotropic mesh
(a) and optimized mesh (b).

(a) (b)

Figure 11: Zoom of the right region for the initial (a) and
optimized mesh (b).

compressed to attain the stretching and alignment prescribed
by the metric. Note that the boundary elements are curved
to match both the metric and the curved domain boundaries.
In Table 5 we show the quality statistics of both the initial
and optimized mesh. In the optimized mesh the minimum is
improved and the standard deviation of the element qualities
is reduced when compared with the initial configuration.

5. CONCLUDING REMARKS

In conclusion, we have obtained unique results in curved
r-adaption to a discrete high-order metric. We have rep-

resented the discrete metric in a curved background mesh
as a high-order log-Euclidean metric interpolation. For this
metric interpolation, we have detailed the first and second
derivatives in terms of the physical coordinates. These
derivatives have allowed minimizing with Newton’s method
a mesh distortion accounting for the discrete high-order met-
ric. The discrete metric results compare well with the an-
alytic metric results. In both cases, the method exploits
the non-constant Jacobian of curved high-order elements to
match curved anisotropic features properly.

In perspective, this capability to match curved anisotropic
features might be an attractive ingredient for curved high-
order goal-oriented or indicator-based adaption. In these
adaptive processes, one would have a high-order metric field
in the current curved mesh. This background field would
drive curved r-adaption to globally (locally) relocate the cur-
rent curved mesh (re-meshed cavity) according to the curved
anisotropic features of the solution.
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7. APPENDIX: DERIVATIVES OF THE
EIGENVALUE DECOMPOSITION

In this Appendix, we detail the first and second-order spa-
tial derivatives of the eigenvalue decomposition (eigenvalues
and eigenvectors), first presented in [36] and rewritten herein
using our notation.
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Let us consider, for ` = 1, ...,d, the eigenvalue equation for
the eigenvector u` with eigenvalue l`

L`u` := (L�l`I)u` = 0,

where L is a symmetric matrix and I is the identity matrix.
Then, by taking its first-order and second-order derivatives
we respectively obtain

0 = ∂ j (L`u`) =
�
∂ jL`

�
·u`+L` ·∂ ju`, (15)

0 = ∂ jk (L`u`) =
�
∂ jkL`

�
·u`+L` ·∂ jku`+ (16)

�
∂ jL`

�
·∂ku`+(∂kL`) ·∂ ju`.

For each ` one first computes the first-order derivative of
the eigenvalue l` by left-multiplying by u` to Equation (15).
Then, by solving the remaining unknown term of Equation
(15) one obtains the first-order derivatives of the eigenvector
u`. In particular, the first-order derivatives of the eigenvalues
and the eigenvectors are given by

∂ jl` = uT
` ·∂ jL ·u`, ∂ ju` =�L+

` ·∂ jL` ·u`,

where the operation L+
` is the Moore-Penrose pseudo-

inverse matrix for the matrix L`. We use the Moore-Penrose
pseudo-inverse matrix instead of the inverse matrix because
the matrix L` is singular. In addition, the redundant equa-
tions are satisfied automatically.

The second-order derivatives are obtained by applying a sim-
ilar procedure. For each ` one first computes the second-
order derivative of the eigenvalue l` by left-multiplying by
u` to Equation (16). Then, by solving the remaining un-
known term of Equation (16) one obtains the second-order
derivatives of the eigenvector u`. In particular, the second-
order derivatives of the eigenvalues are given by

∂ jkl` = uT
` ·

�
∂kL` ·∂ ju`+∂ jL` ·∂ku`+∂ jkL ·u`

�
,

∂ jku` =�L+
` ·

�
∂kL` ·∂ ju`+∂ jL` ·∂ku`+∂ jkL` ·u`

�
�

�
∂ ju` ·∂ku`

�
u`,

where the last term of the second-order derivative of the
eigenvector is obtained by imposing the second-order deriva-
tive of the imposed normalization condition uT

` ·u` = 1

0 = ∂ jk

⇣
uT
` ·u`

⌘
= 2∂ jkuT

` ·u`+2∂ juT
` ·∂ku`

Note that, for each differentiation order, the computation of
the eigenvectors derivatives requires the values of the eigen-
values derivatives.
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