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ABSTRACT 

Although of great interest for Finite Element (FE) analysis, the automatic generation of a lower dimensional representation of 
shapes is not straightforward. One-dimensional (1D) mid-curve model contains entities such as lines, circles and more generally 
curves representing higher dimension entities like surfaces to be located in the middle of a thin-walled model following its shape. 
In this paper we present a novel approach to adapt a given medial axis of a polygon in order to generate a dimensionally reduced 
mid-curve model suitable for FE analysis. The novelty is to use a deep learning completion network[1] which is trained to 
automatically modify the perturbed regions of the medial axis (end and connection regions). The network takes as input a local 
image containing the polygon boundary, a mask of the regions to complete and the surrounding valid mid-curves. It returns a 
predicted mid-curve image which is inserted back into the global mid-curve model. 

 

Keywords: dimensional reduction, mid-curve generation, machine learning, convolutional neural network

1. INTRODUCTION 

In Finite Element Analysis (FEA), the model size influences 
directly the computation time. To represent thin shell regions 
or long and slender regions, specific Finite Elements (FE) 
(plate, shell and beam elements) are available in CAE 
software. These elements can significantly reduce the 
number of degrees of freedom leading to a shorter 
computation time while maintaining a high degree of 
simulation fidelity. In 3D, the initial CAD volume can be 
represented by its mid-surfaces where the thickness becomes 
a physical property associated to the finite element. 
Similarly, in 2D, although less sensitive to computation 
time, elongated shapes can be represented by equivalent 
mid-curves. 

As explained in [2–4], although these dimensionally reduced 
finite elements are efficient when simulating large structural 
models, the process to generate them, called the dimensional 
reduction process or idealisation process, from an initial 
CAD model is not straightforward. Indeed, when a fully 
dimensionally-reduced model is required, the extraction of a 
skeleton from a 2D contour or a 3D volume using a 
geometrical algorithm such as the Medial Axis 

Transform[5,6], a reeb graph algorithm[7–9], thinning 
algorithms[10,11] does not produce the desired result in all 
the regions of the initial shape. Indeed, mid-surfaces and 
mid-curves must be located in the middle of a thin-walled 
model following its shape. For example, when using a 
Medial Axis Transformation (MAT) operator, local 
perturbations where the medial vertices have a degree 
superior to two (end regions, connections) appear and need 
to be transformed to obtain a fully dimensionally-reduced 
FEA model (see Figure 1 showing perturbation regions of 
the medial axis in the context of dimensional reduction 
model generation). 

In practice, users often apply an automatic face-pairing 
operator [12], available in most CAE software, which 
identifies face pairs and extracts the local mid-surface. Then, 
the connections between the mid-surface/mid-curves are 
manually generated by extending/trimming the mid-
surface/mid-curves. This task is not only time consuming but 
relies on the geometrical interpretations of the user on how 
to connect best the mid-surface/mid-curves (see Figure 1 
showing two possible interpretations of a connection 
region). Although guidelines are often proposed in industry 
to ensure that the applied connection type is consistent 
across the FE models; they do not cover all the various 
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geometric configurations. Complex geometric 
configurations leave room for user interpretation with regard 
to the connection type to apply. 

 

 

Figure 1 Dimensional reduction process of 2D 
contours for FE analysis using a medial axis 
transformation. 

Although 3D mid-surface generation remains the main 
challenge for industrial application, the motivation of this 
work is to address first the 2D problem of mid-curves 
connection as an initial research work. To this end, we 
propose in this paper a new approach for mid-curve 
extraction based on training an image completion neural 
network to automatically fill masked regions corresponding 
to the connections and end regions of an initial medial axis 
of a thin contour). Here, our proposition is to replace the user 
decisions by neural network decisions locally for the 
connection regions. A medial axis is produced and kept in 
the thin regions (corresponding to the user expectations) but 
replaced in local connections and end regions by the result 
of a pixel-based neural network trained on images of 
connected mid-curves. The novelty of this approach is to 
combine the results of a robust geometric algorithm (the 
MAT), producing correct mid-curves in the thin regions of 
the initial contour, with the capability of neural networks to 
learn from a dataset of desired connection models and to 
artificially produce coherent completion of masked regions. 
In addition, by applying locally the neural network, we 
overcome the limitation of the pixel resolution and produce 
realistic local discrete connections that the mid-curves can 
then follow to produce a final dimensionally-reduced model 
for finite element analysis. 

The paper is structured as follows. Section 2 reviews prior 
contributions. Section 3 gives an overview of the proposed 

approach. Section 4 details the neural network architecture, 
the dataset generation and the training strategy. Then, 
Section 5 shows the results on test contours and discusses 
the limitations of the approach. 

2. PRIOR WORK 

2.1 Dimensional reduction operators 
The Medial Axis Transform: Geometrical methods have 
been proposed for the dimensional reduction of 2D or 3D 
shapes. Among them, Armstrong[2,6] uses the Medial Axis 
Transform (MAT). The MAT is defined by the centroid’s 
location of the maximal inscribed circles in a 2D contour 
(see Figure 1) or, in 3D, by the maximal spheres inscribed in 
a solid. The MAT provides a skeleton of lower 
dimensionality; however, local perturbations (end and, 
connections regions) need to be further identified and 
transformed to obtain a fully dimensionally-reduced model 
for FEA. Armstrong[5] proposed to use an aspect ratio (ratio 
of the minimum length between the medial edge and its 
boundary edges to the inscribed maximum disk along this 
medial edge) and a taper criterion (maximum rate of 
diameter change with respect to medial edge length) to 
automatically identify the regions where medial edges 
should be extended or suppressed. In [13], Donaghy applies 
coupling constraints between mix-dimensional models 
keeping full dimension finite elements in thick or connection 
regions. Mix-dimensional modelling allows to increase the 
accuracy of the analysis in regions which cannot be 
accounted for with beam theory. Although, one can argue the 
dimensional reduction of connection region in regard to the 
accuracy of the FEA model, in the paper, our objective is to 
produce a fully dimensionally-reduced to increase the 
computational efficiency of the analysis. Geometric rules 
can automatically extrapolate the medial axis in end regions, 
however, the generalisation to all connections configurations 
is not trivial. Indeed, as shown in Figure 1, for a given 
connection, multiple solutions are possible. Often the analyst 
connects manually the mid-curves based on its own 
experience and its understanding of given modelling 
practices. 

In 3D, the application of the MAT for dimensional reduction 
is still a research topic. Currently, the most efficient 
algorithms are derived from the generation of Voronoi 
diagrams [14] (see QuickHull [15] or CGAL [16] for a 
publicly implementation of Voronoi diagrams). The 
software CADFix[17] proposes a functionality to generate a 
3D MAT made of B-splines surfaces from a CAD input 
model. Similarly, in 3D, the difficulty remains in processing 
further the end and connection regions of the MAT to 
produce the desired mid-surface. In 3D, the MAT generates 
complex configurations in connection areas. Manually 
extending, cutting and sewing the medial surfaces remains a 
tedious task on complex shapes. 

Face pairing: Typically, commercially available CAE 
software use a face pairing approach (edge pairing in 2D) to 
generate mid-curves/mid-surfaces. The face/edge pairing 
process identifies opposite pairs of CAD edges/faces given 
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a user distance threshold[12]. For each edge/face pair, a mid-
curve/mid-surface is produced as an interpolation of 
surfaces/curves associated to the pair of edges/surfaces. 
Following this approach, additional geometric treatments 
can be performed to the face pairs to identify robustly thin 
and slender regions[18,19]. The drawback of the face pairing 
approach, for dimensional reduction, remains in the final 
step where the mid-surfaces need to be connected together 
in connection areas. Recent efforts have been made by 
Kulkarni[3] to formalize the connections configurations 
based on a cellular modelling approach. However, current 
algorithms available in CAE software still encounter 
difficulty to compute automatically a well-connected mid-
surface model for complex CAD geometries. Indeed, 
covering all configurations for complex model under a 
unified logic is not trivial for an algorithm as well as 
producing a robust geometric support helping locally the 
mid-surface connections (such as a cellular model used in 
[3] or the solid decomposition used in[20]). 

As explained in the previous subsection, the main difficulty 
of mid-curve/mid-surface extraction remains in the end and 
connection regions. It remains difficult to design a geometric 
algorithm for extracting mid-curves where user decisions are 
required. The connections regions are dependent on the user 
best practices and not necessarily following clear and 
consistent geometric rules. As shown in the introduction 
section, the expected solution is difficult to define and is 
dependent on modeling practices, which can change from 
one company to another. Hence this specific connection task, 
which involves learning from the experience of high-skilled 
engineers, is a natural candidate for machine learning which 
can learn from previously generated models and reproduce 
the connection behaviour in unseen models. 

2.2 Machine learning for FEA pre-
processing 

Machine learning has shown impressive results in shape 
classification, image completion/inpainting and 
segmentation, etc. However, few research works have 
applied these techniques to the pre-processing of simulation 
models. To identify features on CAD models, Danglade[21] 
analyses the use of neural networks, decision trees and 
support vector machines. Similarly, the featureNet of 
Zhang[22] uses a neural network on a voxelised 
representation of CAD model to identify machining features. 
Owen[23] recently proposed a vector-machine based 
approach to defeature CAD models for tetrahedral meshing. 
It uses mesh quality metrics as learning objectives calculated 
on automatically generated tetrahedral meshes from a small 
set of CAD models. This early-stage research has shown 
promising results on a limited set of CAD models. The 
remaining challenges to overcome for training algorithms 
properly remain: 

• Labelling the simulation models depending on the 
simulation objectives. The meshes and CAD models 
used for training should be labelled according to a 
specific simulation objective. For example, the mesh 
quality metrics and size depend on the accuracy needed 
for a specific simulation. It is also dependent on the FE 

solver quality requirements. In addition, some small 
CAD features can be considered as details for a given 
simulation but may be important to keep for another 
simulation. In our context, the mid-curve model is an 
abstraction of a given 2D shape and some small details 
on the boundary of the 2D contours might not be 
represented on the dimensionally reduced model. Hence, 
in a supervised training scenario, it is important that the 
models are coherent in their representation of geometric 
details. This level of details should correspond to a given 
modelling rules defined by the user. 

• Defining the appropriate input structure to train the 
network. Most neural networks use convolutional layers 
requiring a regular input structure to be trained on. The 
geometrical shape should initially be transformed into a 
regular structure such as a 2D grid (for example, a pixel 
image of the contour, or a quadtree structure). Similarly, 
in 3D, the CAD object should be transformed into a 
voxel, a points cloud or an octree[24]. These discrete 
representations are sensitive to the resolution used to 
compute them. Especially in 3D, to capture small 
geometric details, a high grid resolution is necessary, 
impacting the training time and memory. Hence, it is 
essential to determine the most appropriate structure 
depending on the application of the neural network, to 
identify the family of shapes to be trained on and to 
increase the quality of the training data using techniques 
such as instance filtering[25]. 

• Generating a large dataset of realistic CAD / 
simulation models to increase classification / 
segmentation performance. One of the main pillars of 
deep learning success is the access to a large amount of 
labelled data to learn from. Having a sufficiently large 
set of data is crucial to train efficiently the neural 
networks. Large datasets of 3D CAD models are already 
available such as ABC[26] (3D CAD) or 
SketchGraphs[27] (2D sketches with constraints). 
However, this dataset cannot directly be used for 
learning the extraction of mid-curves/mid-surface as 
they contain only the external CAD contours/surfaces of 
the objects. It is also difficult to obtain manually 
generated mid-curves/mid-surface models from 
industry: most of the models are proprietary and it is 
unlikely to represent a large amount of different shapes. 

Regarding the state of the art, the closest work related to this 
paper is from Kulkarni[28]. Kulkarni proposed 
MidcurveNN, an encoder-decoder neural network to extract 
mid-curves from polygonal 2D shapes. The principle is to 
train the network with both a pixel image of the polygonal 
shape and of the final desired mid-curves. Although in an 
early stage of research, the network is able to produce 
reasonably well the mid-curves of simple L-shaped 
polygons. The limitations of this work remain in the 
noisiness of the produced results. It has not been tested on a 
large diversity of shapes and is performed on the full shape 
globally potentially requiring a high-resolution pixel grid for 
large models. 
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3. GLOBAL APPROACH 

 

Figure 2. Process of the proposed approach 

Figure 2 gives an overview of the proposed approach. The 
main steps of the approach are: 

1. Generate a medial axis. The first stage generates an 
initial medial axis from an input contour. The MAT is a 
good basis to produce a 2D skeleton structure and 
provides geometric proximity between non-adjacent 
edges. In this paper we generate a discrete medial axis 
using a Voronoi diagram of the input polygon generated 
by the qhull [15] library. The end and connection regions 
are located at vertices vi having a valence greater than 
two. A high-resolution global image (2048×2048-pixel) 
of the initial shape is generated bounding the input 
contour. 

2. Mask end and connection regions. For each 
connection or end region, a local 256×256-pixel image 
is extracted from the global image. This image is centred 
at the medial axis vertex vi. A mask is generated to hide 
the connection or end region. The rest of the image 
contains the valid surrounding mid-curves to connect. 

The objective is to hide only the region of the medial axis 
which does not correspond to a valid mid-curve model. 
For end regions, the mask’s width and height are the 
maximum between the inscribed circle diameter at the 
medial vertex and the length of the leaf medial curves. 
For connection regions, the mask’s width and height are 
equal to the inscribed circle diameter. As a first approach 
the mask is a rectangle bounding the inscribed circle. 

3. Complete masked region. Each pair of image and mask 
is sent to the completion neural network. The neural 
network completes the masked part of the image with 
alternative content learned during its training. The 
content learned represents pixelized mid-curves 
connection models in our case. The completed local 
image is then put back to the initial global image to 
create a pixelized mid-curves model. 

4. Extract mid-curves. The last phase to generate the 
geometry of the mid-curves from the pixelized 
representation. Here different strategies are available. 
One can extend the initial medial axis trying to follow 
the pixelized completed regions. In this paper, we use a 
contour finding algorithm based on the marching squares 
from scikit-image[29] finding constant valued contours 
in an image. The extracted contours contain series of 
points connected by line segments. The contours are 
bounding the inside regions generated by the mid-curves 
(corresponding to a segmentation of the initial shape). 
The polygon approximation algorithm from scikit-image 
is then used to simplify the extracted contours. The final 
mid-curves correspond to the intersection of the 
extracted contours. This strategy allows us to ensure that 
the artificially generated parts of the mid-curves 
(completed regions) are connected to themselves and 
with the input shape. 

 

Figure 3 Application of the contour finding and 
polygon approximation algorithms of scikit-
image[29]. (a) the input image in which to find 
contours, (b) the resulting contours with default 
gray pixel value and default polygonal 
approximation tolerance, (c) the resulting contours 
with a high gray pixel value, (d) the resulting 
contours with a high tolerance in the polygonal 
approximation. 

Compared to previous approaches, our proposition lets a 
trained neural network take decisions on the connections of 

(a) (b)

(c) (d)
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mid-curves. Having a generic connection operator taking 
into account any geometry and connection model is 
complicated to design (see section 2). In our case, the neural 
network is trained on mid-curves already connected. Hence, 
it is up to the dataset to contain images of the expected 
connection in order to replicate it to unseen model. A 
company can specify a modelling connection rule by 
providing or generating a set of expected CAD shapes with 
their associated dimensionally-reduced models. Similarly, 
small details which are not represented in the final mid-
curves can be learned by the neural network from the dataset 
of models. When a small geometric detail is consistently 
ignored in the final mid-curves of the training models, this 
removal behavior can also be replicated by the network on a 
new shape. 

4. NETWORK ARCHITECTURE AND 
TRAINING STRUCTURE 

4.1 Data acquisition 
As explained in Section 2, no dataset is available containing 
2D contours with associated mid-curve models. To test the 
validity of the proposed approach, we developed a simple 
tool to generate artificially mid-curve models. As illustrated 
in Figure 4, from a random polygon, we compute the straight 
skeleton using the CGAL library[16]. From this skeleton, we 
remove its external leaves and then inflate it, given a random 
thickness. Generating models with different thickness 
increases the diversity of the dataset. For practical reason, 
the random thickness is the same for a given skeleton to 
avoid overlaps artefacts in the connection of the inflated 
regions. The final shape represents an artificial thin contour 
with its associated mid-curve model from which a pixel 
image can be generated.  

 

Figure 4 Process to generate an artificial mid-curve 
model 

 

Figure 5 Extraction of training images from an 
artificial mid-curve model 

The training images to pass to the neural network should 
contain connection and end regions. Hence from an artificial 
mid-curve model, we extract local images centred at the end 
and connection regions. As shown in Figure 5, at each 
connection vertex of the mid-curves we generate a 256×256-
pixel image centred at the vertex position. For end vertices, 
we offset the local image in order to have a maximum of 
geometric information contained in the training image. We 
repeat this process on random polygons in order to generate 
a dataset of 15000 images containing end and connection 
regions with their expected mid-curves. The distribution of 
end and connection region images is 30% end regions and 
70% connection regions. Figure 6 shows some examples of 
training images. 
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Figure 6 Examples of training images 

4.2 Image completion neural network 
model 

The neural network objective is to fill the masked end and 
connection regions Mc based on the surrounding context 
present in the extracted image (polygon boundary and valid 
medial axis regions).  To complete the masked regions of the 
local extracted image of the medial axis (stage 2 and 3), we 
use the Globally and Locally Consistent Image Completion 
(GLCIC) deep neural network architecture proposed by 
Iizuka et al.[1]. The advantages of this learning-based 
inpainting approach are: 

• Can generate novel image fragment which are not 
present in the input image. Unlike patch-based methods 
(such as PatchMatch of Barnes et al.[30]) which assumes 
that similar image patches can be found outside the 
missing region to fill in the missing regions in the same 
image , Iizuka et al.[1] approach is able to generate novel 
image fragment learned during the training phase. In our 
case, the connection and end regions are not present in 
the extracted image and should be learned from the 
dataset of midcurve images. 

• Can consider both the local and global information of an 
image to enforce locally and globally consistency. The 
network architecture of Iizuka et al.[1] is able to look at 
the entire image for understanding its context, then 
filling in the missing parts based on its context. In our 

case, the polygon boundary as well as the valid 
surrounding medial axis regions can be used by the 
network to understand the image context. 

As illustrated in Figure 7, for learning the image completion 
the GLCIC architecture follows a Generative Adversarial 
Network (GAN) [31] framework. It is composed of a 
completion network which is trained to complete the masked 
region and two discriminators networks (local discriminator 
and global discriminator) which are used in the training 
phase as auxiliary networks for learning. During the training 
phase, the objective of the generator is to complete the 
masked regions in order to fool the two discriminators while 
the discriminators are responsible for distinguishing 
completed images from real images. The advantage of 
combining two discriminators is that the global 
discriminator looks at the whole image in a global sense 
(ensuring the validity of the image as a whole) while the 
local discriminator looks at the sub-image around the filled 
region in a local sense (verifying the local validity of the 
completed region).   

 

Figure 7 Architecture of the GLCIC neural network 
of Iizuka [1] for image completion/inpainting.  

As the network architecture can deal with arbitrary image 
size and masks, we keep the architecture initially proposed 
by Iizuka. The completion network noted C(x,Mc) takes as 
input the original image x and fills the masked regions Mc. 
The binary mask Mc takes the value 1 inside regions to be 
filled-in and 0 elsewhere. The completion network follows 
an encoder-decoder architecture composed of a series of 
convolution and deconvolution layers. Unlike Iizuka’s 
paper[1] on completing an RGB image, we use a 256×256-
pixel grayscale image (one-channel image) as input. A 
random hole in the 48×48-pixel to 96×96-pixel range is 
generated for the mask. The combined discriminators noted 
D(x, Md) are composed of a series of convolution layers. The 
input of the global discriminator is a 256×256 pixel image 
(corresponding to the entire global image) and for the local 
context discriminator the input is a 128×128 pixel patch 
centred around the mask to complete. When used with 
unseen images, the completion network returns a 256×256 
pixel image with only the region corresponding to the mask 
modified. 

As mentioned in Iizuka et al.[1], in order to train the network 
to complete the input image realistically, two loss functions 
are jointly used: a weighted Mean Squared Error (MSE) loss 
for training stability, and a GAN[31] loss to improve the 
realism of the results. The MSE loss considering the 
completion region mask is defined by: 

!(#,%!) = ‖%! ⊙(*(#,%!) − #)‖", 
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where ⊙ is the pixelwise multiplication and ∥ · ∥ is the 
Euclidean norm. The MSE loss is computed within the 
masked region, the pixels outside the masked regions 
(marked as  0 in Mc) are directly replaced by the valid pixels. 

The GAN loss refers to a minimax optimisation problem 
where in which at each iteration the discriminator networks 
are jointly updated with the completion network. 

-./#-0#$	2[456(7(#,%%) + 456(1 − 7(*(#,%!),%!)],	

where Md is a random mask (to randomly select an image 
mask for local discriminator), Mc is the input mask, and the 
expectation value is the average over the training images x. 
The goal of this GAN loss is to train the completion network 
to generate realistic images that the discriminators cannot 
distinguish between completed images and real images. By 
combining the two loss functions, the joint loss function to 
train the network optimization becomes[1]: 

-./#-0#$	2[!(#,%!) + ;	456(7(#,%%) + ;	456(1
− 7(*(#,%!),%!)], 

where alpha is a weighting hyper-parameter to balance the 
MSE loss and the GAN loss. 

For more details on the network architecture, the 
justification of the layers number and size, the training 
strategy as well as the limitations on the mask size, we let 
the reader refer to Iizuka’s paper[1].  

4.3 Training 
The GLCIC model is implemented in Python using 
TensorFlow[32]. The model is trained on the 15,000 images 
collected from artificially generated mid-curve models (see 
Section 4.1). The dataset is split into training and test subsets 
and trained. The training set contains 95% of images of the 
input dataset. The learning rate is set to 1e-3. The completion 
network is initially trained for 200 iterations with the mean 
squared error (MSE) loss. Then both the completion network 
and discriminators are trained for 200 additional iterations. 
The entire training procedure is executed on a NVIDIA 
V100 GPU and takes approximatively 8 hours to reach the 
400 iterations. 
 

5. RESULTS AND DISCUSSIONS 

5.1 Results 
In this section, we present the application of the proposed 
approach to transform a medial axis model into a mid-curve 
model suitable for FE analysis. Figure 8 shows the 
application of the completion neural network on the end and 
connection regions of a given medial axis. Initially a global 
image (2048×2048 pixel) of the given contour with its 
associated medial axis is generated. For each end and 
connection region of the medial axis, a local 256×256 pixel 
image is extracted. A mask is placed at the intersection 
medial vertex. The local image and its mask are given as 
input to the completion network. The output completed 
image is then placed back to the global image. Finally, a 

contour extraction algorithm (see Section 3) is applied to the 
global image in order to extract geometric entities from the 
image and generate a geometrical mid-curve model. Figure 
9 illustrates examples of mid-curve model generated from 
medial axis models, generated with the process explained in 
Section 4.1. 

 
Figure 8 Result of the completion network on an 
input contour: (a) initial contour and its medial 
axis, (b) the mid-curve model result, (c) location of 
the extracted local images; (d) application of the 
contour finding algorithm to extract geometric 
entities, (e) example of the completed images 
corresponding to the 1,2,3 regions of (c). 

(b) Mid-curve result
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Figure 9 Examples of mid-curve models automatically generated from an initial medial axis model. 

Initial medial axis

Modified regions

Global contoursMid-curve result
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Figure 10 Results produced by the completion network. The masked region (in black in the image) corresponds 
to the end or connection region of the medial axis to modify. 

 

5.2 Discussion and future work 
Currently, the proposed approach faces the following 
limitations: 

• Mask orientation: In the current implementation, the 
mask is aligned with the global XY coordinates. 
However, as illustrated in Figure 11 (a), when the end 
region is not aligned with the global axis, the mask is 
not covering the full region to modify, giving an 
incomplete result. A better location (manual) of the 

mask covering the region to modify produces the 
expected mid-curve. 

• Mask position: For end region, the network has been 
trained with offset images containing a maximum of 
medial axis geometric information. As mentioned in the 
data acquisition section 4.1, for end vertices, the local 
extracted image initially centred at the medial vertex vi 
position is offset along the medial axis in order to place 
the medial vertex vi next to the image border. This 
allows us to reduce the empty space in the training 
images. However, in stage 2, the extracted local image 
is centred at the medial vertex vi position and the image 

medial axis mask result medial axis mask result medial axis mask result medial axis mask result
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offset has not been implemented. Hence, as shown in 
Figure 11 (b), the centred image leads to slightly worse 
result than if the image had been offset. 

 

Figure 11 Limitations in local window 
and/or mask locations. 

• Mask size and shape: The network has been trained 
with rectangle masks of size in the range 48 to 96-
pixels. As shown in Figure 12, the network does not 
produce the expected mid-curve when the mask has a 
triangular oriented shape covering the region 
surrounding the medial vertex vi (e.g., by building a 
triangle from the external vertices of the medial axis 
and the inscribed circle). A better approach would be to 
train the network with these minimal mask shapes 
instead of rectangle. This has been left for future work. 

 

Figure 12 Constraint in using the mask shape the 
network has been trained for. 

• Artefacts generated by the image completion 
network can appear in the result image as shown in 
Figure 13. These small “blurry lines” can be interpreted 
either as part of other polygon boundary (with a 
different thickness) or as alternative midcurves which 
the network starts to predict. In this case, the training 
should be improved by providing additional training 
images to enhance the prediction of the network. 
Alternatively, a simple approach to remove the isolated 
artefact is to filter the contours extracted by the 
contours finding algorithm based on the contour size.  

 

Figure 13 Artefacts generated by the image 
completion network 

• Multiple network predictions:  Currently, only one 
image is returned by the neural network. However, for 
some complex connection configurations, multiple 
connection models might be valid. Applying a network, 
such as the pluralist network of Zheng et al.[33], 

multiple completed images could be proposed from 
which the user could choose the most appropriate 
connection. 

• Long and slender geometry: Another limitation deals 
with the initial shape of the input contour. In this work, 
we concentrated on long and slender shapes where the 
hypothesis of replacing these regions by dimensionally 
reduced model is valid. This hypothesis allows us to 
train the network on local 256×256 pixel images where 
the medial axis as well as the initial contour is present 
and hence saving training time. When applying this 
method to regions where the diameter of the inscribed 
circle is large will require to a larger image resolution 
to keep the same level of detail. The training time will 
be impacted and new approaches[34,35] handling ultra-
resolution images should be considered. 

 
In future work we want to consider the extension of this 2D 
approach to the 3D dimensional reduction process. Clearly, 
the real industrial challenge is to generate automatically 
equivalent mid-surface models of thin structural 
components. Dealing with 3D models implies new issues to 
overcome. For example, regarding the size of input 
structure: the extra dimension has new information to 
consider which might impact considerably the training 
time. Our training strategy should be reconsidered: for 
example by removing duplicated models; by considering 
data augmentation to handle multiple orientations of a given 
3D model, etc.  

6. CONCLUSIONS 

In this paper, we presented a new approach to build a 2D 
dimensionally reduced model of a given thin polygon. The 
approach is based on the application of an image 
completion neural network. The neural network 
automatically completes the masked regions of a given 2D 
medial axis. By applying the completion network to the 
perturbed regions of the medial axis (i.e. end and 
connection regions) we are able to produce a mid-curve 
model where the mid-curves are located in the middle of a 
thin-walled model. The benefit of this approach is to let the 
neural network take the decision on the mid-curve 
connection models to apply from the given learning dataset. 
Future work concerns the optimisation of the mask 
geometry, the consideration of non-thin geometry and the 
extension of the approach to the 3D dimensional reduction 
process. 
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