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ABSTRACT

Interval Assignment (IA) is the problem of selecting the number of mesh edges (intervals) for each curve for conforming
quad and hex meshing. The intervals x is fundamentally integer-valued, yet many approaches perform floating-point
optimization and convert a floating-point solution into an integer solution. We avoid such steps: we start integer,

stay integer. Incremental Interval Assignment (IIA) uses integer linear algebra (Hermite normal form) to find an
initial solution to the matrix equation Ax = b satisfying the meshing constraints. Solving for reduced row echelon
form provides integer vectors spanning the nullspace of A. We add vectors from the nullspace to improve the initial
solution. Compared to floating-point optimization approaches, IIA is faster and always produces an integer solution.
The potential drawback is that there is no theoretical guarantee that the solution is optimal, but in practice we
achieve solutions close to the user goals. The software is freely available.
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1. INTRODUCTION

Intervals is the number of mesh edges on a curve. In-
terval Assignment (IA) means deciding the intervals
on curves so the adjoining surfaces and volumes can
be meshed compatibly. This is a non-issue for simpli-
cial meshing, because any number can be chosen for
each curve, and there will be some conformal mesh
of each surface and volume. However, quad element
topology places fundamental constraints on the num-
ber of boundary edges. [1] All manifold quad meshes
are bounded by an even number of intervals. Certain
meshing algorithms impose additional constraints. For
example, midpoint subdivision imposes a form of tri-
angle inequality. Equality constraints arise from struc-
tured meshing schemes, such as mapping with a rect-
angular grid of quads, and from requiring volume
sweep paths to have positive and consistent lengths.
The constraints also depend on algorithm parameters,
e.g. when mapping a surface, one may choose which
curves comprise each of the four sides. See section 2.1
for the formulas for the three most common types of
constraints.

Interval assignment is important for automation and
meshing independence, and also for mesh quality.
Conforming meshes of assemblies, or even just sin-
gle parts, must agree on how many edges to place on
each shared curve. The meshing constraints form a
globally-coupled system of linear equations over inte-
ger variables; half an edge is nonsense. The prob-
lem is to assign an integer number of intervals to each
curve so that the assigned value is close to the user-
desired goal, and all constraints are satisfied. Once
IA is solved, each surface and volume can be meshed
independently and compatibly.

Incremental Interval Assignment (IIA) is a discrete al-
gorithm over integers, based on integer linear algebra.
To our knowledge, it is the first IA method to take
this approach. It is a departure from floating point nu-
merical optimization approaches. IIA uses variants of
Gaussian elimination to find an initial integer solution
that satisfies Ax = b, and integer nullspace vectors
spanning Ax = 0. Combinations of nullspace vectors
are added to the current solution, first to satisfy vari-
able bounds such as x > 0, then to find a solution
close to the user’s goals.
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IIA scales well, is more reliable, and produces better
quality output, than the prior approach of numerical
optimization followed by Branch & Bound (BB) for
integerization. IIA runs at interactive speeds, less than
one second in serial, on all realistic inputs we tested.

1.1 Prior Approaches

The interval assignment problem is deceptively sim-
ple. After all, we are only considering edges, and for
most surface and volume meshing algorithms the con-
straints are straightforward. Some constraints, such as
requiring an even number of intervals on a paved (un-
structured quad) surface seem so mild and there are
so many solutions that finding one of them should be
easy. Indeed, it is easy for humans to look at one sur-
face and pick some intervals by inspection. The di�-
culty arises when the model is large and the global sys-
tem of constraints conspires against us. It is tempting
to assign intervals to surfaces and volumes one by one,
but this can fail by “painting yourself into a corner,”
e.g., leaving a remaining surface unmeshable because
it has an odd number of intervals on its boundary. A
global problem must be solved. For this problem the
constraints are standard and necessary, but the ob-
jective is a matter of mesh quality and there is some
flexibility in how to define it.

Interval assignment methods fall into several cate-
gories. Numerical optimization is a common approach,
e.g., floating-point linear or nonlinear programming
followed by integerization with branch and bound,
branch and cut, or some other technique. The key
challenge for floating point methods is obtaining an
integer solution. Greedy algorithms select the worst
constraint violation, then adjust the intervals to move
closer to feasibility. Once feasible, the worst quality
can be improved while maintaining feasibility.

1.1.1 Mesh Structure Interdependence

In many cases, such as our IIA, methods assume that
the mesh structure is given, and the only remaining
degrees of freedom are the intervals. Other methods
combine IA with selecting the mesh structure. This
may be as limited as deciding where to put the four
corners in a five-sided surface. Network flows com-
bine IA with selecting the meshing templates within
rectangular surfaces. [2]

In the extreme, for smooth closed surfaces used for
some computer graphics models [3], IA methods have
the freedom to define the structured patches them-
selves. Frame fields combine IA with partitioning
the domain into structured patches. Frame fields are
found by solving a PDE (Partial Di↵erential Equa-
tion), then the numeric solution is “integerized” by
matching adjacent frames, forming streamlines. These

define the location of discrete singularities (non-4 va-
lent surface mesh vertices) and patches. As with
the network flow approach and CFD (Computational
Fluid Dynamics) meshing, a patch is not limited to
being mapped, and can be meshed with a variety of
templates. The choice of template is intertwined with
IA, in that the choice changes the IA problem and may
even change its feasibility.

CUBIT [4] has way to automatically select which
meshing algorithm (“scheme”) to use on each surface
and volume [5]. It uses IA as part of that process.
All CUBIT IA solvers assume that the mesh structure
and scheme are fixed. However, candidate schemes
are fed to IA, and the feasibility and quality of the
IA solution determines which candidate to ultimately
use. IA is run on each surface individually for each
available meshing scheme, starting from the most re-
strictive. E.g., if the mapping IA is infeasible, then
a less structured surface meshing scheme should be
tried, say submapping; if the submapping IA solution
quality is poor, then we should select an unstructured
scheme like Paving [6]. In a similar way, IA is used
to adjust the corners [7] of surfaces, and edge types
between surfaces, to set up the structure of swept vol-
umes [5, 8, 9].

1.1.2 Numerical Optimization

Tam and Armstrong in 1993 [10] described IA
as an optimization problem with linear constraints
Ax  b. The objective is also linear, a weighted sum
of di↵erences between the goals and assigned intervals:
minx w

T (x � g) for constant vectors w and g. The
weights are inversely proportional to the goals. Inter-
vals are bounded below by the goals, and unbounded
above.

The potential upside to Tam and Armstrong’s formu-
lation is that the simplex method’s solution is integer
“for free,” without recourse to expensive integeriza-
tion techniques, in many situations. It helps if the
weights are unique and the goals are integer. However,
the global structure of an assembly must not conspire
to link constraints such that the system reduces to
one where some variables have relatively-prime coe�-
cients. An example of this di�culty is the “radish” in
section 8.2: a mapped surface has opposite sides with
di↵erent numbers of curves, and all curves on a single
side must have the same number of intervals.

The potential downside is all of the deviations from
goals may be concentrated into a few curves. This
is because the objective is linear in the deviations,
and it is common for L1 minimization solutions to be
sparse [11]. Cecil Armstrong said he does not observe
drastic deviations and concentrations in practice.
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BBIA. In “High Fidelity Interval Assignment”
(BBIA for Branch & Bound IA) [12] I designed an
objective function to distribute any potential con-
centration: lexicographically minimize the maximum
weighted deviations. By lexicographic, we mean min-
imize the maximum weighted deviation, remove that
variable from the problem by fixing it at its current
value, and recurse. Such optimization objectives are
known as lex min-max. In principle, one can simply
define the BBIA problem and call a Linear Program
(LP) solver with a BB postprocess as a black box. In
practice, the runtime of the integerization step is pro-
hibitive. As is typical of large optimization problems,
exploiting the problem structure was key.

In the first pass, we ignore the sum-even constraints
that the number of intervals bounding a surface must
be an even number (see eq. (1) in section 2.1). We do
this because these are relatively non-restrictive and
removing them often allows the global problem to be
broken up into many smaller problems. The LP finds
a floating point solution. We identify the variables
stuck at the maximum deviation, and use BB to force
those to integer values. These are removed from the
problem and the process is repeated.

In the second pass, all constraints must be satisfied.
The integer solution from the first pass guides the LP
resolve and subsequent BB. We define upper and lower
bounds on the integer variables containing the first-
pass solution. If an integer solution cannot be found
quickly enough, the bounds are widened and we try
again.

It may be possible to update the BBIA method to
use modern solvers. Many current multi-objective op-
timization methods are based on the same ideas of
solving a series of optimization problems. There are
specialized lex min-max solvers, but these problems
are still generally expensive [13].

The general outline of IIA has some similarities to
BBIA. IIA’s objective is also lex min-max, but of a
non-linear function of each deviation. IIA uses two
passes, the first one ignoring the sum-even constraints.
Within a pass, IIA successively concentrates on the
worst-valued variables.

NLIA. (NonLinear IA) [14] sought to improve the
speed and robustness of BBIA. I switched the lex min-
max objective to a sum-of-cubes objective. This sped
up runtime, at the price of the optimal floating point
solution being farther from the goals. However, once
it is found, we switch the objective to a piecewise lin-
ear function in a local neighborhood around it. The
idea is to exploit the same L1 minimization integers-
for-free advantage as Tam and Armstrong [10], but
keep it local to avoid large deviations. This resembles

the branch and cut method for integerization, but in
NLIA we apply it to the objective rather than add it
as a constraint. This approach usually found a nearby
integer solution very quickly, but was challenged by
global structure such as the “radish” in figs. 5 and 6
and by many curves with equal sizes and goals. Such
“degeneracies” are common in CAD models, with e.g.,
many holes and bolts of the same diameter and plates
of uniform thickness. The method was deployed in
MeshKit [15] but has yet to be fully productionized
and extended to all available meshing algorithms.

Frame Fields. Bommes et al. [16, 17, 18] parti-
tions smooth graphics surfaces into structured quad
patches and assign intervals. The algorithm uses
a series of mixed-integer optimizations with linear
constraints and quadratic objectives, Mixed-Integer
Quadratic Programs (MIQPs). The first MIQP fixes
the number and position of irregular vertices, the cor-
ners of the patches. The second MIQP sets the mesh
structure of the patches, connecting the dual loops
globally, and assigns intervals. The cross field de-
fines a background that determines the objectives of
the MIQP, by considering the orientation of the dual
loops with respect to the surface curvature and any
sharp features. The irregular vertices correspond to
singularities in the cross field. A key e�ciency is us-
ing the solver open-box. Connections are made and
variables are integerized by successive rounding. The
prior solution is updated and the solver can continue
from it. The recent observation that cross field design
is related to the Ginzburg–Landau problem provides
additional tools for boundary alignment. [19]

A variation is to select irregular vertices and patches
without assigning intervals, leaving that to a later
step. But, in both variations, extending frame fields
from 2D to 3D is challenging because 3D solutions do
not always correspond to hex meshes the same way
that 2D solutions correspond to quad meshes. [20, 21]

1.1.3 Greedy Approaches

Guru–protege. Beatty and Mukherjee [22] present
an IA “guru–protege” method, which identifies the
next curve whose interval assignment is most impor-
tant, the guru, and fixes its intervals next. Protege
edges follow those assigned intervals. Each fixed edge
reduces the remaining degrees of freedom. (From the
IIA viewpoint, each fixed edge reduces the dimension
of the remaining nullspace). When a remaining sub-
system of equations has only one solution then it is
applied. This can be viewed as a greedy approach
with similar goals to lex min-max. The overall method
first assigns corners, which partitions the model into
mapped regions with T-junctions, and determines the
IA constraints.
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Figure 1: Mesh Scaling, courtesy Staten et al. [24].

The BBIA framework was not used in Beatty and
Mukherjee’s context, automotive body panels, because
the runtime of LP and BB was prohibitive. Another
issue is that when an LP or BB solver reports that the
problem is infeasible, not enough feedback is available
for the user to know how to change the model to make
it feasible.

1.1.4 IA and Mesh Refinement

The problem of locally refining an existing quad mesh
is related to interval assignment: select the mesh
edges to split (increase intervals) subject to the con-
straints of the available refinement templates (meshing
schemes), with the goal of refining the mesh where the
user wants, and leaving the mesh unchanged elsewhere
(interval goals).

Binary Optimization. “Cost Minimizing Local
Anisotropic Quad Mesh Refinement” [23] considers the
refinement problem, and adds the goal of introducing
few irregular vertices. They pose and solve this as a
binary optimization problem. They state that an out-
standing problem is to develop a specialized solver that
would solve the problem more quickly. They would be
satisfied with suboptimal solutions in the case that this
helps runtime. The runtime is often several seconds for
a few thousand elements, and sometimes minutes, and
is unpredictable.

IIA for Mesh Scaling. I previously developed a
simple form of Incremental Interval Assignment (IIA)
for the restricted context of “Mesh Scaling” [25, 24].
The problem is to refine an existing mesh for verifica-
tion studies, but without simply splitting every hex,
e.g., into 8, as that would produce too many elements.
Instead, the irregular vertices and block structure of
the mesh are identified, then we may remesh these
blocks with slightly increased intervals on their sides;
see fig. 1.

IA for mesh-scaling is simpler than the general IA
problem for two reasons. First, the input mesh al-
ready provides a feasible interval assignment, Ax = b,

so we only need to maintain feasibility as we adjust
the solution closer to the goals. Second, we only have
structured blocks meeting face to face. It is unambigu-
ous how a change of intervals propagates throughout
the mesh, so there are few degrees of freedom and the
choices are simple. Unlike general IIA, there is no
nullspace to compute, and we do not have to consider
combinations of nullspace vectors to make progress.
(A variant with more degrees of freedom and choices
allows re-paving surfaces and re-sweeping volumes.)

The IIA Mesh Scaling (IIAMS) solution method fol-
lows. A priority queue selects the least-refined curve in
the mesh, and that curve’s intervals are incremented
by one. The selection criteria “least-refined” consid-
ers how refined a curve is, how refined the neighboring
area of the mesh is, and how much the element count
would increase. A series of queues prioritizes these
di↵erently, with some passes increasing intervals and
others decreasing them, to hone in on a good assign-
ment.

IIAMS was a dramatic improvement in both speed and
output quality compared to using BBIA for mesh scal-
ing. BBIA was failing after running overnight on some
problems with about a thousand curves. In contrast,
IIAMS achieved success in less than a second on all
test problems. IIAMS’s element count is also closer to
the user request. IIAMS’s success was the inspiration
for researching a general IIA method.

2. FORMAL DEFINITIONS

2.1 Interval Constraints

The constraints typically have three forms: equality,
inequality, and sum-even.

Equality Constraints. For mapping surfaces we
have constraints that curves on opposite sides con-
tain exactly the same number of edges. Equality con-
straints also arise from sub-mapping and some other
templates, and from ensuring that volume sweep path
lengths are consistent.

X
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x =
X

B

x.

Inequality Constraints. For midpoint-
subdivision and similar primitives, we have triangle-
inequality type constraints:
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Inequalities can also be used to ensure that submap-
ping primitives have no overlapping curves or negative
areas in parameter space.

Sum-Even Constraints. For an unstructured
scheme, such as paving, we have constraints that the
sum of intervals around the boundary must be an even
number. (For CUBIT’s paver, each connected compo-
nent of the boundary must be even.) It takes some
manipulation to express this as a linear constraint:

X

A

x� 2y = 0, (1)

where we introduce y as an integer slack variable. If
the sum must be at least 4, we can bound y to the
range [2,1).

We also use slack variables to convert all inequalities
to equalities. These constraints are distinguished by
the slack variables having coe�cients of 1, whereas in
sum-even constraints their coe�cients are 2.

2.2 Goals

We have an idea of the number of intervals we would
like for each curve, the goals. These may come from
a sizing function. E.g. if the user wants edges about
length 4, then a curve of length 10 has a goal of 2.5
intervals. Or the user may specify the goal directly. As
long as slack variables are above their lower bounds,
we are indi↵erent to their values; these have no goals.

There may be no feasible solution exactly matching
all of the goals, so we measure the deviation of the
achieved interval xi from its goal gi. In general, we
have some objective function f(x, g) of the deviations,
where f(g, g) is a minimum, preferably a unique min-
imum.

2.3 Problem Definition

IA in standard matrix-vector notation is

min f(x, g) :

Ax = b

xi 2 Z
l  x  u. (2)

For IIA, we choose the objective f(x, g) to be the lex-
icographic max vector R(x, g), where R is the ratio
between the assigned intervals and the goals. Slack
variables have no goal and do not contribute to the
objective. Recall lex min-max means we minimize the
maximum ratio amongst all edges. Then, we conceptu-
ally ignore this worst edge and minimize the maximum

ratio amongst all remaining edges, etc. We define

R =

(
x/g if x > g

g/x otherwise
(3)

Note this is a linear function for x > g, but nonlinear
otherwise.

We can also transform the bounds from a constraint to
an objective. If the bounds in eq. (2) are not satisfied,
we may measure how far they are from being satisfied
by

B = max(l � x, x� u, 0). (4)

3. SOLUTION METHOD

Overall method. See also section 7.

• Solve, but ignore sum-even constraints.

– Separate into independent subproblems.

– Solve each subproblem using the core below.

• Solve full problem.

– Start with the solution for x that ignored
the sum-even constraints, then solve as be-
fore by identifying subproblems and solving
them with the core.

• If new constraints arise (e.g. submap overlaps
need to be eliminated):

– Augment A with additional constraints,
breaking Ax = b.

– Add slack variables y to re-satisfy Ax = b.

– Increment x to satisfy y = 0 and improve
f(x, g) using the core.

The Core.

• Solve integer Ax = b for x.

– Try Reduce Row Echelon Form (RREF) as
a heuristic; see section 3.1.

– Use Hermite Normal Form (HNF) if needed;
see section 3.2.

• Satisfy bounds l  x  u.

– Find integer vectors N spanning the
nullspace of A using RREF.

– Iteratively increment x by adding integer
combinations of nullspace vectors.

• Improve ratios f(x, g).

– Via the same methods as “satisfy bounds.”
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We try to solve Ax = b using RREF first, because we
tend to get a solution that is closer to the goals. If we
must use HNF, then the solution may be arbitrarily
far from the bounds and goals; see section 3.3.1.

When we increment x, we select the worst-quality xi

as the target for improvement. For satisfying bounds,
quality is defined by how far out-of-bounds the vari-
able is: max(l�x, x�u, 0) from eq. (4). For improving
f(x, g), quality is defined by R, the ratio of xi to gi

from eq. (3). We track the sorted quality of x using a
form of priority queue that supports fast replacement.

We accept only strict improvements: the new quality
for all modified xj must be better than the original
quality of xi. If incrementing x by some nullspace
row makes xj worse than that, then we say xj blocks

improving xi. The run time e�ciency of increment-
ing depends heavily on tracking the blocking variables,
and identifying when no further improvement is likely;
see section 5.1. We use Gaussian elimination to find
nullspace vectors without those variables, or at least
with variable coe�cients with non-blocking signs. The
success rate of incrementing depends strongly on the
initial nullspace vectors, which are determined by the
choice of pivots during the RREF process. Solving
constraints Ax = b uses one pivot criteria, and satis-
fying bounds and improving ratios use a second pivot
criteria; see section 4.

3.1 Reduced Row Echelon Form (RREF)

Readers are more familiar with reduced row echelon
form so we describe it before Hermite Normal Form
(HNF). RREF is a generalization of diagonalization of
square matrices to matrices with extra columns and
redundant rows [26]. It is what you get when you
perform Gaussian elimination on a matrix with more
columns than rows. If you are restricted to integer
operations, then Gaussian elimination is the right ap-
proach to solve Ax = 0, because floating point alter-
natives can lead to errors [27]. For a full explanation
of getting the nullspace from RREF, see Mitra [28].
We summarize the operations here.

RREF(A) = M =


D F

0 0

�
and Ax = 0 , Mx = 0

where we allow swapping columns (and the corre-
sponding edge variables) so the upper left of the RREF
matrix, D, is diagonal. Note F is a matrix and the 0’s
are matrices. We discard the zero rows.

We can now “read o↵” the nullspace vectors from the
columns of F , with minimal computation; again, see
Mitra [28] for an easy-to-follow example. Here is the
computation. Let L = lcm(D) the least common mul-
tiple of the entries of D. Each column of F contributes

a nullspace vector as follows. For each column Fj of F ,
we multiply each entry Fji by �L/Dii and append the
elementary unit column vector ej so it has the same
length as the rows of A. The transpose of this vector
is a row vector in the nullspace.

If the matrix is totally unimodular, then we can al-
ways have D be the identity. This is not the case for
us, e.g., the sum-even dummy variables have coe�-
cient 2. However, most of our coe�cients are ±1, so
heuristics for selecting the pivot entry can often get
us something close to the identity. This helps us find
nullspace vectors with small coe�cients, by keeping
L small, and avoids some numerical issues with very
large integers.

3.2 Hermite Normal Form (HNF)

We use Hermite Normal Form (HNF) to solve integer
Ax = b; see Kopparty [29] for a more complete descrip-
tion. Readers may be familiar with using Gaussian
elimination and RREF to solve floating point Ax = b;
see section 3.3 for an explanation of why this is insu�-
cient when restricted to integer operations. (HNF also
arises in integer programming: do floating point com-
putations, then use HNF for integer cuts to attempt
to find a nearby integer solution [30].)

An interpretation of solving Ax = b is finding some
integer linear combination of the columns of A that
add up to b. HNF is basically Gaussian elimination
on the column space of A, rather than its row space,
so that the transformed system of equations is easy
to solve. The operations preserve the column space of
A, but transform the variables x. We use the column-
form of HNF. Finding HNF(A) means finding H and
U such that

H = AU

where U is unimodular, square invertible with deter-
minant ±1; and H is lower triangular with any zero
columns on its right, and its diagonal entries are larger
than other entries in the same row, and all entries non-
negative.

If we solve Hc = b for c, then x = Uc is a solution to
Ax = b, because

Ax = AUc = Hc = b.

Moreover, solving Hc = b is easy by back-substitution
because H is triangular, and the other properties en-
sure c will be integer.

We compute H and U as follows. Since RREF(A)x =
Ax, we start with RREF(A) instead of A, and discard
any zero rows so we are dealing with matrices of full
rank. We initialize H = RREF(A) and U = I and
then perform matrix operations to achieve the neces-
sary H properties. All the while we preserve H = AU :
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whenever we perform a column operation on H, we
perform the corresponding operation on U .

We iterate over the columns j of H and perform the
following three steps.

1. For each remaining column k � j of H, we ensure
the uppermost non-zero coe�cient is positive; if
not already positive, we multiply the column of
H (and U) by -1.

2. For row j, we get one non-zero in columns k � j

by adding integer multiples of columns together.
We find a non-zero as small as possible in a brute
force way: find the column with the smallest-
magnitude non-zero, then subtract (or add) it
to all other columns to make them have smaller
magnitude. We stop when no more reduction is
possible (because they are the same or zero). We
then swap the smallest column into j. (Again, all
operations are also done on U .)

3. We ensure o↵-diagonal entries are non-negative
and smaller than the diagonal. If any o↵-diagonal
is too big, we add a multiple of the diagonal en-
try’s column to its column to reduce it; see “Al-
gorithm: ReduceO↵Diagonal” [29] for details.

At the end of the iterations, H has the necessary prop-
erties. The steps that reduce coe�cients are done both
to ensure c is integer, and for numerical reasons along
the way. They keep integer values from blowing up and
overflowing the size of the integer representation on
the computer. Since our sparse-matrix data-structures
are designed to be e�cient for row operations, we im-
plement all of the above using row operations on the
transpose, instead of column operations.

3.3 Discussion: Why RREF and HNF?

RREF reduces the constraints to a minimal indepen-
dent set. Creating (discovering) rows of zeros at the
bottom of the matrix identifies the presence of redun-
dant constraints. For example, consider four faces of
a cube meeting curve to curve, and we wish to map-
mesh each of them. There are four curve variables, and
four equality constraints: intervals on the two curves
on opposing sides of a face must be equal. Thus RREF
reduces

A =

2

664

1 �1
1 �1

1 �1
1 �1

3

775 (5)

to

M =

2

664

1 �1
1 �1

1 �1
0 0 0 0

3

775

RREF allows the generation of vectors spanning the
nullspace of A. However, RREF is also useful before
HNF, because it identifies the rank of A, and allows us
to use methods for generating HNF that depend on the
matrix being full rank. But RREF is not su�cient by
itself to solve Ax = b for nontrivial b. As an example,
consider the fictional RREF system

2

664

2 �1 2 2 1 2
4 2 2 3

1 �2 1 2
3 2 �4 2

3

775x =

2

664

7
1
2
5

3

775 (6)

There is no integer solution using just the first 4 col-
umn variables, because 2 does not divide 7, and 4 is
greater than 1, etc. But, there are many degrees of
freedom provided by the five variables whose coe�-
cients are not diagonalized. They enrich the integer
column space of A, filling in the lattice of possible so-
lutions. Is it possible to chose some combination of
values for them so that the system is solvable? This
is the question that HNF answers for us. HNF makes
the diagonal terms as small as possible, which allows
us to visit the necessary integer lattice points to solve
Ax = b. Our RREF implementation has heuristics
which choose small coe�cients for the diagonal en-
tries, but they are not guaranteed to be 1. In our
fictitious example, for the first row, simply swapping
the 1st and 5th columns and negating provides a 1 on
the diagonal. For the second row, subtracting the last
column from the second provides a 1 on the diagonal.
In general, we get the gcd (greatest common divisor)
of the coe�cients of each row on the diagonal; in this
example they are all one.

HNF for eq. (6) is

H =

2

664

1 0 · · · 0
1 0 · · · 0

1 0 · · · 0
1 0 · · · 0

3

775

Now, the first four variables (columns) are in a trans-
formed space. Each is a complicated linear combina-
tion of the original variables (columns), as captured
by U . When we solve Hc = b, then transform back
to the original space with x = Uc, the original vari-
ables x may not be so sparse. What about the extra
c variables, columns 5–9? We can set them to any
values we like. They represent the degrees of freedom
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inherent in A being short-and-long rectangular. Going
back to our 4-sides-of-a-cube example, eq. (5), there is
one extra variable, c4, which represents the constant
we can add to each of the four curves and still be fea-
sible. That is, U contains nullspace vectors which are
activated by non-zero values of the extra c variables.

3.3.1 Solve Integer Ax = b

The drawback to using HNF to solve Ax = b is that the
solution x is not influenced by the goals or bounds on
x, and may be very far from both. It may be possible
to choose these c variables such that x are closer to
their goals or in bounds; but the only strategies that
have come to mind are equivalent to adding nullspace
vectors as a post-process, which is precisely what the
next step of our overall algorithm does anyway. So,
before we resort to HNF, we attempt to find a solution
to Ax = b using the RREF we found with our pivot-
selection heuristics. If we are stuck with something
resembling eq. (6), then we do HNF.

When doing back substitution with RREF, we assign
initial values to edge variables equal to their goals, and
each dummy variable the value that makes its row con-
straint satisfied. (If the dummy variable coe�cient is
not 1, e.g., is 2, then its initial value may have to be
rounded up to the next integer and the constraint is
not satisfied.) Thus all RREF independent variables
are close to their goals, and only the dependent vari-
ables may be out of bounds.

4. PIVOT SELECTION HEURISTICS

When forming the RREF (Reduced Row Echelon
Form) to generate nullspace vectors, we have the free-
dom to choose which variable to pivot on (a.k.a. re-
duce, eliminate from all other rows) at each Gaussian
elimination step. The choice of pivot a↵ects the re-
liability of the increment step. Ideally, for satisfying
constraints, we would like initial nullspace vectors that
allow us to increment the out-of-bound variables while
keeping other variables in bounds. We have similar de-
sires for improving variables towards their goals.

With that motivation, we select RREF pivots with
the following hierarchy of criteria. By “hierarchy,” we
mean we pick the variable with the best primary crite-
ria value. We use the secondary criteria to break ties if
multiple variables have the same best primary criteria
value. If no desirable variables are left, we pivot on an
arbitrary variable, using the row in which its coe�cient
is smallest. We iteratively pick the “best” remaining
variable to pivot on at each step. Note that pivoting
on a variable changes the matrix and may change the
desirability of other variables in the pivot’s rows, so
their priorities must be updated.

4.1 Pivots For Satisfying Constraints

• We select variables with a coe�cient of 1 in some
row. If any such variable is in only one row, it is
already in RREF form and pivoting on it requires
no work.

1. The primary criteria is the number of rows
it appears it; fewer is better.

2. The secondary criteria is we find the set of
variables in all of its rows and prefer smaller
sets. (A variable in more than one row just
counts once.)

3. The tertiary criteria is we prefer slack or
dummy variables, followed by variables with
a larger goal.

• If the variables with a 1 coe�cient are exhausted,
we select variables based on the gcd of its coe�-
cients. The thinking is that if the gcd is 1, then
it is possible to combine rows to get a leading
coe�cient of 1.

These choices help us find a RREF system that yields
an integer solution more often. Recall that if we do
not find an integer solution, then we resort to HNF,
with the RREF as the starting matrix.

4.2 Pivots For Bounds and Goals

We use these criteria to help keep rows short, i.e. few
non-zeros. We also seek to deter generating rows with
many sum-even dummy variables, since these couple
multiple paving surfaces. We never pick sum-even
dummy variables with a coe�cient of 2, and never pick
equality-constraint slack variables. We select amongst
the remaining variables as follows.

1. The primary criteria is the number of rows it ap-
pears in; fewer is better. Thus we first pick vari-
ables that are only in 1 row, including inequality
slack variables. When all remaining variables are
in multiple rows, then if a row has a sum-even
dummy variable we penalize it as if it were three
rows.

2. As a secondary criteria, we prefer variables with
a small coe�cient magnitude, ideally 1.

3. As a tertiary criteria, we prefer variables with no
goals, followed by variables with larger goals.

4.2.1 Small Subspaces

If we are unable to get a variable in bounds, then we
have no useful solution to give the user. So, if the
optimization gets stuck in this situation, it is worth the
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computational e↵ort to try harder. We attempt to find
a small submatrix containing that variable that gives
us sparse and local nullspace vectors. We augment the
nullspace with these vectors to increase the chances of
being able to improve the solution.

To ensure the submatrix’s nullspace is contained in the
matrix’s nullspace, we must select complete columns
from the matrix, but have the freedom to not select
full rows. We initialize with the column of the out-of-
bounds variable. All other variables in the rows of the
selected columns are candidates. If some such row has
only one selected variable, then that variable is not in
a nullspace vector. So we first select columns to ensure
every such row has at least two variables. The primary
criteria is to prefer columns that add fewer new rows.
The secondary criteria is just the total number of rows.
Once every row has two variables, we continue adding
more columns according to the same primary and sec-
ondary criteria. We stop when we have more columns
than rows and are able to find a non-trivial nullspace
containing the stuck variable.

5. SOLUTION IN BOUNDS

Once we have solved Ax = b, and have found vectors
spanning the nullspace N using the criteria for the
RREF pivots in section 4, we are ready to increment x
with (combinations of) nullspace vectors in an attempt
to obtain l  x  u. We have a priority queue with
replacement for selecting which variable xi to improve.
The primary criteria is how far a variable is below its
lower bound (or above its upper bound): eq. (4). The
secondary criteria is its goal; we improve variables with
larger goals first.

Once we have selected xi for improvement, we check
whether any existing nullspace row gives strict im-
provement. We first pick any row n that does not
make any variable closer to its bounds. E.g., all non-
zeros of n are positive and correspond to xj with no
upper bound. Otherwise, we use the first row we find
that gives strict improvement, defined just in terms
of the bounds, and ignoring the secondary criteria of
the goals. I.e., the new values of all changed xj must
be further from their respective bounds than the old
value of xi was from its bound. Requiring strict im-
provement prevents infinite loops, and often prevents
stuck cases that arise from shifting the limiting vari-
able from xi to some other variable that is di�cult to
improve.

Once we have a nullspace vector n that provides strict
improvement, we continue to increment x by n as long
as it provides a strict improvement over the prior in-
crement’s values. This is stronger than requiring it to
be a strict improvement over the original x. Without
this stronger requirement we tend to go from one xi far

from its bounds, to many xj just outside their bounds,
which require many iterations to fix.

If no nullspace vector provides strict improvement, it
is because they are blocked by variables that would get
worse. We search for some combination of nullspace
vectors that provide improvement and are not blocked;
see section 5.1. If we find a new vector that provides
strict improvement, we save it by appending it to the
nullspace, so we can check it in future iterations for
other xi. If no vector provides improvement, the vari-
able is stuck, and we attempt to improve the remaining
variables.

At the end this process, if some variable is stuck out
of bounds, we attempt to find some small nullspace
vectors containing it and try to get it in bounds as
before; see section 4.2.1.

5.1 Blocking Variables

When checking incrementing by existing nullspace vec-
tors, whenever a changed variable xk would be as bad
or worse than xi, we save it in the set of blocking vari-

ables K.

We copy the original nullspace once, at the very begin-
ning of the satisfy-bounds stage. We perform Gaussian
elimination (partial RREF) on this copy and pivot on
the blocking variables, so they each appear in only one
row and are removed from all other rows. Among these
other rows, the ones containing xi are our candidates
for improving xi. We continue by checking these can-
didates to see if they provide strict improvement. If
not, then we accumulate more blocking variables and
eliminate them, until we either find an improvement
vector or no further elimination is possible.

In future iterations, when attempting to improve xi

farther, or improving some other xj 6=i, we continue to
work with the same copy of the nullspace that we have
already eliminated some blocking variables from; this
is essential for e�ciency. When we successfully incre-
ment x we mark any improved variable as no longer
being a blocker, and unmark its row and column as a
pivot so future Gaussian elimination steps may undi-
agonalize it; this is essential for robustness.

Further, we save the sign of the blocking variable in-
crement. E.g., if a blocking variable is below its lower
bound, then we cannot decrease it, but increasing it is
acceptable, indeed desirable. Thus when performing
Gaussian elimination we do not need to eliminate a
blocking variable k with coe�cient nk if it has a fa-
vorable sign relative to the sign of nj , and again may
undiagonalize xk. This also improves robustness.
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6. OPTIMIZATION TOWARDS GOALS

The procedure to improve variables towards their goals
is essentially the same as the procedure to improve
them so they lie within bounds. The di↵erences are
the following.

We define strict improvement in terms of the value
of f(x, g) = R(x, g) from eq. (3), and all variables
must continue to stay in bounds, i.e. B = 0 in eq. (4).
We do not check for unbounded improvement direc-
tions, since goals are finite. The interval assignment
for mesh scaling approach [25] got better quality so-
lutions by selecting the next variable xi to improve
based on what the quality of the solution would be
after it was incremented, i.e., f(x± 1, g), rather than
its current priority, i.e., f(x, g). So, we use f(x± 1, g)
in our context as well.

It is common for some variables to “self block”, mean-
ing they are (nearly) equal to their goal and incre-
menting them in either direction makes the solution
worse. Sometimes, however, this is just because their
coe�cients are large (not 1) in the nullspace vectors,
so reducing the coe�cient is su�cient to enable im-
provement. We do not search for small subspaces; it
is expected that some variables will not be at their
optimal values due to the global constraints.

7. OTHER EFFICIENCIES

The following e�ciencies reduce the overall runtime
because runtime is superlinear in problem size. We di-
vide the problem into smaller ones, and remove redun-
dant variables when possible. We solve the problem in
two passes, first ignoring sum-even constraints, and
second including all constraints. The first pass allows
us to start the second pass closer to optimality. This
improves runtime because the first pass contains more-
but-smaller problems, and the second fewer-but-larger
problems.

7.1 Independent Subproblems

It is straightforward to partition the matrix into in-
dependent rows and columns. We treat variables as
graph nodes, and the non-zero entries in a row as edges
between the nodes. Then a simple (depth first) search
over the graph will identify connected components. In
the first pass, it is key to ignore rows that contain a
sum-even dummy variable and not include the corre-
sponding graph edges. This approach is essentially the
same as in BBIA [12].

7.2 Tied Variables

We search for rows of the form xi � xj = 0 and
then mark xi and xj as tied because they must have

the same value. Chains of the form x1 � x2 = 0,
x2 � x3 = 0, x3 � x4 = 0, . . . form sets of tied vari-
ables. We replace each set with just one variable, xt,
in the matrix. The lower bound of xt is the maxi-
mum lower bound of its constituents, and its upper
bound the minimum upper bound. We save the maxi-
mum gh and minimum gl goal of the constituents, and
use f(xt, g) = max(f(xt, gh), f(xt, gl)) when optimiz-
ing towards the goals.

It would be possible to reduce the number of variables
farther by considering other types of constraints, such
as when the b coe�cient is not zero. However, in our
context, searching for just this simple equality pro-
vided a large runtime benefit and it is unclear whether
it would be worth the additional complexity to search
for other types of constraints.

8. APPLICATIONS AND EXPERIMENTS

IIA is in production use in CUBIT. We demonstrate
that IIA succeeds on an academic challenge problem
called a “radish.” We study the runtime scaling of IIA,
and highlight some runtime and robustness challenges
with extreme-scale models.

8.1 CUBIT Production Use

BBIA was implemented in CUBIT in 1996–1997, and
was run for every CUBIT quad and hex mesh, includ-
ing autoscheme selection, from that time forward. IIA
replaced BBIA as the default method in CUBIT at

Figure 2: IIA with quad mesh paving 181 surfaces
with the “skeleton” sizing from the open CUBIT re-
gression tests.
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Figure 3: IIA with hex mesh sweeping 56 interlocking volumes, exercising auto scheme selection, sweeping constraints
and verification. The problem is made more constrained for IA because some curves’ intervals are user-prescribed
and cannot change. Front and back view. From the open CUBIT regression tests.

the beginning of year 2020. IIA is in production use
by thousands of CUBIT users. IIA succeeds on ev-
ery problem within CUBIT’s extensive regression test
suite, with hundreds of models and thousands of mesh-
ing problems. Users provided many of the models and
meshing scripts when they encountered problems with
earlier versions of CUBIT. On these realistic models,
IIA performs well.

IIA often has slightly di↵erent solutions than BBIA,
because of its slightly di↵erent and non-linear objec-
tive, and the method often succeeds in coming closer
to the optimal solution. In some cases in the test suite,
intervals or sizes were manually adjusted to get good
quality meshes. This arose from two reasons. First,
the geometry of the meshing problem is not explicitly
represented within the IA abstraction, so some geo-
metric requirements are not captured by the IA con-
straints and goals. Second, certain research methods
such as multi-sweep are fragile, and their success is
unpredictable depending on the exact numbers of in-
tervals in surface meshes and how the projection of
one quad mesh overlays another.

For sweeping models, usually there are a handful of
paving surfaces forming the source surfaces, bounded
by submap surfaces forming the sides of the sweep.
There are many such models in the CUBIT test suite,
including assemblies of interlocking swept volumes; see
fig. 3 for an example. The test suite also contains many
surface-meshing problems; see fig. 2 for an example.

An open problem is modifying eq. (2) to capture gen-
eral mesh quality criteria, such as element stretch or
skew. Concurrent with IIA development, we devel-
oped some geometric reasoning algorithms in CUBIT
to add interval lower bounds for small surfaces with
curved curves or sharp angles. Without these, paving

sometimes created poor meshes with flat or reflex an-
gles. These new constraints were easy to pass to IIA,
but updating the legacy BBIA solver to support them
was prohibitive; see fig. 4.

Figure 4: IIA supports interval lower bounds based
on geometric reasoning. Quads are linear and solid
color; non-linear CAD curves appear outside the ele-
ments. CAD vertices are surrounded by a small col-
ored box. From the open CUBIT regression tests.

8.2 Radishes

We demonstrate that IIA has superior robustness and
solution quality for a family of challenge problems
called “radishes.” They are challenging for floating
point methods because the space of integer solutions
is sparse.

By radish we mean a mapped surface where opposite
sides have di↵erent numbers of curves, and all curves
on a single side must have the same number of inter-
vals. The term “radish” is a nickname for a partic-
ular assembly where the global geometry and mesh-
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Figure 5: The “2-1 radish” assembly model circa 1997
from Mitchell [12]. The global structure of the assem-
bly constrains the curves on the red side to all have the
same intervals: x1 = x2. Thus x3 = x1 + x2 reduces
to 2x1 = 1x3.

ing schemes give rise to this type of constraint; see
fig. 5. While it is easy to see how the “2-1 radish” of
fig. 5 occurs in real-world assemblies, we can extend
this concept to create a series of academic problems
that are increasingly challenging, albeit increasingly
unlikely to be encountered in the real world. The “3-2
radish” in fig. 6 has one side with three curves, and its
opposite side has two, and again all the curves on a
given side have to have the same number of intervals.
The only solutions are when the number of intervals
for each side is an integer multiple of 6. This is be-
cause the first side’s intervals must be divisible by 2,
and the opposite side’s intervals must be divisible by
3, and the least common multiple (lcm) of 3 and 2 is
6. Feasible solutions are pairs {3, 2}k for integer k, i.e.
{3, 2}, {6, 4}, {9, 6}, {12, 8}, . . .

It is easy for IIA to find a feasible solution for any
radish, because HNF finds an integer solution directly,
and the nullspace contains vector {r, s} for an r-s
radish, which is an unbounded direction for making
the solution positive. Radishes may be challenging for
floating point methods, because the feasible integer so-
lutions are a sparse subset of the integer lattice, and
may be far from the relaxed solution.

3-2 Radish. See figs. 6 and 7. If the mesh size is
selected so that the goal for each curve is g = 8.5, the
ideal intervals for the side with three curves is 25.5,
and the ideal intervals for the side with two curves is
17.0. So, for floating point methods, some compro-
mise between 25.5 and 17 will be the relaxed solution
for each side. Using minmaxR as our objective, the
optimal intervals for each side are g

p
6 ⇡ 20.82. Hence

two curves will have xi ⇡ 10.41 and the opposite three
will have xi ⇡ 6.94. Good integer solutions are {9, 6}

and {12, 8}. Both are farther than distance 1 away
from the relaxed solution {10.41, 6.94}, but still close
enough for branch and bound methods to work well.
For the 30-20 radish, pairs {3, 2}k are also feasible so-
lutions, so this is also easy for BBIA. From fig. 7, we
see that both BBIA and IIA produce reasonable so-
lutions, with BBIA being sub-optimal and coarser for
some borderline sizes.

7-5 Radish. For the 7-5 radish, the solutions are
{7, 5}k; see fig. 6c. For very coarse sizes, when the
initial floating point solution is < {7, 5}0.5, BBIA fails
because the relaxed solution is too far from the nearest
integer solution; see fig. 8. BBIA has a search factor
cuto↵ of 2 in one of its steps to avoid large runtimes
for other problems, especially infeasible ones.

79-74 Radish. Here 79 and 74 are relatively prime,
so the only solutions are {79, 74}k. This model has
the same problems with coarse solutions as the 7-
5 radish: BBIA fails when the relaxed solution is
< {79, 74}0.5. Further, BBIA also fails for some in-
termediate sizes. We speculate that failure is due to
the sparsity of the integer solutions and the heuristic
bounds on BBIA’s search distance, runtime, or both.
The relaxed solution is g{

p
79/74,

p
74/79}. For ex-

ample, for g = 100.1, we have xrelaxed ⇡ {103.4, 96.9},
and BBIA finds neither {79, 74} nor {158, 148}, and
returns “no solution” after three seconds of runtime.
For other goals where BBIA does succeed, it takes at
least 2 seconds. In contrast, IIA takes microseconds.
See fig. 9.

8.3 Runtime

We discuss runtime on “typical” problems, and include
a scaling study to show the range of models for which
the method is practical. All problems were run on a
modest laptop, a MacBook Air, Early 2015, 2.2 GHz
Intel Core i7, and 8 Gb memory.

IA runs at interactive speeds for today’s models and
runtime is insignificant. IIA runs in a fraction of a sec-
ond for test-suite models. Serial runtime is fast enough
that it is simply a non-issue. It takes CUBIT about 2–
3⇥ longer to decide how to define the IA problem than
it takes to run the IIA solver. Other steps such as load-
ing the CAD model, performing geometric Booleans,
actually generating the mesh, or even just displaying
the mesh graphics, take significantly longer.

IIA’s runtime is often linear in the output mesh size,
but unfortunately Gaussian elimination (for RREF
and HNF) runtime is cubic, so IIA runtime can be
cubic in the input assembly size. For typical model
sizes, the linear factor dominates.
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(a) 3-2 radish, g = 1 (b) IIA & BBIA x = {3, 2} (c) 7-5 radish x = {14, 10}

(d) 3-2 radish, g = 9 (e) IIA x = {12, 8} (f) BBIA x = {9, 6}

Figure 6: Radish meshes for di↵erent goals and algorithms. Subfig. (a–b): The 3-2 radish in (a) has g = 1.0.
Both IIA and BBIA produce the solution x = {3, 2} in (b). Subfig. (d–f): The 3-2 radish in (d) has g = 9.0. IIA
produces x = {12, 8} in (e) and BBIA produces x = {14, 10} in (f). BBIA is worse. Subfig. (c): The 7-5 radish has
one side with 7 curves and opposite side with 5, and feasible solutions {7, 5}k for some natural number k.

Before we judge IIA too harshly for cubic asymptotic
complexity, let us recall BBIA’s runtime is often ob-
servably cubic in the input assembly size, and some-
times exponential, e.g. when the BB step has many
alternatives to consider. And, lest we shift our derision
to BBIA, let us recall that we are performing integer
optimization, and for many integer optimization prob-
lems sub-exponential complexity bounds are di�cult
to obtain.

Our scaling challenge is the heat-sink mock-up in
fig. 10, where we purposely do not take shortcuts
to exploit the obvious symmetry. Many surfaces are
submapped, with many curves on each side. If two
long curves are constrained to have a fixed number of
intervals, say equal to the number of opposite curves
times 1.5, this forces the solver to decide which half of
the small opposite curves to give 2 intervals and which
half to give 1. All such solutions are symmetric and

equally desirable from an algebraic viewpoint. Hence,
BBIA can take a long time, 20 minutes. CUBIT with
IIA solves it 6000⇥ faster, in a fraction of a second.

For the realistic models we considered, the IIA runtime
was not the bottleneck. As we shall see in the next
section, for the heat sink the majority of the interval
assignment time was actually spent in the overhead of
setting up and applying the solution, not in the IIA
solver itself! It is possible to construct extreme mod-
els where the cubic runtime of Gaussian elimination
dominates the IIA runtime. The next section explores
these limits.

8.3.1 Scaling to Extreme Models

We scale the problem by doubling the heat sink model
size. In the “Fin” scaling, we copy the model along one
axis to create more fins, but each individual fin surface
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Figure 7: 3-2 radish solution and quality for di↵erent
goals. The solution is k{2, 3}, e.g., the solution for
g = 7.5 is k = 3 and x = {6, 9} for both IIA and
BBIA. For each constant-x IIA-solution interval, the
quality R is best toward the middle of the interval, and
worst at the ends, where the selected solution and the
next k value are nearly equally desirable. For many
ranges of goals, the BBIA solution is smaller than the
IIA solution, and has worse quality. In exceptional
ranges the BBIA solution is larger, e.g, near g = 28.4,
and also has worse quality. The bottom “RBBIA-RIIA”
curve shows how much worse the BBIA solution is than
the IIA solution. The exception is a very small, 0.05-
neighborhood around g = 15.80 where the IIA solution
is slightly suboptimal and the BBIA solution is better.

remains the same. That is, we increase the number of
surfaces but not their complexity (except the one sur-
face on the underside). In the “Cren” scaling, we copy
the model on the other axis to create more crenella-
tions per fin surface: we increase the complexity of
the crenellated surfaces, but not how many there are.
(The number of small trivial mapping surfaces on the
top of the crenellations does increase, but these are all
removed by the “tied variables” step from section 7.2.)
We also study scaling the model in both ways at the
same time: “Both”.

In the first study we mesh the surfaces and volume
with submapping. The heat sink has 1266 curves and
424 surfaces. This leads to 2532 non-zeros in the con-
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Figure 8: 7-5 radish solution and quality for di↵erent
goals. BBIA fails for g < 2.5. When the BBIA and IIA
solutions di↵er, the BBIA solution is almost always of
poorer quality. Here the exception is a very small,
0.06-neighborhood around g = 8.44. But, in contrast
to the 3-2 radish, the BBIA solution is often larger

than the IIA solution.
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Figure 9: 79-74 radish solution and quality for dif-
ferent goals. BBIA fails for g < 38.5, and for some in-
tervals around where the optimal solution transitions
from k to k+1. The BBIA solution is usually at least
as large as the IIA solution. The IIA solution is better
than the BBIA solution, except for a small neighbor-
hood around g = 187.49.

straint matrix A. Doubling the problem size in either
direction about doubles the number of non-zeros, al-
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Figure 10: Heat sink mock-up. With the long curves
constrained to fixed intervals, BBIA takes 20 minutes
to solve this problem, but CUBIT with IIA can solve
it in 0.2 seconds. This is a 6000⇥ speedup.

0.0039063

0.0078125

0.015625

0.03125

0.0625

0.125

0.25

0.5

1

2

4

8

16

32

64

128

256

512
1 2 4 8 16 32 64

Fin More Surfaces
Runtime vs. Problem Size 

RREF

IIA solve
CUBIT

Figure 11: Runtime scaling (seconds) for multiplying
the heat sink by creating more fins.

though in the Fin case we are adding equal rows and
columns, and in the Cren case we are adding more
columns than rows.

“CUBIT” is the time it takes CUBIT to set up the IA
problem and pass it to IIA, and, after it is solved, check
for submap parameter space overlaps and to apply the
solution to the model. “RREF” is the time it takes to
create all the RREFs during the course of the solve:
for this problem, there are three, one for each of the
submap axes. There are no sum-even variables so no
RREFs are needed for that phase. In these examples
HNF was not needed, but its runtime would scale the
same as RREF’s, just with the trending in the number
of rows and columns swapped. “IIA solve” is the time
that IIA takes excluding “RREF.”

See Figures 11 to 13. The vertical axes are time in
seconds. The horizontal axes are the problem size in
multiples of the heat sink. Note the log-log scale. A
straight line indicates a constant polynomial scaling,
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Figure 12: Runtime scaling (seconds) for multiplying
the heat sink by making the fins longer, with more
crenellations.
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Figure 13: Runtime scaling (seconds) for multiplying
the heat sink by both creating more fins and making
them longer.

with the slope indicating the exponent of the poly-
nomial complexity. For example, the “CUBIT” time
in fig. 11 is roughly linear in problem size up until
the largest models. “RREF” is cubic for fig. 11 and
quadratic for fig. 12. For each of Fin and Cren “IIA
solve” is close to linear up to about size 8 (20k non-
zeros) and close to quadratic above it.

“Both” Scaling. “RREF” and “IA solve” per-
formed better when scaling “Both” compared to scal-
ing either one. It appears that for the same number
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of non-zeros, performance is better if the rows and
columns are balanced and A is square, compared to
tall and skinny or short and wide.

Fin Scaling. For reasonable-size problems the run-
time of RREF is trivial. The crossover for Fin is about
30,000 non-zeros. Below this, performing the “opti-
mization” steps take longer: selecting linear combina-
tions of nullspace vectors for downhill improvement.
Above this, generating the initial nullspace via RREF
takes longer. While the runtime of RREF in the final
Fin case is large compared to the rest of IIA, it is still
dwarfed by the runtime of other meshing steps. For ex-
ample, doubling the geometry from the prior size takes
1.3⇥ as long, and actually creating the mesh takes
11.5⇥ as long. Simply displaying the surface quads
for the first time takes 2.5⇥ as long. This problem has
80k curves, 27k surfaces, and A has 161k non-zeros.
We generate a coarse mesh with 58k hexes.

8.3.2 Runtime Scaling Future Work

For IIA to scale well beyond 100,000 non-zeros, gener-
ating the RREF on the entire matrix must be avoided.
Alternatively, generating the entire RREF using im-
plicit numerical methods may also be possible, but
comes with the challenge of obtaining integer nullspace
vectors. Possible heuristics include manually dividing
the model into independent pieces, or ordering pieces
so that one piece of the model can be meshed before
the next piece. Perhaps one could construct only some
of the vectors in the nullspace, and these could be suf-
ficient for the optimization step.

The typical approach to deal with polynomial scaling
issues in linear algebra is to switch from an explicit dis-
crete solver to an implicit floating point solver which
scales much better. The challenge in our setting is
that the whole approach is predicated on having only
integers in the nullspace. It may be possible to use
the floating point nullspace vectors to find nearby in-
teger nullspace vectors. Recall that we do not need a
nullspace basis; redundant vectors are useful and we
just need su�cient vectors to make progress.

One typical approach to deal with scaling issues in op-
timization is to break the problem into subproblems
and solve each one. The subproblems are designed so
that their solutions are expected to be nearby to the
solution of the global problem. These nearby solutions
are used as a warm start to solving the original global
problem, perhaps with heuristics to find a feasible so-
lution and not an optimal one. This is exactly IIA’s
approach to solving the mapping constraints first be-
fore the sum-even variables are considered. It may be
possible to use this idea in another way.

A second typical approach in optimization to keep

problem size small is to only add some of the con-
straints and solve the problem. Then check all of the
constraints, and if any are violated add them into the
problem definition. Then resolve the updated prob-
lem, using the prior solution as a warm start. This is
what IIA already does for submap overlap constraints.
We could consider extending this approach to other
constraints, such as the sum-even ones. In our con-
text we would have the added step of updating the
nullspace based on the violated constraints.

8.3.3 Limitations for Huge Pave-and-
Sweep Models

Performing the heat-sink scaling study with pave-and-
sweep, and also with all-paving surfaces, uncovered
a robustness issue. The heat-sink example works up
to about a 4⇥ or 8⇥ size, but sometimes for larger
model sizes coupled with very coarse mesh sizes, IA
fails to find a solution in bounds. All of the sum-even
constraints are satisfied by the HNF step, but not all
of the intervals are positive and not all of the sum-even
variables are at least two. The root cause is the RREF
nullspace computation creates vectors with multiple
sum-even variables with coe�cients of opposite sign.
This causes an accumulation of blocking variables and
the satisfy-bounds step gives up.

The solution follows. One can observe that for a curve
shared by two paving surfaces, the vector [y1 y2 2x] is
in the nullspace, where yi is a sum-even variable and
x is the shared-curve variable. If the two paving sur-
faces are connected by a chain of mapping or submap-
ping surfaces, vectors like this still exist, with “2x” re-
placed by a nullspace vector we found during the first
pass when sum-even constraints were ignored. I imple-
mented a method for augmenting the RREF nullspace
vectors with vectors such as these, and the satisfy-
bounds step no longer gets stuck. It remains to ensure
the runtime is not a↵ected too much.

8.4 Carefree Software

IIA is freely available for any use under a BSD-
like license. Simply clone IntervalAssignment from
github; browse to https://github.com/samitch/
IntervalAssignment. IIA is C++11 and has no com-
pile or link-time dependencies or required flags. Sim-
ply compile it into your code.

The executable driver code test.cpp gives examples of
setting up and solving a problem. A trivial “CMake-
Lists.txt” file is provided.

The interface is pointer-free, template-free and defined
by the header files “IA.h” and “IAResult.h”. The in-
terface is about 50 methods. The vast majority are
for flexibility in defining the problem and retrieving
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the solution. To actually solve the problem, simply
call “solve(),” or one of its other three argument-free
variants, e.g., if you only want to know if the problem
is feasible, or if you are resolving but want to discard
the prior solution and solve from scratch. The entire
code is slightly less than 10,000 lines, including com-
ments, braces, and blank lines.

CONCLUSION

We have shown that Incremental Interval Assignment
(IIA) is practical on today’s problems, with insignif-
icant runtime compared to the other steps of the
quad/hex meshing process, up to about 100,000 non-
zeros in the constraint matrix. The software is flexible
and freely available for any use.

For future work, robustly finding integer combinations
of nullspace vectors that point in downhill directions
could improve the robustness and solution quality, but
this is a longstanding open problem in integer opti-
mization. Heuristics for subdividing the problem, or
finding and using a subset of the nullspace vectors,
might improve scalability for future-size models.

Interval assignment can easily be infeasible. For ex-
ample, the corners of mapped surfaces on the sides of
sweeps might not be aligned with the sweep direction,
or the user might have set a few curves to have some
fixed values that are incompatible. When IA simply
reports “infeasible” for a model with hundreds of sur-
faces and curves, the next command the user issues to
the program may be an explicative. For future work,
it would be wonderful if IIA could give the user ac-
tionable guidance about what to change to make the
problem feasible. This might be achieved by testing
whether certain subproblems are feasible, or exploring
which variables have unachievable bounds.
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