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ABSTRACT

Quadrilateral meshes generated for the industrial applications have to meet some special quality demands and it
remains a tricky problem. We propose a novel method for high quality quad mesh generation based on the equiv-
alence relation between quadrilateral meshes and meromorphic quartic differentials[1]. As long as more than one
meromorphic quartic differential were obtained, the linear space extended by them is also available for us according
to the meromorphic quartic differentials space theory. We can search the space for better quadrilateral mesh and
the high quality mesh construction problem becomes a optimization problem. This paper gives the algorithm and
carries out experiments under two different mesh quality constrains including mesh cell size constrain and feature
lines constrain. The experimental results demonstrate the efficiency and efficacy of the algorithm.

Keywords: Quad mesh generation, Meromorphic quartic differential, Linear space, Mesh quality
constrain

1. INTRODUCTION In recent years, a novel theory and technology for
quadrilateral mesh generation has emerged. In pa-
Quadrilateral mesh generation is an essential issue in per [1] and [2], the authors clarified the relationship
the area of computational mechanics, geometric mod- among quadrilateral mesh, Riemann metric and Mero-
eling, computer aided design, animation and digital morphic quartic differential. Each quadrilateral mesh
geometry processing. There have been many excellent induces a Riemann metric of the surface by treating
algorithms for quadrilateral mesh generation. How- all the quad mesh edge length as unit and a mero-
ever, to totally meet the various mesh quality demands morphic quartic differential, where the configuration
in practice, there is still a long way to go. Some re- of singular vertices corresponds to the configurations
searchers have a high demand on the control of the of the poles and zeros (divisor) of the meromorphic
mesh cell sizes because they need to balance the effi- differential. Inversely, if a meromorphic quartic dif-
ciency and efficacy. Some researchers pay much atten- ferential of the surface is with finite trajectories, then
tion to the number and distribution of the singulari- it also induces a quad-mesh, the poles and zeros of
ties. In numerical simulation area, either the sharp the meromorphic differential correspond to the singu-
feature preserving or the tensor structure, or other lar vertices of the quad-mesh.
properties of the quad mesh will significantly affect the
accuracy, efficiency, and stability of the experiments. The intrinsical insight that meromorphic differentials
High quality mesh generation remains a challenge in and quad meshes are equivalent provided us a new di-
practice. rection to see the quad mesh generation and improve-
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ment. Since the meromorphic differentials of one sur-
face form a linear space, the quad meshes also form
a linear space. As long as we have more than one
quad mesh, other quad mesh can be obtained by lin-
ear combination. This offers the flexibility for mesh
improvement.

Paper [3] also introduced a algorithm to generate
quadrilateral mesh: A set of singularities should be
specified in advance and check by the Abel-Jacobi con-
dition, then compute the Riemann metric with cone
singularities with Ricci flow and the metric can induce
quad mesh. In fact the quality of the mesh generated
by Ricci flow based methods is severely affected by the
quality of the singularity configuration. The quality of
the resulting mesh will not be good if we cannot offer
a proper distribution of the singularities.

However there is a great chance that a high quality
mesh exists in the space extended by several low qual-
ity meshes. When we have the basis of the biggest
linear space including all the possible quad mesh, any
kind of quad mesh we need can be constructed by lin-
ear combination of the basis. Hence we take full ad-
vantage of the existing quad meshes or meromorphic
differentials by searching the linear space extended by
them.

In this paper, we specify multiple sets of singularities
sytisfying the Abel-Jacobi condition for the same tri-
angular mesh and calculate the corresponding mero-
morphic differentials using Ricci flow. Then we have
a linear space whose basis are these meromorphic dif-
ferentials. By adjusting the coefficients of the linear
combination, we can get different meromorophic dif-
ferential and quad mesh. Mesh improvement under
special constrains is all about optimizing the coeffi-
cients.

We also provided the algorithm to compute meromor-
phic differential from a given quad mesh. This elim-
inates the dependence of our method on Ricci flow.
As long as there are more than one quad mesh which
have the the same conformal structure with the origi-
nal surface, no matter how they were constructed, the
improve method in this paper can work through.

The structure of this article is as follows. We re-
view some methods of quadrilateral meshes genera-
tion in section 2. In section 4, we show how to com-
plete the Riemann metric calculated by the RicciFlow
method [4] and describe the details of the linear com-
bination of meromorphic differentials. We present how
to add constraints in the process of linear combination
to improve the quality of the result mesh in section 5.
In section 5.1, we add constrains on the size of the
mesh unit. In section 5.2, we require the edges of the
quadrilateral mesh to be aligned with the feature lines
of the surface. We summarize this paper and propose
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some possible ways to further optimize our work in the
future in section 6.

2. RELATED WORKS

In this section, we briefly review the quad mesh gen-
eration method.

Triangle to quad method. This type of method di-
rectly converts the triangular meshes to quad meshes.
The general idea is to pair triangles to quads. There
are many different ways to implement this process e.g.
an advancing front algorithm [5] a global optimal so-
lution [6] and a greedy algorithm [7]. The quality of
the mesh generated by these methods depends on the
quality of the initial triangular mesh. And since the
global information of the surface is not taken into ac-
count, these methods cannot achieve smoothness and
regularity globally.

Cross-field based method. The directional field
can be used to guide the growth of mesh lines. This
type of method first calculates a directional field for
the surface, usually a four-way rotationally symmetric
orientation field [8] [9] or cross field. The cross field
is usually calculated by optimizing a nonlinear energy
function [10] [11]. Finally, quadrilateral meshes are
generated by using streamline tracing techniques [12]
or parametric methods. A problem with these meth-
ods is that the optimization of the energy function
tends to be trapped in the local minimum, which re-
sults in too many singularities and poor mesh quality.

Parameterization based method. Parameteriza-
tion based method computes the quadrilateral tessel-
lation in the parameter domain or finds the skeleton
from intrinsic geometric functions or differentials. The
spectral surface quadrangulation method [13] [14]
produces the skeleton structure from the Morse-Smale
complex of an eigenfunction of the Laplacian operator
on the input mesh. [15] [16] introduces seamless pa-
rameterization, which means the transition functions
across the cuts of the parameterization are not arbi-
trary but of a very restricted class: rigid transforma-
tions with a rotation angle of some multiple of 90o.
Quantized Global Parametrization [17] studies quan-
tized parameterization on this basis. Quantized pa-
rameterization means that transitions in seamless pa-
rameterization are all integral.

Metric based methods. [2] proposed a novel mesh
generation algorithm based on the Riemann metric.
It gave the necessary and sufficient conditions for
whether a Riemann metric can induce quadrilateral
mesh. That paper uses the Ricciflow method proposed
in [4] to calculate the appropriate Riemann metric.
However, this method has some shortcomings. One is
that the singularities need to be specified manually,
not automatically. Besides, it does not provide how



to make the specified singularity configuration meet
the holonomy condition which is essential for induc-
ing a valid quad mesh. [18] uses the holomorphic
quadratic differential to generate a quadrilateral mesh,
which has a tiny number of singularities, but the holo-
morphic quadratic differential is inherently unable to
deal with models which contain singularities of odd
valances. [1] further studies the methods based on
the Riemann metric and holomorphic differential. It
solves some shortcomings in the methods mentioned
above. On the one hand, it uses meromorphic quar-
tic differential instead of holomorphic quadratic dif-
ferential to generate meshes, which theoretically can
handle meshes containing singularities of arbitrary va-
lence. On the other hand, it gives the necessary and
sufficient condition for whether a configuration of sin-
gularities satisfies the holonomy condition, that is, the
Abel-Jacobi condition, which makes the metric-based
method more mature.

3. THEORETIC BACKGROUND

In this section, we briefly review the basic concepts
and theorems in Riemann surface theory and mero-
morphic quartic differential.

3.1 Basic Concepts of Riemann Surface

Definition 3.1 [Topological Manifold] Suppose %
is a topological space, {Ua} is a family of open sets
covering the space, ¥ C |J,Ua. For each open set
Ua, there exists a homeomorphism @q : Uy — R"™, the
pair (Ua, va) is called a local chart. The collection of
local charts form the atlas of M, A = {(Ua, ¢a)}. For
any pair of open sets, Us and Ug, if Us NUs # 0,
the transition map is given by vag : Ya(Ua NUg) —
0s(Ua NUB), ap = wpo@a'. Then ¥ is called a
closed n-dimesnional manifold.

Two dimensional manifolds are called surfaces.

Definition 3.2 [Holomorphic Function] Suppose
f +: C — C is a complex function, (z,y) +—
(u(z,y),v(z,y)), if the function satisfies the Cauchy-
Riemann equation

ou_ov ou_ o
or Oy’ 9oy = Ox’

then f is called a holomorphic function. If f is invert-
ible, furthermore f~' is also holomorphic, then f is
called biholomorphic.

Definition 3.3 [Meromorphic Function] Suppose
f : C — C is a complex function, f(z) = p(z)/q(z),
where p(z) and q(z) are holomorphic functions, then
f(2) is called a meromorphic function.
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Definition 3.4 [Conformal Atlas] Suppose S is a
two dimensional topological manifold, equipped with an
atlas A = {(Ua, pa)}, every local chart are complex
coordinates o @ Uy — C, denoted as z, and every
transition map is btholomorphic,

Yap : pa(Ua NUp) = pp(Ua NUp), za = 28,

then the atlas is called a conformal atlas.

Definition 3.5 [Riemann Surface] A topological
surface with a conformal atlas is called a Riemann
surface.

3.2 Meromorphic Differentials

The concepts of holomorphic and meromorphic func-
tions can be generalized to Riemann surfaces.

Definition 3.6 [Meromorphic Function on Rie-
mann  Surface] Suppose a Riemann surface
(S, {(Ua,¥a)}) is given. A complex function is de-
fined on the surface f: S — CU{oco}. If on each local
chart (Ua,a), the local representation of the func-
tions f o' : C = CU {oo} is meromorphic, then f
is called a meromorphic function defined on S.

A memromorphic function can be treated as a holo-
morphic map from the Riemann surface to the unit
sphere.

Definition 3.7 [Meromorphic Differential] Given
a Riemann surface (S,{za}), w is a meromorphic dif-
ferential of order n, if it has local representation,

w = fa(Za)(dZa)n7

where fo(za) is a meromorphic function, n is an in-
teger; if fa(za) s a holomorphic function, then w is
called a holomorphic differential of order n.

A meromorphic differential of order 4 is called a mero-
morphic quartic differential.

Definition 3.8 [Zeros and Poles of Meromorphic
Differentials] Given a Riemann surface (S,{za}), w
is a meromorphic differential with local representation,

w = fa(za)(dza)".

If zo is a pole (or a zero) of fo with order k, then zq is
called a pole (or a zero) of the meromorphic differential
w of order k.



We use Sing., to denote the singularity set of w. Lo-
cally near a regular point p, the differential w =
f(2)dz" can be represented as the n-th power of a
1-form h(z)dz where h"(z) = f(z) and thus h(z) =
Y/ f(z) coincides with one of n possible branches of
the n-th root. We call this n-valued 1-form the n-th
roots of w, which is a globally well-defined multi-valued
meromorphic 1-form on S.

Definition 3.9 [Trajectories of meromorphic
differentials]Given a meromorphic n-differential w
on S we define n distinct line fields on S\ Sing., as
follows. At each non-singular point z there are exactly
n distinguished directions dz at which w = f(z)(dz)"
attains real values. Integral curves of these line fields
are called trajectories of w.

Suppose w is a meromorphic quadratic differential, dz
is a horizontal (vertical) direction if f(z)(dz)*> > 0
(f(2)(dz)* < 0). Integral curves of horizontal direc-
tion are called horizontal (vertical) trajectories.

3.3 Abel-Jacobi Condition

Given a Riemann surface (5, {za }), w is a well-defined
meromorphic differential on (S,{z.}), Sing. is the
singularity set of w, then Sing, satisfies the Abel-
Jacobi condition. There exists no well-defined mero-
morphic differential w on Riemann surface whose sin-
gularity set is Sing., when Sing. does not satisfy the
Abel-Jacobi condition. For more detail of Abel-Jacobi
condition, refer to paper[1].

3.4 Quad-Meshes and Meromorphic Quar-
tic Forms

Here we review the intrinsic relation between a quad-
mesh and a meromorphic quartic differential.

Definition 3.10 [Quadrilateral Mesh] Suppose X
is a topological surface, Q is a cell partition of %, if
all cells of Q are topological quadrilaterals, then we say
(%, Q) is a quadrilateral mesh.

On a quad-mesh, the topological valence of a vertex is
the number of faces adjacent to the vertex.

Definition 3.11 (Singularity) Suppose (S, Q) is a
quadrilateral mesh. If the topological valence of an
interior vertex is 4, then we call it a regular vertex,
otherwise a singularity; if the topological valence of a
boundary vertex is 2, then we call it a regular boundary
vertex, otherwise a boundary singularity. The indez
of a singularity is defined as follows:

~ v; € 8(S, Q)
Ind(v;) = { v; € 9(S, Q)

4 — val(v;)
2 — val(v;)
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where Ind(v;) and val(v;) are the index and the topo-
logical valence of v;.

Theorem 3.12 [Quad-Mesh to Meromrophic
Quartic Differential] Suppose (X,0Q) is a closed
quadrilateral mesh, then

1. the quad-mesh Q induces a conformal atlas A,
such that (X, A) form a Riemann surface, denoted
as Sq.

2. the quad-mesh Q induces a quartic differential
wq on Sq. The valence-k singular vertices corre-
spond to poles or zeros of order k — 4. Further-
more, the trajectories of wg are finite.

Theorem 3.13 [Quartic Differential to Quad-
Mesh] Suppose (X, A) is a Riemann surface, w is a
meromorphic quartic differential with finite trajecto-
ries, then w induces a quadrilateral mesh Q, such that
the poles or zeros with order k of w corresponds to the
singular vertices of Q with valence k + 4.

Definition 3.14 [Linear combination of quartic
Differential] Given a Riemann surface (S,{za}),
Wiyeen, Wiy ..., wn aren different meromorphic quartic
differentials with finite trajectories, they have the local
representation,

wi = fi.o(2a)(dza)",

the linear combination of these meromorphic quartic
differentials is defined as

sz‘ = (Z fia(2a))(dza)"

Theorem 3.15 [linear space of Quartic Differ-
ential] Given n > 1 meromorphic quartic differentials
on a Riemann surface, their linear combination is also
a meromorphic quartic differential, all the combina-
tion forms a linear space. All the possible meromorphic
quartic differentials on the Riemann surface forms the
biggest linear space.

4. COMPUTATIONAL ALGORITHMS

The algorithm pipeline can be summarized as follows:

e Compute flat Riemannian metric with cone sin-
gularities which satisy the Abel-Jacobi condition;

e Isometric immerses the triangle surface face-wise
onto the complex plane and pull back the canon-
ical holomorphic differential to the surface to ob-
tain the meromorphic differential and meromor-
phic quartic differential;



e Repeat the previous steps to get n > 1 meromor-
phic quartic differentials;

o Represent the linear space by the linear combina-
tion of the n meromorphic quartic differentials;

e Optimize the coefficients of the linear combina-
tion to improve the quality of the quad mesh.

The optimization step will be illustrated together with
concrete quality constrain example in the next section.

In the following, we explain other steps of the algo-
rithm in details. The input of the algorithm is a tri-
angle mesh M.

4.1 Riemannian metric computation

Discrete form of Riemann metric on triangle mesh can
be defined as the mesh edge length. Riemann met-
ric computation is all about assigning the proper edge
length.

The first way to obtain the Riemann metric is the
RicciFlow algorithm [4]. We can set up several sets of
different singularities with degrees for the same trian-
gular mesh, and compute the corresponding Riemann
metric using Ricci Flow.

It should be noted that the input singularity set here
must satisfy the Abel-Jacobi condition, otherwise we
can not get a valid well-defined meromorphic quartic
differential.

The second way is to get the Riemann metric from
existing quad meshes. The existing quad meshes used
here must be conformally equivalent to the original
triangle surface. Assume that we have obtained some
quadrilateral meshes generated by other methods and
want to obtain a higher quality mesh by linear combi-
nation method. Then we can directly use these quadri-
lateral meshes to calculate several sets of Riemann
metrics for the triangular mesh.

We take each quadrilateral mesh as background mesh,
and map the triangle mesh onto it. Figure 1 shows
that a triangle Tapc of the triangle mesh is mapped
onto a quadrilateral background mesh. In order to cal-
culate the metric on edge Fap, we assume that these
local quads are coplanar and the length of each edge of
the quad mesh is 1. Then we can easily calculate the
length of edge Fap and use it as the Riemann metric
of that edge. Then we can calculate the corresponding
differential.

For a given triangular mesh, either we have n >
1 meromorphic quartic differentials or quadrilateral
meshes, we can use the linear combination method to
improve the quality of the meshes.
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Figure 1: A triangle mapped to a background quad mesh

4.2 Isometric Immersion and Meromorphic

Quartic Differential

Slice triangle mesh M to obtain a topological disk M
and make sure all the singlularities are on the disk
boundary.

Then we flatten M face by face using the metric ob-
tained. This produces an immersion of ¢ : M — C.
On the complex plane, there is a canonical differen-
tial d2, the pull back ¢*d2 is a meromorphic quartic
differential defined on M.

The discrete form of meromorphic differential on trian-
gle mesh is the complex numbers defined on the mesh
edges.

Here we use duv to denote the meromorphic first dif-
ferential defined on edges; duv* for the meromorphic
quartic differential.

In this step, arbitrary slicing method works under our
framework. Different slicing and isometric immersion
way may induce different meromorphic quartic differ-
entials, but they are all equivalent to each other with
respect to a global rotation.

4.3 The process of linear combination

Assume we have n different meromorphic quartic dif-
ferentials, we use the formula

n

Z(duvﬁl * Q)

=1

to linearly combine the differentials, where n means
the number of differential bases, a; € F is the lin-



ear combination coefficient corresponding to the i-th
meromorphic quartic differential bases duv.

The fourth root of a complex number are four com-
plex numbers with the same norm and different direc-
tions. We choose either one as as the differential value
for the first edge, then the differentials of other edges
can be fixed under the global smooth constrain on the
sliced disk. After each edge has a new differential,
we can integrate differentials to obtain a parameter-
ization. Based on the parameterization, we extract
trajectories and finally obtain a quad mesh.

5. LINEAR COMBINATION WITH
CONSTRAINTS

This section shows the detail of how to improve mesh
quality in the linear meromorphic differential space

We consider two mesh quality constrains, the first
one is the size control of the mesh cell, and the sec-
ond is the alignment between edges of the generated
mesh and the feature lines of the surface. The pro-
gram reads in several differential bases and adjust the
combination coefficients based on the performance of
the combination result. In the end, a set of better
coefficients is obtained, which corresponds to a higher
quality quadrilateral mesh.

We use three different model to check our algorithm,
and provide both texture maps visualization and quad
mesh for each experiment data. In the pictures, small
pink ball represents a valence 3 singularity; blue color
means valence 5 singularity and green color for velence
6 singularity.

5.1 Size constraints of mesh cells
5.1.1 Size uniformation

In many applications, a common requirement for
quadrilateral meshes is that the size of the mesh cells
need to be as uniform as possible. Compared with a
quadrilateral mesh with large fluctuations in element
size, a quad mesh with cells of uniform size is more
suitable for actual industrial applications .

In order to control the cell size of the target quadrilat-
eral mesh generated by meromorphic differentials, we
define a ratio for each edge using the quotient between
the norm of the differential and the Euclidean length
of edge. When the ratios of these edges are relatively
close, the cells of the generated quadrilateral mesh are
relatively uniform.

We define a vector r € RIF! , whose element is

duv;
T = | T | (1)

where |duv;| means the norm of the differential on the
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i-th edge and [; is the Euclidean length of the edge.
|E| represents the number of mesh edges. We set a
target mesh size control vector ¢ € R'”! and define

h (2)

Then we define the loss function,

|E|
loss = ﬁ Z(n wa—t;)? (3)
i=1

We assume that each row of the vector ¢ is 1 in this
section, which means we want to make the result mesh
as uniform as possible. We use a primary optimization
method to calculate the coefficients of the linear com-
bination. First, a set of initial combination coefficients
are given for linear combination. Then we calculate
the initial loss value. Then we adjust each coefficient
individually. Whether the current coefficient is to in-
crease or decrease depends on the change of the loss
value after modifying the coefficient. We repeatedly
adjust each coefficient until we get the desired results.

Here we use model eight to check our mesh size uni-
formation algorithm. Figure 2 shows four different
meromorphic differentials and the corresponding quad
meshes. The meromophic differential norms varies
a lot across the surface, hence the cell size of these
meshes is quite not uniform. The mesh quality need
to be improved.

Fig.4 shows two results of mesh cell uniformation.
Each model is a result of linear combination of four
differential bases according to a set of optimized co-
efficients. It is obvious that our optimized results are
more uniform. The loss value of each result is showed
under the model which is quite close to zero.

5.1.2 Size control of mesh cells

Apart from pursuing the uniformity of the size of mesh
cells, we can also impose other constrains on the size
of the mesh cells according to the practical needs to
improve mesh quality.

The basic idea is to set specific target ratio for each
edge, Then we calculate a set of combination coeffi-
cients that meets the constrains by optimizing the loss
function.

We try to control the cell size according to the curva-
ture of the origin triangle surface. A larger curvature
at a certain point indicates that the surface at that
point has more details. Therefore the quad cells here
need to be denser. Where the curvature is smaller, the
surface here is smoother and the size of quad mesh cells
can be appropriately larger. Here a curvature-aware
function is set to calculate a size attribute for each



(a) basis 1 (b) basis 2 (c) basis 3 (d) basis 4

Figure 2: Four meromorphic differentials and the corresponding quad meshes of model eight

(a) basis 1 (b) basis 2 (c) basis 3 (d) basis 4

Figure 3: Four meromorphic differentials and the corresponding quad meshes of model kitten
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(a) loss=0.056878

(b) loss=0.0537774

Figure 4: Size uniformation for model eight

vertex according to the Gaussian curvature. We de-
fined the size attribute on each vertex as s = exp(z),
where x is the gaussian curvature of the vertex. The
ratio of each edge e; is set to be the product of the
size attribute of the two adjacent vertices of edge e;.
We use this ratio of the edges to assign the elements
of the target mesh size control vector r € RIZ!.

Here we use model kitten to check the algorithm. Fig.3
shows four meromorphic bases and the corresponding
quad meshes. Figure 5 shows the results of curvature-
aware mesh size control. Figure 5 (a) is the mesh
corresponding to the initial coefficients. Figure 5 (b)
is the result for a set of optimized coefficients with a
lower loss value.

5.2 Alignment of feature lines constrain

Another aspect that affects the quality of the quadri-
lateral mesh is the alignment with the feature lines
of the surface. Models in the industry often contain
many obvious features. A natural requirement is that
the edges of the quadrilateral mesh we get need to be
aligned with the feature lines of the model as much
as possible. This section explores this constraint from
the perspective of linear combination. Assuming that
there is a new differential on each edge after the com-
bination, we hope that the differential directions on
the two adjacent feature edges are collinear, so as to
ensure that the edges of the final generated mesh are
aligned with the feature edges as much as possible.

So we define a new loss function,

loss_angle = avg <Z (duwv;, duvj>> (4)
47
where i=1,...,n; j=1,....m;
Among them, n represents the number of feature edges
of the mesh, m; represents the number of other feature

edges connected to the two end points of the i — th

224

feature edge, and < a, b > represents the radian value
corresponding to the smallest angle of the four angles
formed by vector a and vector b. avg() is a function
for averaging.

The subsequent algorithm pipeline is similar to the
element size control method in the previous section.
We first specify a set of linear combination coefficients
and calculate the initial loss value. Then repeat the
individual adjustment of each coefficient until the loss
value no longer decreases.

Here we use model arm to take the experiment, the
blue line in fig.9 is the feature line we want the quad
mesh to align with. Fig.6 displays four different mero-
morphic differentials on the model arm surface. Fig.7
shows two results of the feature line alignment exper-
iment. The algorithm improves the feature alignment
with loss values equal to 0.3133 and 0.2831 respec-
tively. However the mesh size is quite not uniform.
Hence we try to optimize the mesh cell size and the
feature alignment, Fig.8 shows the results we obtained.
We achieve a balance between two constrains.

6. CONCLUSION

Based on the idea of generating quad meshes using
Riemann metric and meromorphic quartic differen-
tial, this paper offers an algorithm to linearly combine
different differential bases of the same surface, which
can generate new meromorphic differentials and new
quad meshes. This paper takes in consideration of
the mesh cell size constrain and feature line alignment
constrain in the process of linear combination. The
programs search for a set of coefficients that meet the
constrains to obtain quad meshes with better quality.
Since we use multiple sets of singular points and multi-
ple meromorphic differentials to generate a quadrilat-
eral mesh, we reduce the dependence of mesh quality
improvement on manual experience to some degree.
This paper shows the feasibility and practicability of
the idea that using linear combination method to gen-



(a) loss=0.201438

(b) loss=0.180988

Figure 5: Curvature aware size control for model kitten

(a) basis 1

(b) basis 2

Figure 6: Four meromorphic differentials and the

erate quad meshes and improve mesh quality. This
paper offers a total new perspective to optimize the
mesh quality, especially in the way of changing the
mesh topology.

Our method can be improved in several ways in the fu-
ture. On one hand, the differential bases we selected
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(c) basis 3 (d) basis 4

corresponding quad meshes of model arm

for each model in the experiment can not extend to
the whole linear space of the meromorphic quartic dif-
ferentials. This causes that the final results can not
achieve the global optimum. In the future, we will
choose the whole differential bases to improve the flex-
ibility of the linear combination method. On the other
hand, the optimization method we used is not so good



(a) loss=0.313383

Figure 7: Feature alignment :

(b) loss=0.283196

Arm model

(a) feature loss=0.385276, size loss=0.158864

(b) feature loss=0.396364, size loss=0.181362

Figure 8: Feature alignment and size control : Arm model

Figure 9: Feature line to be aligned

enough that the result may not be the best in the
current linear space. A more effective optimization
method would improve our result greatly.
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