
HEXAHEDRAL MESH GENERATION OF LAYERED
SOLIDS WITH SLOPED LATERALS

Yu-Yao Lin1 Anil Sehgal2

Technology of Computer Aided Design, Intel Corporation, Hillsboro, OR, U.S.A.
1yu-yao.lin@intel.com 2anil.sehgal@intel.com

ABSTRACT

We present an algorithm for fully-automated all-hexahedral mesh generation for 3D models of Very Large Scale
Integration (VLSI) geometries, based on layered 2D polygonal mask layouts as input. Specifically, we propose a
mapping procedure in three stages, based on integrating topology of 2D polygon sets from di↵erent layers, which
define the architecture of a 3D VLSI geometry model. Three successive steps ensure that all geometric levels share
the same topological structure, enabling extruded 3D meshing. In the first stage, the intersections between each pair
of polygon sets are collected from top to bottom. The polygon sets which are absent on lower geometric levels are
mapped downward. In the second stage, the polygon sets which are absent on upper geometric levels are mapped
upward. In the third stage, we integrate the topology of each geometric level and construct a mapping through the
levels. Finally, we generate a quadrilateral mesh on the bottom level and extrude the mesh to a hexahedral mesh
through the mapping generated by the third stage. In the examples, we present the full hexahedral meshing result
of various 3D models representing various sections of typical VLSI geometries. Moreover, we applied a quadrilateral
and a hexahedral mesh optimization to ensure the validity of the meshes.

Keywords: mesh generation, automatic hex-mesh generation, all-hexahedral meshing, mapped mesh-

ing, extrusion

1. INTRODUCTION

Hexahedral meshes are widely used in finite element
analysis such as thermal, mechanical, and a variety
of other simulations. For certain simulations, hexahe-
dral meshes are preferable due to the numerical ac-
curacy and computational e�ciency in comparison to
tetrahedral meshes. Automated hex-meshing [1,2] has
been widely studied for decades and there has been
many existing tools to facilitate hex-meshing such as
Abaqus [3], CUBIT [4], etc. Nevertheless, automated
hexahedral mesh generation for a domain with multi-
ple materials [5] is non-trivial in most cases, especially
when a set of mesh quality constraints are taken into
consideration.

A layered solid is a result of a variety of primitive
manufacturing operations such as deposition, etching,
polishing. Layered mesh generation is a typical mesh-

ing scheme for layer manufacturing processes [6, 7].
There has been some prior work of mesh genera-
tion for thin layered domains such as solid shells and
thin section solids [8–11]. For instance, Quadros and
Shimada [8] proposed an all-hexahedral meshing of
thin section solids constructed by interpolating quadri-
lateral meshes from a chordal surface. Jaśkowiec
et al. [10] developed a thin shell modeling by geometric
transformation from a planar mesh to a curved lami-
nated mesh. However, this type of layer meshings is
either limited by a single geometric configuration or
requires domain divisions. To handle the solids com-
posed of complex geometries, the initial decomposition
into simpler sub-domains has to be performed.

Model decomposition [12–14] is a common strategy for
all-hexahedral meshing while it usually requires man-
ual operations. In Intel, layered hexahedral meshes

59

X
Y

Z

(a) Simplified FinFET

Transistor Geometry.

X
Y

Z

(b) Hex-mesh of the sim-

plified FinFET Transis-

tor Geometry.

XY

Z

(c) FinFET Transistor Mesh de-

tails.

X

Y

Z

(d) FinFET Transistor Mesh

details.

Figure 1: A Simplified FinFET transistor and metal interconnect model composed of 16 layers for Thermal Modeling. The

generic name ”FinFET” is given as the source/drain region forms fin-shaped bodies on the silicon surface.

are applied for solving thermal stress and strain equa-
tions on VLSI models. To generate full hex-meshes
satisfying our VLSI sloped geometries, we have tried
manually decomposing solids and meshing by avail-
able meshing tools but failed to meet our needs. Typ-
ically, full hex-mesh with layer geometries can be gen-
erated with good quality without sloping material lat-
erals and doing pure extrusion type of meshing. To do
this, one can first collect geometries from all layers and
imprint them to a 2D plane. Hex-meshing can there-
fore be achieved by extruding quadrilateral mesh with
the constraint of the imprinted geometries. For exam-
ple, MSC Apex [15] is a tool supporting quad-meshing
on a basis with imprinted geometry and hex-meshing
through extrusion. However, when sloped laterals are
taken into account, projecting all geometries to a 2D
basis is insu�cient.

To deal with the sloped layer geometries, We have also
tried producing sloped laterals by deforming material
boundaries after straight extrusion, however, it only
works for slight boundary deformation. When bound-
ary geometry needs greater changes such as doubling
the radius size of a circle, it rarely yields robust mesh-
ing results.

In the last few years, the creation of surface map-
pings [16], i.e. surface parameterizations, received
a lot of attention due to their wide applicability in
geometry processing. Inspired by surface mappings,
we propose a novel approach that constructs a set
of integrated geometry constraints through 2D sur-
face mappings. Combine the typical mesh extru-
sion [17–21] with our meshing constraints, the full-
hexahedral meshes with complex layered geometries
are constructed. Our algorithm aims at automated
all-hexahedral meshing for 3D layered solids of VLSI
geometries that meets our requirement and solves the

problems stated above. The produced meshes are
without T-junctions and the need for decomposition
for layered solids with sloped lateral material bound-
aries.

1.1 Layered Geometry in Semiconductor
Industry

The algorithm proposed by this work focuses on VLSI
models in the semiconductor industry. We present two
examples in Figure 1 and 2 and experimental results
for three types of model in Section 5. The structures of
the models are following the definitions given in this
subsection. The manufacturing process for semicon-
ductors involves creating transistors, typically referred
to as front-end processing. This is followed by creating
layers of metal wires, surrounded by insulating mate-
rial. Various layers of metals are connected in places
by metal connectors called Via. The fin field-e↵ect
transistor or FinFET is a type of transistor commonly
used in semiconductors, which is presented in Figure 1.
It has been given the generic name ”FinFET” because
the source and the drain region form fin-shaped bodies
on the silicon surface. To the integrated circuit (IC)
packaging which refers to back-end processing, solder-
bumps are fusible metal alloys used to connect with
metal wires. Figure 4 shows that the solder-bumps
are modeled by bottle shapes.

1.2 Contribution

The main contribution of this work is to propose
a geometric and topological integration procedure,
that allows us to automatically generate all-hexahedral
meshes for layered solids with various regions, by ex-
truding all quadrilateral meshes in xy-plane along z-
axis. Figure 1 and 2 present the all-hexahedral meshes

60

generated by our method. A layer of a layered solid
is composed of 3D regions/materials which are repre-
sented by at least one set of polygons. The polygon
sets representing a layer are topologically equivalent.
If a layer is represented by two or more polygon sets,
then we call it a sloped layer because there exists a
3D region with a sloped lateral surface defined by the
polygon sets. To characterize the geometric and topo-
logical integration in Section 3, we detail the represen-
tation of layered solids in Section 2.

Procedure 1 All-hexahedral mesh generation of lay-
ered solids with interior-sloped laterals.

Input: Layer stack L

Output: All-hexahedral mesh H

1: function IntegratePolygons(L)
2: P = IntegratePolygons(L)
3: � = ConstructMap(P)
4: end function

5: function QuadMesh(P)
6: P̂1 = GetTheBottomPolygonSet(P)
7: Q = QuadMesh(P̂1)
8: end function

9: function ExtrudeToHex(Q,�)
10: H ;

11: Q
b
 Q

12: l P.Size()
13: j 1
14: while j < l do

15: Q
b = OptimizeQuad(Qb)

16: Q
t = ExtrudeQuad(Qb

,�)
17: Hj = BuildHex(Qt

,Q
b
,H)

18: Hj = OptimizeHex(Hj)
19: Q

b
 Q

t

20: j j + 1
21: end while

22: Q
b = OptimizeQuad(Qb)

23: end function

In Section 3, we introduce a mapping procedure that
integrates the topology and geometry of 2D polygon
sets and defines the geometric structure of VLSI mod-
els by multi-leveled polygon sets. Three successive
stages ensure that all geometric levels share the same
topological structure. In the first stage, the intersec-
tions between each pair of polygon sets are collected
from top to bottom. The polygon sets which are ab-
sent on lower geometric levels are mapped downward
(Section 3.1). In the second stage, the polygon sets
which are absent on upper geometric levels are mapped
upward (Section 3.2). In the third stage, we integrate
the topology of each geometric level and construct a
mapping through the levels (Section 3.3). In addi-
tion, polygon matching between topologically equiva-
lent polygon sets is required to construct the mappings
(Section 3.4). With the integrated constraints in the
bottom level, we generate a quadrilateral mesh using

the quadrilateral mesher Geompack [22] and extrude
the mesh to a hexahedral mesh through the mapping
generated in the third stage (Section 4). Finally, as
the quadrilateral mesh might be distorted through the
extruding process, quadrilateral and hexahedral mesh
optimizations are working on the fly for mesh qual-
ity improvement. We implemented a quadrilateral op-
timizer and hexahedral optimizer by referring to the
algorithm proposed by Escobar et al. [23], while this
work focuses on the algorithm of automated hexahe-
dral mesh generation of layered solids, we are not going
to detail the optimizers.

Procedure 1 summarizes the main steps of the fully-
automated all-hexahedral mesh generation. This work
focuses on the process IntegratePolygons which in-
tegrates the geometries and topologies of a stack of
layered geometries L = {L1, ..., Ln} and generates a
map � to enable the extrusion ExtrudeToHex from
the quadrilateral mesh Q output by QuadMesh to a
hexahedral mesh H. The details of this process will
be in Section 3.

Algorithm 2 Geometric and topological integration
of a stack of layers. M is a matrix storing polygon
sets generated during the integration process.

Input: Stack of layers L
Output: Stack of merged polygon sets P
1: function IntegratePolygons(L)
2: L MapDownward(L)
3: M MapUpward(L)
4: l M.NumberOfRows()
5: P MergeRows(M, 1, l)
6: end function

The algorithm IntegratePolygons in Line 2 is sum-
marized in Algorithm 2 which performs the geomet-
ric and topological integration of L and generates a
stack of polygon sets P = {P̂1, ..., P̂l} with the same
topological structures, where l is the number of the
integrated polygon sets. In Line 3, ConstructMap con-
structs a map by generating a constrained Delaunay
triangulation T1 to the bottom polygon set P̂1 and
adopts the topological structure of T1 to generate a
constrained triangulation to all the other polygon sets
in P. The triangulations are used to interpolate coor-
dinates of nodes during mesh extrusion. Line 2 and 3
are the core concepts of this work and are elaborated
in Section 3.

In Line 5, the process QuadMesh generates a quadri-
lateral mesh Q with the constraints of the bottom
polygon set P̂1. Finally, the process ExtrudeToHex

extrudes a hexahedral mesh H from Q with mesh op-
timizations OptimizeQuad and OptimizeHex. The al-
gorithm ExtrudeQuad constructs a quadrilateral mesh
Q

t by mapping the input mesh Q
b upward through

the map �. The algorithm BuildHex then constructs

61

a layer of hexahedral mesh by connecting Q
b and Q

t.
At the end of the procedure, an all-hexahedral mesh
H =

Sl�1
j=1 Hj is generated.

2. PRELIMINARIES

In this work, 3D VLSI models are represented by a
stack of layers. Each layer is defined by a set of 2D
polygonal mask layouts, i.e., a stack of 2D polygon
sets. In this section, preliminary notions are deployed
for studying the all-hexahedral meshing of the 3D lay-
ered solids.

To generate an all-hexahedral mesh for a layered solid
⌦L 2 R

3, the structure of ⌦L is represented by a stack
of layers L = {L1, ..., Ln}. Each layer Li, i = 1, ..., n
consists of a flat top surface S

t
i , flat bottom surface

S
b
i , and lateral surface S

l
i. S

t
i and S

b
i are bounded

by a 2D rectangle domain D 2 R
2 such that S

t
i , S

b
i

and S
l
i form a hexahedron. The layer Li consists of

multiple regions Ai = {ai1, ..., aim} with a thickness
hi. If a region aij , j = 1, ...,m is with a vertical lateral
surface, then it is defined by a 2D polygon pij and the
thickness hi, such that the top and bottom surfaces
s
t
ij , s

b
ij of aij are bounded by pij . On the other hand,

if aij is with a sloped lateral surface, then it requires
a pair of topologically equivalent 2D polygons ptij and
p
b
ij to define its top and bottom surfaces. That is to

say, a triple {p
t
ij , p

b
ij , hi} defines the region aij of Li.

A 2D polygon is bounded by a closed chain, or an outer
loop, without self-intersections. It may have holes that
are represented by inner loops. Each loop is formed by
connecting nodes with edges on the xy-plane. The ori-
entation of the outer loop is counter-clockwise, while
the inner loops are clockwise. Some attributes may
be assigned to a polygon like color, name, and ma-
terial. In our setting, each hole has a correspond-
ing polygon whose outer loop is identical to the hole
and is counter-clockwise. The corresponding polygon
represents either a region of a material or an empty
space. Therefore, to the operations such as intersect-
ing, merging, and mapping polygons in Section 3, only
outer loops are considered as each inner loop has a cor-
responding outer loop to represent its geometry. While
to the triangulation used for map generation and ex-
trusion, inner loops are included to generate triangle
mesh for each polygon and to construct independent
regions for the final hexahedral mesh. All of the tri-
angulations adopted in this work are generated using
the constrained Delaunay triangulator [24].

Figure 3 shows a 3-layered solid. The top layer L3 con-
sists of metal wires represented by the red rectangles
as shown in Figure 3(a); the middle layer L2 and bot-
tom layer L1 both contain a Via of which the top and
bottom shapes are represented by a pair of rectangles.
See Figure 3(c) and 3(e) for the regions of Via.

(a) Metal and Via Stack of VLSI interconnects.

XY

Z

(b) Hex-mesh from the view of xz-plane.

XY

Z

(c) Hex-mesh from the view of zy-plane.

Figure 2: A VLSI Metal and Via Model composed of 8

layers.

62

X

Y

Z

(a) Top view of contour of the metal

wires layer.

X

Y

Z

(b) Hex-meshed metal wires.

X

Y

Z

(c) 3D contour of the

Via in the middle layer.

X

Y

Z

(d) Hex-meshed Via of

the middle layer.

X

Y

Z

(e) 3D contour of the

Via in the bottom layer.

X

Y

Z

(f) Hex-meshed Via of

the bottom layer.

X

Y

Z

(g) All-hexahedral mesh of the 3-layered solid.

Figure 3: Hexahedral mesh of a model with three layers. The geometries of the layers are defined in a rectangle domain.

The quad mesh is generated within the rectangular boundary and the hex-mesh is extruded along +z-axis. Aside from the

metal wires and Vias, the other meshed volumes represent empty spaces whose materials are defined by air.

X

Y

Z

(a) The lateral surface of each of the Solder Bump regions

(yellow) is approximated by four 2D circles.

XY

Z

(b) A Solder Bump region in yellow. A series of 2D circles

are interpolated between each pair of adjacent input circles.

Figure 4: A layered solid of Solder Bump regions.

63

More generally, if the region aij is with a curved lat-
eral surface, we can approximate the surface by more
than two topologically equivalent polygons. See Fig-
ure 4(a) and 4(b), the lateral surface of each of the
bottle-shaped regions is approximated by four 2D cir-
cles. Notice that a series of horizontal surfaces are
interpolated between each pair of adjacent input sur-
faces.

To well-define a layer Li, we summarize the classifica-
tion of layers as follows:

• Straight layer: If all regions of Li are with ver-
tical lateral surfaces, then S

t
i and S

b
i are both

defined by a set of polygons Pi = {pi1, ..., pim}.

• Sloped layer-1: If there exists a region of Li

with a sloped lateral surface, then S
t
i and S

b
i

are defined by P
t
i = {p

t
i1, ..., p

t
im} and P

b
i =

{p
b
i1, ..., p

b
im} respectively. Each pair of polygons

p
t
ik and p

b
ik are topologically equivalent, where

k = 1, ...,m.

• Sloped layer-2: If there exists a region of Li

whose curved lateral surface requires w+2 poly-
gons, w > 0, to approximate, then Li is defined
by a series of topologically equivalent polygon
sets {P

b
i , P

1
i , ..., P

w
i , P

t
i }. The number of the in-

put polygon sets is Wi = w + 2. Figure 4 shows
an example in which w = 2 for the top layer with
solder bumps.

3. GEOMETRIC AND TOPOLOGICAL
INTEGRATION

Our algorithm is inspired by the well-known geomet-
ric processing technique, surface mapping. In this sec-
tion, we elaborate on how meshing constraints are in-
tegrated into a set of topologically equivalent polygon
sets through mappings. A series of 2D polygon sets
are given as the geometric representations of 3D lay-
ers. By integrating the topology and geometries of the
polygon sets, a map that achieves the automated full
hex-meshing is constructed ultimately. The geomet-
ric and topological integration includes the following
steps:

(i) Intersecting and downward mapping polygon sets
of layers from top to bottom;

(ii) Merging and upward mapping polygon sets of lay-
ers from bottom to top;

(iii) Generating a map for mesh extrusion.

We first adopt a 4-layered solid as shown in Figure 5
to demonstrate the integration process, then we use

(a) L1 and L4 are defined by a pair of topologically equiva-

lent polygon sets {P b
1 , P

t
1} and {P b

4 , P
t
4} respectively; L3 is

defined by {P b
3 , P

1
3 , P

t
3} where P 1

3 is an intermediate poly-

gon set; L2 is a straight layer defined by one polygon set,

i.e., P b
2 ⌘ P t

2 . Note that {P b
3 , P

b
2 , P

t
1} are in the same level

as arranged in Table 1 as L2 is a straight layer.

(b) Layered geometries.

(c) All-hexahedral mesh of the 4-layered solid. All of the

geometries are enclosed by a 2D rectangle domain.

Figure 5: Hexahedral mesh of a 4-layered solid. The

bottom layer L1 and the top layer L4 both include regions

with sloped laterals; L3 is a sloped layer with curved

lateral regions; L2 is a straight layer.

64

L4 L3 L2 L1

l5 P54 P
t
4 P53 P52 P51

l4 P44 P
b
4 P43 P

t
3 P42 P41

l3 P34 P33 P
1
3 P32 P31

l2 P24 P23 P
b
3 P22 P

b
2 ⌘ P

t
2 P21 P

t
1

l1 P14 P13 P12 P11 P
b
1

Table 1: The polygon sets in green are generated by

downward mapping through �3. The polygon sets in red

are generated by downward mapping through �1. The

polygon sets in blue are generated by upward mapping

through �34. The polygon sets in orange are generated

by upward mapping through �
�1
4 . Finally, the polygon

sets in each column belong to the same layer and share

the same topological structure.

the simpler model of Figure 3 to better elaborate al-
gorithm details.

To show that our approach supports curved lateral
approximation, the 4-layered solid in Figure 5 is con-
structed with a sloped layer L3 defined by 3 polygon
sets. The input polygon sets of the 4-layered solid is
described as follows: The bottom layer L1 and the
top layer L4 both include regions with sloped laterals,
and are defined by a pair of topologically equivalent
polygon sets {P

b
1 , P

t
1} and {P

b
4 , P

t
4} respectively. L3

is a sloped layer with curved laterals approximated by
{P

b
3 , P

1
3 , P

t
3} where P

1
3 is an intermediate polygon set.

That is to say, the number of input polygon sets of L3

is W3 = 3. L2 is a straight layer which requires only
one polygon set as input, i.e., P b

2 ⌘ P
t
2 .

We arrange the polygon sets to Table 1 to illustrate
how polygon intersection, mapping, and merging are
performed. Since L2 is a straight layer, {P b

3 , P
b
2 , P

t
1} in

Figure 5(a) are arranged to the same level in Table 1.
Initially, the polygon sets Pji in black are given by the
input polygon sets of layer Li and recorded at level lj .
The number of levels/rows of polygon sets is calculated
by l = 1 + ⌃n

i=1(Wi � 1), where n is the number of
layers, Wi is the number of input polygon sets of layer
Li. In our implementation, polygon sets are stored in
a l ⇥ n matrix M.

The overall process is summarized in the following list:

1. Downward mappings

(a) Intersect L3 with L4 by generating intersec-
tion nodes on their top and bottom polygon
sets P43 and P44.

(b) Interpolate new nodes on P33 and P23 by
referring to the intersection nodes on P43.
Interpolate new nodes on P54 by referring
to the intersection nodes on P44.

(c) Construct a multi-level map �3 with the
constraints of P23, P33, P43.

(d) �3 maps P44 to P34, and P34 to P24. The
bottom polygon set of L4 is updated to P24.

(e) Intersect L2 with L3, L4 by generating in-
tersection nodes on P22 and P23, P24.

(f) Interpolate new nodes on P33 and P43 by
referring to the intersection nodes on P23.
Interpolate new nodes on P34, P44, P54 by
referring to the intersection nodes on P24.

(g) Intersect L1 with L2, L3, L4 by generating
intersection nodes on P21 and P22, P23, P24.

(h) Interpolate new nodes on P33, P43 by refer-
ring to the intersection nodes on P23. Inter-
polate new nodes on P34, P44, P54 by refer-
ring to the intersection nodes on P24. Inter-
polate new nodes on P11 by referring to the
intersection nodes on P21.

(i) Construct a map �1 with the constraints of
P21, P11.

(j) �1 maps P24 to P14, P23 to P13, and P22 to
P12.

2. Upward mappings

(a) Create merged polygon sets P̃2 = P23[P24,
P̃3 = P33 [P34, and P̃4 = P43 [P44.

(b) Construct a multi-level map �34 with the
constraints of P̃2, P̃3, P̃4.

(c) �
�1
34 maps P22 to P32, P32 to P42, P21 to P31,

and P31 to P41.

(d) Construct a map �4 with the constraints of
P44 and P54.

(e) �
�1
4 maps P43 to P53, P42 to P52, and P41

to P51.

3. Map for extrusion

(a) Merge the polygon sets row by row to a set
of topologically equivalent polygon sets P =
{P̂1, P̂2, P̂3, P̂4, P̂5}.

(b) Construct a multi-level map � with the con-
straints of P.

1a, 1e, and 1g perform intersections of polygon sets
between layers in order to generate intersection nodes
which are imprinted on all the polygon sets at the
same row. 1b, 1f, and 1h apply node interpolations to
the column of polygon sets of layers either upward or
downward. Node interpolations guarantee the topo-
logical equivalence of polygon sets of each layer. 1c,
1i, 2b, and 2d construct maps for mapping polygon
sets. 1d, 1j, 2c, and 2e generate new polygon sets
by mapping the top or bottom polygon set of layers.
In 2a, P23, P33, P43 are topologically equivalent and
P24, P34, P44 are also topologically equivalent. More-
over, the intersection nodes and interpolated nodes of

65

the polygons guarantee the topological equivalence af-
ter polygon merging. In the last step, 3a merges all
polygons at each row such that the merged polygon
sets share the same topological structure. 3b con-
structs a map which preserves material boundaries of
layers and enables mesh extrusion.

Besides the above example, we conclude the operations
required by the integration process into a series of al-
gorithms. The algorithms are accompanied by more
details and illustrations through the example of Fig-
ure 3. In the example, a 3-layered solid composed of
a straight layer with metal wires and two sloped lay-
ers with Via is considered. Figure 6 to 9 demonstrate
the integration process of the 3-layered solid and the
algorithms are presented through Section 3.1 to 3.4.

Algorithm 3 Downward mappings

Input: Layer stack L

Output: Layer stack L

1: function MapDownward(L)
2: qintersect ;

3: qmap ;

4: qintersect.push(Ln)
5: for i = n� 1, ...1 do

6: while !qintersect.empty() do
7: L qinterect.front()
8: (L,Li) GetControlNodes(L,Li)
9: qmap.push(L)

10: qintersect.pop()
11: end while

12: if Li is a sloped layer then
13: P GetPolygonSets(Li)
14: �i = ConstructMap(P)
15: for L 2 qmap do

16: qmap.pop()
17: P GetTheBottomPolygonSet(L)
18: P MapDownward(P,�i)
19: qintersect.push(L)
20: end for

21: else

22: qintersect qmap

23: qmap ;

24: end if

25: qintersect.push(Li)
26: end for

27: end function

3.1 Downward Mappings

Algorithm 3 performs downward mappings by main-
taining two queues qintersect and qmap. Initially, the
top layer Ln is pushed into the queue qintersect. The
other layers are iterated from j = n � 1 to 1 such
that the function GetControlNodes in Line 8 performs
polygon intersection between the bottom polygon set
of L from queue qintersect and the top polygon set of

Li. By referring to the generated intersection nodes,
GetControlNodes interpolates new nodes to all the
other polygon sets of L and Li. In Line 9, L is pushed
into qmap to wait for being mapped downward. At the
end of intersections, if Li is a sloped layers, then a
map �i is constructed by ConstructMap given in Al-
gorithm 7. The bottom polygon sets of layers in qmap

are mapped downward to generate new bottom poly-
gon sets in Line 18. The mapped layers are pushed
into qintersect for intersections in the next iteration. If
Li is a straight layer, then we move all the layers from
qmap to qintersect. Li is then pushed into qintersect and
the next iteration continues.

Figure 6 shows how downward mappings are applied
to the 3-layered solid of Figure 3. In consists of the
following steps:

(D1) The bottom polygon set P33 of L3 intersects with
the top polygon set P32 L2;

(D2) Interpolated nodes are generated on the bottom
polygon set P22 of L2 by referring to the intersec-
tion nodes on P32;

(D3) Construct a map �2 with the constraints of
P22, P32;

(D4) P23 is generated by mapping P33 through �2. The
bottom polygon set of L3 is therefore become P23;

(D5) P23, P22 intersect with the top polygon set P21 of
L1;

(D6) Interpolated nodes are generated on the bottom
polygon set P11 of L1 by referring to the intersec-
tion nodes on P21;

(D7) Construct a map �1 with the constraints of
P21, P11;

(D8) P13, P12 are generated by mapping P23, P22

through �1. The bottom polygon set of L3 and
L2 are thereafter become P13 and P12.

3.2 Upward Mappings

Algorithm 4 shows the upward mapping of poly-
gon sets. To facilitate the upward mapping, poly-
gon sets output by Algorithm 3 are arranged into a
matrix M by ArrangePolygonSetsToMatrix. Algo-
rithm 5 gives the details of the arrangement where
InitializeAMatrix initializes an empty l ⇥ n matrix
M and FillMatrix stores polygon sets of layers into
M. That is, the polygon set of layer Li in level j

is filled into M as Pji. Note that the polygon sets
of top layer Ln has all been generated through down-
ward mapping. Therefore, the number of levels/rows
l equals to the number of polygon sets of Ln.

66

Line 9 to 11 in Algorithm 4 scans the rows of ma-
trix M upward to find the first row rb where the
number of polygon sets in row rb is greater than
the number of polygon sets in row rb + 1. More-
over, due to the downward mappings, M.RowSize(rb+
1) <= M.RowSize(rb) is always true. Line 14 to 16
finds the second row rt where M.RowSize(rt + 1) <

M.RowSize(rt). From row rb to row rt, MergeRows
in Line 17 merges M.RowSize(rt) polygon sets as de-
tailed by Algorithm 6. With the constraints of the re-
sulting polygon sets, ConstructMap constructs a map
� by triangulating each of the sets with the same trian-
gular structure. Line 19 to 23 performs upward map-
pings through �

�1 to fill matrix M upward. For gen-
eral cases, the upward filling process repeats until M
is fully filled.

Figure 7 performs the upward mappings of the 3-
layered solid as follows:

(U1) Merge the polygon sets {P23, P22} of row 2 and
{P33, P32} of row 3, and construct a map;

(U2) Map P21 upward through the map.

The red frames show the merged polygon sets which
play the constraints of map construction. The top
polygon set P21 of L1 is mapped upward through the
map.

3.3 Map for Extrusion

After filling matrix M, Algorithm 6 merges polygon
sets {Pj1, ..., Pjn} at each row j to a polygon set P̂j

to realize mesh extrusion with the constraints of the
merged polygon sets. The polygon constraints in each
row well preserve the shapes of regions through ex-
trusion. Figure 8 shows that the polygon sets of each
row are merged such that the resulting polygon sets
are topologically equivalent and are used to construct
a multi-level map for extrusion.

To perform the extrusion, a multi-level map is con-
structed by following Algorithm 7:

1) Matching polygons across the polygon sets P̂j for
j = 1, ..., l;

2) Generating a Delaunay triangulation �1 with the
constraints of the merged polygon set P̂1 in the
bottom level;

3) Generating a triangulation for each of the other
merged polygon sets using the same structure as
�1.

Figure 9 shows the triangulations for the map of the
3-layered solid.

Algorithm 4 Upward mappings

Input: Layer stack L

Output: Matrix of polygon sets M
1: function MapUpward(L)
2: M ArrangePolygonSetsToMatrix(L)
3: l M.NumberOfRows()
4: n M.NumberOfColumns()
5: if l <= 1 then

6: return
7: end if

8: rb, rt 1
9: while rb < l and M.RowSize(rb + 1) ==

M.RowSize(rb) do
10: rb rb + 1
11: end while

12: while rt < l do

13: rt rb + 1
14: while rt < l and M.RowSize(rt + 1) ==

M.RowSize(rt) do
15: rt rt + 1
16: end while

17: P MergeRows(M, rb, rt)
18: � = ConstructMap(P)
19: for i = M.RowSize(rt) + 1, ..., n do

20: for j = rb, ..., rt do

21: P(j+1)i = MapUpward(Pji,�)
22: end for

23: end for

24: rb rt

25: end while

26: end function

Algorithm 5 Arrange polygon sets to a matrix.

Input: Layer stack L

Output: Matrix of polygon sets M
1: function ArrangePolygonSetsToMatrix(L)
2: l = GetNumberOfPolygonSets(Ln)
3: n = GetNumberOfLayers(L)
4: M InitializeAMatrix(l, n)
5: for i = n, ..., 1 do

6: s = GetNumberOfPolygonSets(Li)
7: for j = 1, ..., s do

8: FillMatrix(M, Li, i, j)
9: end for

10: end for

11: end function

Algorithm 6 Merge polygon sets row by row.

Input: Polygon matrix M, row indices rb, rt
Output: Polygon sets {P̃rb , ..., P̃rt}

1: function MergeRows(M, rb, rt)
2: n = M.NumberOfColumns()
3: n

0 = n�M.RowSize(rt) + 1
4: for j = rb, ..., rt do

5: P̃j MergePolygonSets(Pjn, ..., Pjn0)
6: end for

7: end function

67

Figure 6: Polygon sets generation by downward mappings. (D1) Intersect P33 and P32; (D2) Interpolate nodes on P22

according to the nodes on P32 after (D1) is done; (D3) Construct a map �2 with the constraints of P22, P32 and the

nodes generated in step (D1) and (D2); (D4) Map down P33 through �2 to P23; (D5) Intersect P21 with each polygon

set at the same level; (D6) Interpolate nodes on P11 according to the nodes on P21 after (D5) is done; (D7) Construct a
map �1 with the constraints of P21, P11 and the nodes generated in step (D5) and (D6); (D8) Map polygon sets at the

second level downward through �1 such that P13 and P12 are generated.

Figure 7: Polygon sets generation by upward mappings. (U1) Merge the polygon sets {P23, P22} of row 2 and {P33, P32}

of row 3, and construct a map; (U2) Map P21 upward through the map.

68

Figure 8: Merge all polygon sets at the same row into P = {P̂1, P̂2, P̂3}; Under the constraints of P̂1, a Delaunay

triangulation is generated. As the merged polygon sets are topologically equivalent, a topologically equivalent triangulation

of the other rows are generated accordingly. The triangulations form a multiple-layered map �.

Algorithm 7 Construct a map.

Input: Polygon set P
Output: Map �
1: function ConstructMap(P)
2: P MatchPolygons(P)
3: P̃1 = GetTheBottomPolygonSet(P)
4: �1 = ConstrainedDelaunayTriangulate(P̃1)
5: for j = 2, ..., l do
6: �j = ConstrainedTriangulate(P̃j�1, P̃j)
7: end for

8: � = {�1 [P̃1, ...,�l [P̃l}

9: end function

3.4 Polygon Matching

The input polygonal layouts of downward mapping
consist of topologically equivalent polygon pairs so
polygon matching is not required. However, for up-
ward mapping and the map construction for extrusion
which contain the steps of polygon merging, the topo-
logical structure of merged polygon sets changed after
polygon merging, therefore, polygon matching is nec-
essary.

The well-known Hungarian matching algorithm [25] is
utilized to match polygons and nodes in pairs. In the
classic Hungarian algorithm, there are k agents and
k tasks. Any agent can be assigned to perform any
task, incurring some costs that may vary depending on

the agent-task assignment. It is required to perform
all tasks by assigning exactly one agent to each task
and exactly one task to each agent in such a way that
the total cost of the assignment is minimized. The
run-time complexity is O(k3) and the optimality is
guaranteed. In our polygon matching, k is the number
of polygons.

In our setting, the input is two sets of polygons P1

and P2 where the numbers of polygons are equal, i.e.,
k = |P1| = |P2|. The key of applying Hungarian al-
gorithm is how to define the cost of matching a pair
of polygon. The cost can be defined by the di↵erence
of the attributes between two polygons p, q such as
area �A(p, q), 2D centroid �C(p, q), number of nodes
�n(p, q), number of holes �h(p, q), etc. The cost func-
tion can be defined as

c(p, q) = �A(p, q) ⇤ w0 + �C(p, q) ⇤ w1

+ �n(p, q) ⇤ w2 + �h(p, q) ⇤ w3

where w0, w1, w2, w3 are weights associated to each of
the terms.

Polygon matching and node matching are not only im-
perative to constructing mappings but also to main-
taining topology consistency. After constructing the
final map for extrusion, some polygon manipulations
are applicable. Edge refinement may be required to
better approximate curved geometries, edge simplifi-
cation and polygon removal may be applied to simplify

69

Figure 9: Generate a Delaunay triangulation under the

constraint of the bottom polygon set. The number of

polygons in the three sets is equal and the polygons are

matched across the sets. That is, each polygon in a set is

paired with one polygon in each of the other sets. There-

fore, by referring to the triangulation at the bottom level,

a triangulation with the same structure is constructed to

each of the upper polygon sets.

geometries or to reduce mesh size. When edge refine-
ment (simplification) is applied to the polygon set at
some level, the edges at other levels matched to the re-
fined edge can be located and refined accordingly. If a
polygon is eliminated at some level, the matched poly-
gons at other levels are also eliminated. The polygon
structures are locally reconstructed so that the topol-
ogy across all the levels is still consistent.

4. MESH EXTRUSION AND
OPTIMIZATION

At the bottom row of the right-most column in Fig-
ure 8, the polygon set imprints the mapped geome-
try from all layers. We utilize Geompack [22] quad-
mesher to generate quad-mesh. The quad-mesh is ex-
truded along the z-axis to an all-hexahedral mesh with
interior-sloped laterals through the generated map �.

During the process of extrusion, the extruded quadri-
lateral meshes might be distorted. Explicit tangling
where elements overlap with each other should not
happen through our approach, as quad-nodes are gen-
erated by interpolating a new position in a triangle.
However, implicit tangling might happen as the in-
terpolation does not guarantee quad-element convex-
ity. Therefore, quadrilateral and hexahedral mesh op-
timizers are automatically applied. We implemented
quadrilateral and hexahedral optimizers by referring
to the tet-mesh optimization proposed by Escobar
et al. [23]. As the objective of this work is to dis-
cusses the algorithm of automated all-hexahedral mesh
generation of layered solids, details of the optimiza-
tions are skipped. Figure 11 shows a comparison
of the quadrilateral mesh before and after optimiza-
tion. Notice that the nodes on the material bound-
aries (between the grey and yellow regions) are fixed
so the optimization process does not distort the ma-
terial shapes. In fact, for nodes on horizontal/vertical
boundary, only horizontal/vertical movement is al-
lowed in our optimizations.

There exists a tricky case that a valid corner might
become invalid after extrusion. Figure 10 gives an ex-
ample where ↵ is a corner of polygon constraints of
quadrilateral meshing. The red node in Figure 10(a)
is extruded to the blue node in Figure 10(b). The
angle of ↵ is distorted to ⇡ after extrusion. In this
case, the straightened edges are on the boundary of
distinguished materials on the extruded layer. The
invalid corner is unable to be fixed through optimiza-
tions. To tackle the situation, if an angle ✓1 of a corner
↵1 in the merged polygon set of bottom level P̂1 has
a matched corner ↵j with an angle ✓j � ⇡ in merged
polygon set P̂j , where 1  j  l, then ↵1 and all of its
matched corners are bisected. That is, the polygon in
which this type of corner locates is decomposed into
two polygons. The other corner to connect with for

70

(a) Before extrusion. (b) After extru-

sion.

Figure 10: ↵ is a corner of polygon constraints of quadri-

lateral meshing. The red node on the left is extruded to

the blue node on the right. The angle of ↵ is distorted

to 180� after extrusion. In this case, the straightened

edges are on the boundary of distinguished materials on

the extruded layer. The invalid corner is unable to be

fixed through optimizations.

decomposition is determined by minimizing the sum
of the di↵erences between each of the four bisected
angles and their average.

5. EXPERIMENTAL RESULTS

We present the hexahedral meshing results of our al-
gorithm by four tested layered models. The metal-Via
model contains 3 sloped Via layers and 7 metal wire
layers. The FinFET-1 model contains 13 sloped lay-
ers and the FinFET-2 model contains 10 sloped layers.
Figure 1 shows a simplified FinFET model and Fig-
ure 4 shows the solder-bump model that contains 2
sloped layers. A snapshot of the metal-Via model is
illustrated in Figure 11. Figure 2 shows a simplified
metal-Via with only 8 layers while the metal-Via in
Table 2 is a full metal-Via model composed of 40 lay-
ers. In our experience, increasing the number of layers
increases the value of ✓max and decreases the value of
Jmin as polygon intersection happens more often and
polygons are more likely to deform.

In Table 2, the total number of hex-elements, layers,
and regions of the models are shown. t1 is the over-all
meshing time, t2 is the time of executing the geometric
and topological integration IntegratePolygons of Al-
gorithm 2. ✓min and ✓max are the minimal and max-
imal angles of quad-elements. Jmin and Jmax rep-
resent the minimal and maximal scaled Jacobians of
hex-elements.

To improve mesh quality under the constraints of hun-
dreds and thousands of polygonal boundaries, in some
cases tuning parameters of optimization such as the
number of iterations, maximum angle, and step length
of line search is required. Table 2 shows the mea-
sures of the most complex models we have tackled.

Name metal-Via FinFET-1 FinFET-2 solder-bump

#hexes 2002336 196911 237546 1056263
#layers 40 32 24 5
#regions 112 210 157 14
t1 (sec.) 631.92 103.67 65.75 95.76
t2 (sec.) 58.93 88.88 46.39 18.87
✓min 3.69 2.72 1.03 5.39
✓max 175.47 177.58 178.91 175.55
Jmin 0.0024 0.014 9.31e-05 0.039
Jmax 1 1 1 1

Table 2: Results of four layered models with multiple

regions.

Although the angles and Jacobians are not optimized,
these meshes are routinely applied for solving thermal
stress and strain equations using both internal solvers
and commercial solvers such as Abaqus [3] without is-
sues. We have also carried out benchmarks comparing
numerical solvers on the same mesh to ensure that re-
sults are not skewed due to numerical issues.

6. CONCLUSION AND FUTURE WORK

In this paper, we have introduced an automated all-
hexahedral mesh generation for 3D models of VLSI ge-
ometries. The models are layered solids with interior
sloped-lateral surfaces. The core idea is to integrate
topology and geometry from the top layer to the bot-
tom layer of a given solid. The integration builds a
stack of polygonal constraints such that the polygon
sets in all levels of the stack are topologically equiva-
lent. A final mapping is constructed through a stack
of polygon sets and a quadrilateral mesh is generated
according to the polygon constraints at the bottom
level. By extruding the quadrilateral mesh through
the final map, an all-hexahedral mesh is generated.

There is no guarantee of the quality of meshes by the
quality of the triangulations of a map. However, the
mapping strategy guarantees that there are no shape
distortions of regions in layered solids. Moreover,
quad-mesh and hex-mesh optimization are applied to
improve mesh quality. Another important property of
our mapping method is that mesh adaptation does not
incur any shape distortions. That is, the edges of poly-
gons can be refined to generate finer meshes. If an edge
of a polygon is refined, then the corresponding edges
of the polygons in all the other rows must be refined
accordingly. It means that the polygon sets are still
topologically equivalent, and the refined edges remain
straight through the mapped extrusion. Polygon de-
generation is also handled because polygon matching
helps to maintain topological equivalence.

Interesting future work includes constraint triangu-
lation with nodes in polygon interiors for map con-
struction, modeling 3D region boundaries by general-
curved surfaces, and developing robust quad/hex-

71

X

Y

Z

(a) Before quad-optimization.

X

Y

Z

(b) After quad-optimization.

Figure 11: The snapshots show a comparison of mesh quality before and after quad-mesh optimization. The grey and

yellow regions represent metal wires in some layer of the metal-Via model from the experimental results.

optimization algorithms to comprehensively improve
the quality of our layered meshes.

References

[1] Kremer M., Bommes D., Lim I., Kobbelt L.
“Advanced automatic hexahedral mesh genera-
tion from surface quad meshes.” Proceedings of
the 22nd International Meshing Roundtable, pp.
147–164. Springer, 2014

[2] Yu W., Zhang K., Li X. “Recent algorithms on
automatic hexahedral mesh generation.” 2015
10th International Conference on Computer Sci-
ence & Education (ICCSE), pp. 697–702. IEEE,
2015

[3] Dassault Systemes. “ABAQUS 2017.” URL
http://www.3ds.com/products-services/
simulia/products/abaqus

[4] Blacker T.D., Owen S.J., Staten M.L., Quadros
W.R., Hanks B., Clark B.W., Meyers R.J., Ernst
C., Merkley K., Morris R., McBride C., Stimpson
C.J., Plooster M., Showman S. “CUBIT geome-
try and mesh generation toolkit 15.1 user docu-
mentation.” 2 2016. URL https://www.osti.gov/
biblio/1430472

[5] Zhang Y., Hughes T.J., Bajaj C.L. “Automatic
3d mesh generation for a domain with multiple
materials.” Proceedings of the 16th international
meshing roundtable, pp. 367–386. Springer, 2008

[6] Roberts I.A., Wang C., Esterlein R., Stanford
M., Mynors D. “A three-dimensional finite el-
ement analysis of the temperature field during
laser melting of metal powders in additive layer

manufacturing.” International Journal of Ma-
chine Tools and Manufacture, vol. 49, no. 12-13,
916–923, 2009

[7] Luo Z., Zhao Y. “A survey of finite element anal-
ysis of temperature and thermal stress fields in
powder bed fusion additive manufacturing.” Ad-
ditive Manufacturing, vol. 21, 318–332, 2018

[8] Quadros W.R., Shimada K. “Hex-Layer: Layered
All-Hex Mesh Generation on Thin Section Solids
via Chordal Surface Transformation.” IMR, pp.
169–180. Citeseer, 2002

[9] Kulikov G., Plotnikova S. “Exact geometry SaS
solid-shell element for 3D stress analysis of FGM
piezoelectric structures.” Curved and Layered
Structures, vol. 5, no. 1, 116–135, 2018

[10] Jaśkowiec J., Stankiewicz A., Pluciński P.
“Three-dimensional numerical modelling of
multi-layered shell structures using two-
dimensional plane mesh.” Advances in En-
gineering Software, vol. 149, 102840, 2020

[11] Reiter S., Logashenko D., Vogel A., Wittum G.
“Mesh generation for thin layered domains and
its application to parallel multigrid simulation of
groundwater flow.” Computing and Visualization
in Science, vol. 23, no. 1, 1–8, 2020

[12] Tautges T.J. “The generation of hexahedral
meshes for assembly geometry: survey and
progress.” International Journal for Numerical
Methods in Engineering, vol. 50, no. 12, 2617–
2642, 2001

[13] Lu Y., Gadh R., Tautges T.J. “Feature based hex
meshing methodology: feature recognition and
volume decomposition.” Computer-Aided Design,
vol. 33, no. 3, 221–232, 2001

72

[14] Su Y., Lee K., Kumar A.S. “Automatic hexahe-
dral mesh generation for multi-domain compos-
ite models using a hybrid projective grid-based
method.” Computer-Aided Design, vol. 36, no. 3,
203–215, 2004

[15] Pura J. “An Introduction to Hex Meshing for Fi-
nite Element Analysis (FEA) with MSC Apex.”
URL https://simulatemore.mscsoftware.com/
an-introduction-to-hex-meshing-for-
finite-element-analysis-fea-with-msc-
apex/

[16] Floater M.S., Hormann K. “Surface parameteri-
zation: a tutorial and survey.” Advances in mul-
tiresolution for geometric modelling, pp. 157–186,
2005

[17] White D.R., Mingwu L., Benzley S.E., Sjaardema
G.D. “Automated hexahedral mesh generation
by virtual decomposition.” Proceedings of the 4th
International Meshing Roundtable, Sandia Na-
tional Laboratories, Albuquerque, USA, pp. 165–
176. 1995

[18] Shih B.Y., Sakurai H. “Automated hexahedral
mesh generation by swept volume decomposition
and recomposition.” 5th International Meshing
Roundtable, vol. 280. Citeseer, 1996

[19] Owen S.J. “A survey of unstructured mesh gen-
eration technology.” IMR, vol. 239, 267, 1998

[20] Knupp P.M. “Applications of mesh smoothing:
copy, morph, and sweep on unstructured quadri-
lateral meshes.” International Journal for Nu-
merical Methods in Engineering, vol. 45, no. 1,
37–45, 1999

[21] White D.R., Tautges T.J. “Automatic scheme
selection for toolkit hex meshing.” International
Journal for Numerical Methods in Engineering,
vol. 49, no. 1-2, 127–144, 2000

[22] Joe B. “GEOMPACK—a software package for
the generation of meshes using geometric algo-
rithms.” Advances in Engineering Software and
Workstations, vol. 13, no. 5-6, 325–331, 1991

[23] Escobar J.M., Rodrıguez E., Montenegro R.,
Montero G., González-Yuste J.M. “Simulta-
neous untangling and smoothing of tetrahedral
meshes.” Computer Methods in Applied Mechan-
ics and Engineering, vol. 192, no. 25, 2775–2787,
2003

[24] Shewchuk J.R. “A two-dimensional quality mesh
generator and Delaunay triangulator.” Com-
puter Science Division University of California

at Berkeley, Berkeley, California, pp. 94720–
1776, 2008. URL http://www.cs.cmu.edu/quake/
triangle.html

[25] Kuhn H.W. “The Hungarian method for the as-
signment problem.” Naval research logistics quar-
terly, vol. 2, no. 1-2, 83–97, 1955

73

