
DUAL-BASED USER-GUIDED HEXAHEDRAL BLOCK
GENERATION USING FRAME FIELDS.

Simon Calderan1,2 Guillaume Hutzler2 Franck Ledoux1

1CEA, DAM, DIF, F-91297, Arpajon, France. simon.calderan@ocre.cea.fr
2 IBISC, University of Evry, Paris-Saclay, France

ABSTRACT

Block structured hexahedral meshing is required for many applications but remains unreachable in an automatic
manner for realistic simulation models. In practice, true industrial cases are handled using complex and rich interactive
software, and generating a block structure for a mechanical CAD part can require several days to weeks for an expert
engineer. For many years now, several scientific works have demonstrated that 3D frame fields are a very powerful
tool for hexahedral meshing. These works remain mainly theoretical and their application is limited to simple 3D
models. In this paper, we propose to provide the necessary components to build an interactive tool using frame fields.
The principle of the approach is to build a valid dual structure made of 3D dual sheets, which are aligned along a 3D
frame field, and then to convert this dual structure into its primal hexahedral block structure.

Keywords: blocking, hexahedral mesh generation, frame field, user-guided approach, dual structure

1. INTRODUCTION

For many application fields, such as high deformation
mechanics, hydrodynamics or fluid dynamics, hexahe-
dral meshes are preferred over tetrahedral meshes by
physics scientific codes and the underlying numerical
methods. More specifically, boundary-aligned hexahe-
dral block-structured meshes are required. But such
meshes are known to be very hard to create in prac-
tice. And despite the active research done in the last
three decades, the generation of such meshes in an in-
dustrial context remains a manual task that can need
several days to weeks depending on the CAD model
complexity. It is clearly unbearable in the production
life cycle and it is known that generating meshes in
general will be keeping to be an important bottleneck
in the near future [1].

In the past few years, many research teams working
on hexahedral meshes have studied the usage of frame
fields to reveal the expected block structure. They
proposed different algorithms and heuristics but all of
them were only able to get acceptable results on sim-

ple CAD models. Complicated ones are only meshed
using mixed meshes1 or hex-dominant meshes [2, 3, 4].
We think that frame fields are a relevant and strong
tool for the generation of hexahedral meshes but they
encounter at least two issues up to now: (1) no heuris-
tics used to generate frame fields guarantees that their
structure fits the hexahedral block structure; (2) even
if the frame field is generated, the extraction of a block
structure is not so automatic and robust as it should
be. From this observation, we propose to consider a
hybrid approach where the engineer will guide the al-
gorithm in the generation process. Instead of provid-
ing a fully automatic procedure, we intend to provide
useful tools to interactively generate hexahedral blocks
starting from an input frame field. This way, we ex-
pect to integrate frame fields technology into industrial
tools in a short time and so to contribute to diminish
the global time to simulation.

1In 3D, a mixed mesh can contain any type of 3-
dimensional cells: tetrahedra, hexahedra, prisms, pyramids
and polyhedra.

383

(a) (b) (c) (d)

Figure 1: Starting from a tetrahedral mesh T where a frame is assigned at every node (a), we first select a set of dual
sheets (b) that are used to create a block structure (c), which is eventually refined to get a hexahedral mesh with the
expected size properties (d).

1.1 Related works

Our approach consists in extracting 3D dual sheets
from a frame field. Using frame fields to interactively
generate blocks was very recently proposed by [5] in
a quite similar way. In their work, the authors pro-
vide an interactive environment to design dual sheets
starting from boundary loops that the user can define
in different manners. We follow the same path but
instead of using an indirect approach where the user
builds boundary loops using a surface cross field or
some surface interactors disconnected from cross fields,
we directly build 3D dual sheets. Authors of [6] pro-
vide an automatic algorithm based on the same con-
cept, which is to build boundary loops starting from
a surface cross field. In both cases, 3D dual sheets
are deduced from boundary loops by using an implicit
definition of surfaces [5] or a volume partitioning tech-
nique based on the min-cut, max-flow algorithm [6].

Using frame field for producing hexahedral meshes has
received much interests during the past few years [7,
8, 9, 10]. Frame fields provide directional information
in the whole domain to be meshed. It can be used to
drive tetrahedral mesh generation before applying a
tet-to-hex recombination algorithm to generate mixed
meshes, to directly extract the hexahedral block struc-
ture [8, 9], or to generate a parameterization that will
then give the final mesh [11, 12]. Frame field technol-
ogy seems to have a high potential to get quality all-
hex meshes, but there remains a lot of work to do since
the topology of generated frame fields does not always
fit the topological structure of hexahedral meshes. As
a consequence, frame fields are also used for generat-
ing high-quality hex-dominant meshes [2, 4]. In the
present work, frame fields are only an input and we do
not focus on the way to generate it.

The dual structure of hexahedral meshes has been
studied for its peculiar properties [13, 14, 15, 16] that
are global to the mesh. Comparing to tetrahedral
meshes where it is quite easy to perform local modifica-
tions as removing a node or swapping an edge, modify-

ing hexahedral meshes in a safe manner2 is more global
using operations on sheets or chords. The topologi-
cal structure of hexahedral meshes has so been used
to generate hexahedral meshes considering topology
first via the Whisker-weaving algorithm [17, 18, 19]
or the dual cycle elimination [20, 21]. Either modify-
ing meshes by inserting fundamental sheets to get a
block-structure hexahedral mesh [22] or matching two
hexahedral meshes along a contact surface [23] to get
a full conformal hexahedral mesh for a CAD assembly
model has been observed to be useful.

1.2 Method overview

Our method can be seen as similar to [5, 6] on many as-
pects, but is fundamentally different on one point. We
build 3D dual sheets directly and not as enclosed by
dual surface loops. Building a 3D sheet is more chal-
lenging on many points but it has the benefit of avoid-
ing some side-effects: (1) a dual sheet can be enclosed
by several dual boundary loops and finding the set
of dual boundary loops that corresponds to the same
dual sheet is not an obvious task; (2) it takes advan-
tage of the whole geometrical information carried on
the 3D frame fields inside the domain. The approach
we propose consists in a pipeline that is made of three
main steps (see Figure 1). Starting from a tetrahedral
mesh T where a discrete frame field is given on every
node of T , we adopt the following process:

1. First, we interactively build a set of dual sheets
that splits the volume into several dual zones (see
Figure 1-b). A dual sheet is built from a picked
tetrahedral cell of t ∈ T and a normal direction,
which is one of the three frame directions linearly
interpolated at the center of mass of t.

2. Second, we extract a block structure from the
dual structure previously built (see Figure 1-c).
This stage can fail if the dual structure provided

2In the meaning that the mesh always remains full-hex
during the whole modification process.

384

at stage 1 is incomplete. In this case, we go back
to stage 1 to add and/or remove some dual sheets.

3. Eventually, we build a refined hexahedral mesh
by using a simple transfinite interpolation in each
block (see Figure 1-d).

The last stage of this pipeline being straightforward,
we focus on the two first stages in the remainder of
the paper. Section 3 is dedicated to stage 1, while Sec-
tion 4 gives details about the properties a dual struc-
ture must ensure to generate a valid block structure.
Section 5 shows how to generate hexahedral blocks
from the dual structure. But beforehand, we intro-
duce several useful notions in Section 2.

1.3 Main benefits and drawbacks of our
method

A main difference between our works and [5, 6, 24]
is that we directly build 3D sheets to decompose the
geometric domain Ω we work on. It induces a main dis-
advantage, which is that our approach relies on trac-
ing 3D stream surfaces along a 3D frame field defined
in Ω. Tracing such streamlines is more complex than
tracing surface loops. It is due to the potential non-
integrability of the 3D frame field we start from and
the numerical issues that are more difficult to control
and handle in a robust programmatic way.

But we believe that the advantages of dealing with 3D
sheets deserve to try and get a robust stream surface
building process. Only considering surface loops as
in [5, 6, 24] imply several restriction and extra pro-
cess. First, the underlying assumption is that a loop
encloses a 3D sheet in the volume, and so corresponds
to generating a 3D sheet. This assumption is very re-
strictive as a 3D sheet can be bounded by several sur-
face loops (depending on the domain genus). A first
issue is so to define a 3D sheets as bounded by several
loops and not just one. By dealing with 3D sheets
directly we avoid the heuristics proposed in [5, 6] for
such situations. A second issue is that cross fields does
not provide all the required information to build the
3D sheet bounded by one or several surface loops. As
a consequence, [5] cut the volume following a constant
direction, which is defined by the normal to the sur-
face where the loop is defined (when it is possible),
or provides interactive control to the users, who can
add control points to deform the 3D sheets. In [6], the
3D surface is built automatically following a 3D field
using a min-cut max-flow graph cutting algorithm. A
third issue is that those approaches seem not be able
to handle self-intersecting loop while a direct 3D ap-
proach allows it.

Considering now the full 3d approaches that automat-
ically build a 3D singularity graph and extract a block

structure[7, 11, 12, 8, 9, 2, 4], they are all of them
limited to simple CAD examples and some CAD fea-
tures are not possible to be handled (see examples
of Fig. 24 and 26 for instance). It is also our case
in this paper, but we consider that this work gives
some mandatory components to design a new interac-
tive tool with which the engineers we work with will
be able to generate full-hex meshes more quickly than
with their current tools.

2. BACKGROUND

Our approach relies on two main notions: frame fields
and the hexahedral dual structure. In this section, we
give the minimum of knowledge that is required for
reading this paper. For more information about frame
fields, please refer to [10, 12] and for the hexahedral
dual structure, take a look at [13, 15].

2.1 Notions of frame fields

For the purpose of this work, we only consider dis-
crete frame fields associated to a tetrahedral mesh.
More specifically, given a tetrahedral mesh T that dis-
cretizes a CAD model Ω, we consider that a frame field
associates a frame to every node of T .

A 3D frame F is defined as a 3-tuple {u,v,w}, where
u, v and w are three unit 3D vectors such that u.v = 0
and w = u × v. In other words, F is defined by
three unit vectors, that are orthogonal to each other
forming an orthonormal right-handed basis of IR3.
3D frames are
naturally con-
nected to the
structure of hex-
ahedral elements.
Considering a
hexahedral cell, which has 3 main directions linking
its pairwise opposite faces, 24 frames can thus repre-
sent it. This set of frames corresponds to the cubical
symmetry group G (any map in SO(3) which maps
coordinate axes to coordinate axes) and is invariant
under rotations of π

2
around one of its three axis and

forms an equivalence class.

A discrete frame field can be generated by many meth-
ods [9, 10, 12]. To our knowledge all of them try to
get a smooth field while preserving the boundary align-
ment along Ω. As a result, frames assigned to bound-
ary nodes have one of their three directions aligned
with the surface normal. Most of tetrahedral cells
are called regular and a few ones are called singu-
lar. The frame field linearly interpolated in a regu-
lar tetrahedron does not contain any singularity, while
a singular tetrahedron contains singularities (see Fig-
ures 2 and 3). We perform linear interpolation be-
tween frames into a tetrahedral cell by using a unit

385

quaternion representation as done in [8]. In the con-
text of discrete frame fields, we denote SG(T) the set
of singular tetrahedra of T , and we name it singular-
ity graph set. The set SG(T) contains one-direction
stable singular tetrahedra and unstable singular tetra-
hedra. The former are traversed by a single singularity
line (see green tetrahedra on Fig. 3-a) while the latter
contain a singularity point, i.e. a meeting point be-
tween several singularity lines (see red tetrahedra on
Fig. 3-b).

(a) (c)

(b) (d)

Figure 2: Several views of a discrete frame field. In
(a) and (b), the boundary of the domain is visible with
the frames at each node and singular tetrahedra in red.
In (c) and (d), only the singular graph set is visible. It
corresponds to the usual block decomposition we expect
for such a geometric domain.

(a) (b)

Figure 3: In (a), the whole singularity graph set of a
mesh T , where green singular tetrahedra are traversed
by a single singularity line (shown in b); In (b), red sin-
gular tetrahedra contain a singularity point, which is the
meeting point of several singularity lines.

2.2 Primal and dual hexahedral mesh

Building the dual of a mesh is a quite well-known pro-
cess. To introduce it in the context of this work, we

restrict our presentation to hexahedral meshes that
are 3-dimensional meshes, or 3D meshes for short.
Let us first introduce some terminology. A hexahe-
dral mesh is made of hexahedral elements, which are
3-dimensional cells or 3-cells, quadrilateral faces, or
2-cells, edges, or 1-cells, and nodes, or 0-cells. For
a mesh M, we denote Mi, with i ∈ [0; 3], the set
containing all the i-cells of M. We only consider con-
formal meshes. In other words, a 3-cell of a mesh
M can only share an i-cell with another 3-cell, with
i ∈ {0, 1, 2}. The dual DM of a mesh M is also a 3D
mesh, where:

• Each i-cell of DM corresponds to a (3 − i)-cell
of M, with i ∈ [0; 3]. For any i-cell ciof M, we
denote dn−ic the corresponding cell in DM.

• If two 3-cells a3 and b3 ofM share a face f2, then
nodes d0

a and d0
b are linked by edge d1

f .

An example of a simple hexahedral mesh M and its
dual mesh DM is given in Figure 4.

(a) (b)

Figure 4: Example of a hexahedral mesh in (a) and its
dual in (b). Note that the dual structure is represented
as a set of surfaces intersecting each others.

Each dual node of a hexahedral mesh corresponds to
a primal hexahedral cell. As a consequence, it is con-
nected to six dual nodes and is adjacent to twelve dual
faces. Such a dual node n can so be seen as the in-
tersection of exactly three dual surfaces made of four
dual faces locally to n (see Figure 5-d). From a broader
point of view, the dual of a hexahedral mesh is struc-
tured as a simple arrangement of dual surfaces [13]
(see Figure 5-b). We call each of these surfaces a dual
sheet and the set of dual sheets split the initial domain
into regions that we call dual zones (see Figure 5-c).

386

This domain decomposition made of dual sheets and
dual zones is the dual structure, also noted hex layout
in [5].

(a) (b)

(c) (d)

Figure 5: In (a), the minimal block structure for a por-
tion of sphere; In (b) is shown the dual sheets and the
block structure; On (c), the dual zone A is delimited by
the red; blue green ad yellow dual sheets; In (d); a single
hexahedral block corresponds to a dual node which is the
intersection of 3 dual sheets: the green, yellow and red
ones.

The notion of singularity graph SG(T) introduced as
the set of locations where frame fields are singular in
Section 2.1 has also a significant meaning in the block
structure, and more widely in hexahedral mesh topol-
ogy. The singularity graph of a hexahedral mesh, and
so a block structure, is the set of inner edges that
are not adjacent to four hexahedral cells. In practice,
those edges are mainly adjacent to three or five hexa-
hedral cells.

3. DUAL SHEETS CREATION

The first stage of our approach consists in creating a
set of dual sheets inside our domain Ω. Our input
is a tetrahedral mesh T that discretizes Ω and where
frames are assigned at every node. The process we
propose is the following one:

1. The user picks a tetrahedral cell t ∈ T . Then
we linearly interpolate in t a frame Ft from the
frames assigned to the corners of t. Note that
we allow only regular tetrahedra to be picked, so
that this interpolation is well-defined.

2. Then we select one of the 3 directions of Ft. Let’s
call this direction d.

3. We try and extract a dual sheet starting from t
with normal direction d. This process is described
below. It relies on two main concepts: sheet prop-
agation (see Section 3.1) and control filters (see
Section 3.2). It can fail if the extracted dual sheet
encounters a tetrahedron of SG(T) in an unac-
ceptable configuration.

4. If the sheet extraction succeeds and satisfies the
user expectations, the user repeats steps 1 to 3
until getting the desired set of dual sheets.

3.1 Single sheet propagation

We start by interactively selecting the input of our
dual sheet extraction algorithm, which is summarized
by Algorithm 1. Let t0 ∈ T be this first tetrahedron.
Our extraction method consists in propagating a cut-
ting surface named Sc in T using the frame field F .
In order to define Sc, the user selects one of the 3 di-
rections of the frame F0 = (u0,v0,w0) defined in t0.
Let d0 be this direction vector. We call Et0 the set of
triplets (e,n, β), where e is an edge of t0 intersected
by Sc, n a locally normal vector of Sc at the point
p on e, with p = (1 − β)e0 + βe1, where (e0, e1) are
the end points of edge e and β ∈ [0, 1]. Tetrahedra
adjacent to an edge of EWi are the next tetrahedra to
be cut. At each propagation step i of the algorithm,
they form the wave Wi. They will be cut according
to the information gathered in Et0 . And the process is
repeated until reaching an iteration j where Wj = ∅.

Initialization of the sheet propagation. The
first step of Algorithm 1 (line 1) consists in creating
the initial cutting plane in t0 (see Figure 7). To do
this, we define the operation closest component(F0,v)
that finds the closest vector of v among the vec-
tors (±u0,±v0,±w0). We call c0 the center of mass
t0, Fc the frame interpolated at c from the frames
defined at the nodes of t0 and we note n0 = clos-
est component(Fc,d0). We then create the plane P0

going through c and having n0 as a normal vector
(see Figure 7(b)). The set Et0 is the set of triplets
(e,n, β), where: e is an edge of t0 intersected by P0 at
point p0 (a red edge on Figure 7(b)); β is the barycen-
tric coordinate of p0 along edge e; n is equal to clos-
est component(Fβ ,n0), where Fβ is the frame interpo-
lated3 at p0 from the frames defined at the end points
of e (points pi are shown in blue on Fig. 7-b).

Propagation loop strategy. Then in order
to create the sheet, we propagate the surface
Sc in a breadth-first manner. We get all the

3Linear frame interpolation is done using a unit quater-
nion representation of frames, as done in [9].

387

(a) (b) (c) (d)

Figure 6: Illustration of the sheet creation into a regular field: In the top row, the set of intersected tetrahedra at different
loop stages; in the bottom row, a surface-like representation of the advancing dual sheet. In (a), we start from a single
tetrahedron and then we advance in (b) and (c) into the domain following the frame field until reaching the boundary
domain in all the directions in (d). Color of an element (piece of surface, tetrahedron) is correlated to the wave number.

Algorithm 1: dual sheet creation

Data: (t0,d0)
Result: All the tetrahedra intersected by the dual

sheet
1 E{t0} = {(e,n, β)} ←cutFirstTet(t0,d0);
2 Wi ←nexTets(E{t0},{t0});
3 EWi ← E{t0};
4 done←false;
5 while !done do
6 EWi+1 ← ∅;
7 for tk ∈ Wi do
8 EWi+1 ← EWi+1∪cutTet(tk, EWi);
9 end

10 EWi+1 ←applyControlFilters(EWi+1);
11 Wi+1 ←nexTets(EWi+1 ,Wi);
12 EWi ← EWi+1 ;
13 Wi ←Wi+1;
14 if Wi = ∅ then
15 done←true;
16 end
17 if reachSingularityWrong(Wi) then
18 exit;
19 end

20 end

Fc

d0

n0

(a) (b)

Figure 7: Edge cutting for the first tetrahedron t0 in
Algorithm 1. Fc is shown at the center of t0, d0 is
colored in red and n0, the closest vector of d0, is colored
in green.

tetrahedra adjacent to an edge of E0 and not
already traversed. These tetrahedra are the
next wave to perform (denoted Wi at line 2).
And we note
EW0 all the edges
that were used
to generated this
wave (line 3).
In the example
on the right, the
first tetrahedron
t0 is shown in
dark transparency with its cutting plane, and the
tetrahedra of W0 are shown in light grey. We then
enter a loop process where surface Sc is propagated by
successive waves (from line 5 to 19 in Algorithm 1).
First we define EWi+1 the output intersection triplet
of Sc in the tetrahedra of Wi. By analogy, EWi

gathers all the input intersection points for the wave

388

Wi. Then we cut each tetrahedron tk ∈ Wi. The
cutting method is different from the one used for t0.
While a local plane was created at the center of t0,
now each tetrahedron tk has already been cut along
edges of EWi . At least one edge of tk is so already
intersected by Sc. The propagation scheme we use is
based on face propagation. It is applied in function
cutTet used at line 8 of Algorithm 1 and is detailed in
Algorithm 2.

Algorithm 2: cutTet

Data: (tk, EW)
Result: Eti

1 Etk ← ∅;
2 foreach edge e ∈ tk do
3 if e ∈ EW then
4 forall face f ∈ tk ∧ e ∈ f do
5 Etk ← Etk∪fieldApprox(f);
6 end

7 end

8 end
9 return Eti

Propagation is done along each face of the current
tetrahedron tk starting from edges that belong to EWi

(see Figure 8). Note that a face f of a tetrahedron
tk could have been already treated for the tetrahedron
sharing f with tk, whether this tetrahedron belongs
to the current wave or to a previous one. We start
the cutting algorithm in tk with at least one inter-
sected edge e knowing that e ∈ EWi with (e,n, β).
For each face f ∈ tk that is incident to e and not al-
ready treated, we compute an approximation of the
cut in the frame field by using a 4th-order Runge-
Kutta method (line 5 of Algorithm 2). It gives us
an output intersection point in f . Let us note that if
two edges of a face f are cut while f has not yet been
traversed, we add f to the set of treated faces in order
to avoid inconsistencies4.

(a) (b) (c)

Figure 8: Simple illustration of a cut propagation into
a single tetrahedron. In (a), the initial state; in (b) the
first face cutting; and in (c) the second face cutting.

As we cut geometrically through faces, it may hap-

4A third intersection must not be added, it would intro-
duces unexpected configurations that could be difficult to
handle.

pen that the output intersection point along an edge
is located on a node (β = 0 or 1) of T . In practice,
we avoid such an intersection by randomly moving the
intersected nodes. In our implementation, we store all
the nodes that are intersected during a wave Wi in a
set Ni and we move all of them simultaneously with
small random perturbations. After that, we recom-
pute the cut propagation in the tetrahedra of Wi that
are adjacent to a node of Ni. This process is repeated
until having Ni = ∅. In our different experiments, this
set was always empty after a few number of iterations.
Note that in our implementation, a node is considered
intersected if the intersection point is located at a dis-
tance less or equal to l = α.length(emin) where emin
is the shortest edge of T and α = 0.1. Figure 6 illus-
trates different stages of the dual sheet propagation
for a regular grid-like frame field.

Singularity line traversal. During the
wave propagation, we can reach some singu-
lar tetrahedral cells (line 17 of Algorithm 1).
If the tetrahedral
cell contains a
singularity point,
we stop the wave
propagation.
Otherwise, it
means that the
tetrahedron is
traversed by a
singularity line. In this case, we compare the normal
vector to the dual sheet with the singularity line
direction: if they are almost aligned (dot product
evaluation), then the dual sheet can traverse the
singularity line, else we stop the wave propagation. In
our implementation, the normal to the dual sheet and
the singularity line direction are considered aligned
when their angle is less than π/4.

3.2 Control filters

Our dual sheet creation process consists in creating
successive waves. Each time we go through a tetra-
hedron, numerical approximations are done and small
geometrical errors may appear. While they have a
very little impact locally, their accumulation can lead
to unexpected results. In particular the dual sheet can
break and split (see Figure 9). In order to prevent such
a situation to occur, we apply some filters to remove
some data from EWi at the end of each wave (line 10
of Algorithm 1).

We have two filters in our algorithm to control the
wave propagation. The first one is based on the topol-
ogy of T ; the second one considers the dual sheet ge-
ometry. During the dual sheet creation, we build suc-
cessive waves. Each of these has a number, and all

389

Figure 9: Impact of the geometric filter on the dual sheet
propagation with the tetrahedra of the dual sheet on the
left column and the created intersection points on the
right. First row shows the result without applying the
filter. Second and third rows respectively corresponds to

λg = 0 and λg =
√

2
2

.

the tetrahedral cells that belong to a wave are labeled
with this wave number. When we create the setWi+1,
the topological filter removes from Wi+1 all the tetra-
hedra that would share an edge, a face or a node with
a tetrahedron belonging to Wj , with j ∈ [0, i+ 1−λt]
and λ ∈ IN∗. In our implementation, we fixed λt = 2.

di−1

di

∈Mi∈Mi−1

pi−2

pi

pi−1

Figure 10: Geometric filtering based on predecessors.

The second filter controls the geometric propagation
of each point in EWi+1 . Let pi be such a point (see
Figure 10). We store for this point the two previous
points used to generate it: the point pi−1 that be-
longs to the same tetrahedron of Mi as pi and the
point pi−2 that belongs to a tetrahedron of the previ-
ous waveMi−1. We then check the deviation between

the previous direction di−1 and the current direction
di. The edge e is kept in EWi+1 if

di−1

‖di−1‖
. di
‖di‖

> λg,

with λg ∈ [0, 1]. Having λg > 0 prevents the sheet
from turning 90 degrees and eventually geometrically
turning back in the domain. We can notice that this
filter does not take the frame field F into account.
This control and the topological control are manda-
tory near singularity lines where high curvature in the
frame field induces much more difficulties to preserve
the dual surface topology.

4. DUAL BLOCKING PROPERTIES

Applying the algorithm described in Section 3 allows
us to partition the domain into blocks. But not all par-
tition can produce a hexahedral block structure. This
is why we have to check a minimal set of properties
about the obtained block structure.

(a)

(b) (c)

(d) (e)

Figure 11: Successive dual curve insertions to build a
quad block structure.

4.1 Dual structure properties

In order to explain our approach, let us consider the
2D example of Figure 11. In 2D, dual sheets are dual
curves and the dual of a quad block structure can be
seen as a simple arrangement of curves. In (a), we
consider that the user has only created one single dual
curve. Obviously, this configuration does not corre-
spond to a valid dual structure since at least one dual

390

node, i.e. one primal face, must exist. In (b), a second
curve is so added and the corresponding primal block
structure is given in (c). It is reduced to one quadri-
lateral block, which is a valid block structure. But it
does not fit the frame field prescription. By construc-
tion, the input frame field has a singular triangle in
the domain (shown in red on Fig. 11) and the usu-
ally expected block structure is the one given in (e).
In order to get this primal structure, one dual curve is
missing: this line is added in (d) in such a way that the
singular red triangle is enclosed by dual curves into an
inner-surface dual zone. In other words, a boundary
dual zone should not contain a frame singularity.

In a similar way, a set of validity rules can be de-
fined in 3D. In order to define this set of rules,
let us first introduce the notion of classification.

∈ ∂Ω0

∈ ∂Ω2

∈ ∂Ω1
Let T be a tetra-
hedral mesh of a
domain Ω, where
the boundary ∂Ω
is made of a set
∂Ω2 of surfaces, a
set ∂Ω1 of curves
and a set ∂Ω0 of
vertices. For the
sake of simplicity,
we consider that Ω is a single volume and not an as-
sembly of volumes. Considering such a decomposition
of Ω and a set of dual sheets that split Ω into dual
zones ZΩ, the following criteria must be checked:

1. At least one block exists, i.e. at least three dual
sheets intersect in one single dual node;

2. A boundary dual zone can not contain more than
one geometric point of ∂Ω0 or one boundary
frame singularity point;

3. A boundary dual zone can not contain one bound-
ary frame singularity point and being along a
curve.

4. An in-volume dual zone can not contain more
than one frame singularity point;

5. An in-volume dual zone that does not contain a
frame singularity point can be traversed by one
single frame singularity line at most.

First criterion is obvious and avoid peculiar cases
where ∂Ω0 is empty (for totally smooth boundary). It
is fulfilled by the example shown in Figure 12, where
dual zones A, B, C and D are created. As each dual zone
corresponds to a primal block node, we meet an issue
with dual zone C that contains geometric vertices 1, 2
and 3. We must split this dual zone so has to have
each vertex in a different zone. It is the purpose of
criterion 2 (see Figure 13). Criterion 3 prevents the

situation depicted on Figure 11-b to arise: consider-
ing the dual zone containing the red triangle (and so
a boundary singularity point), this zone must not be
bounded by a geometric curve. Criteria 4 and 5 are
relative to in-volume dual zones. In our approach, a
dual zone corresponds to a primal node, while a sin-
gularity point also corresponds to an expected primal
node if you build the blocks from singularity points
and lines [8]. If a dual zone would contain two sin-
gularity point, we would get an inconsistency. It is
the purpose of criterion 4. Criterion 5 is similar. A
singularity line should correspond to an edge of the
primal block structure. If a dual block B contains two
singularity lines l1 and l2 but no singularity point, it
means that l1 and l2 do not intersect and it induces
that the primal node relative to B should be on two
non-intersecting edges. That is not possible and it is
the purpose of criterion 5.

Figure 12: A 2D domain split in four boundary zones by
inserting two dual curves. It does not allow to generate
a valid primal quad structure.

Figure 13: A 2D domain split in eight boundary zones
that corresponds to a valid primal quad structure.

Figure 14: Equivalent 3D domain of the 2D examples
shown in Figure 13.

391

4.2 Validity blocking algorithm

Starting from the dual sheet extraction processed be-
forehand on tetrahedral mesh T we want to check the
validity of the block decomposition. For each tetra-
hedron t ∈ T3, we know if it is traversed by 0, 1, 2
or 3 dual sheets. Let fsh : T3 7→ [0; 3] be the func-
tion giving this information. The algorithm we ap-
ply is the one provided in Algorithm 3. It gives as
a result whether the induced block decomposition is
valid or not and two functions fbl and fc. Function
fbl : T3 7→ IN indicates for each 3-cell of T the block
number it belongs to (value 0 means no block). Func-
tion fc : IN 7→ IN × IN∗ gives for each block bi the
dimension and the id of the lowest geometric entity a
node of bi is classified on.

Algorithm 3: Validity blocking algorithm.

Data: T , fsh : T3 7→ [0; 3]
Result: fbl : T3 7→ IN,fc : IN 7→ IN× IN∗

1 bm←initBooleanMark(T3);
2 for t ∈ T3 do
3 if isMarked(t,bm) and !isSingular(t) then
4 Bt ← colorAndMarkBlock(t, fbl, bm);
5 (dmin, {imin})← getMinClassification(Bt);
6 (nsp, nsl)← getSingularityData(Bt);
7 if !checkValidity(dmin, {imin}, nsp, nsl)

then
8 return false;
9 end

10 end

11 end
12 releaseBooleanMark(bm, T3);
13 return true;

Algorithm 3 relies on a traversal of all the tetrahedra
of T3. Let t be a non-traversed and non singular tetra-
hedron, we color all the tetrahedra that belong to the
same block as t (line 4). This set of tetrahedra, de-
noted Bt, is built by a breadth-first traversal starting
from t and using edge connectivity. During the traver-
sal, a tetrahedron t′ is added to Bt if fsh(t′) = 0. Then
we check the minimal classification (dmin, {imin}) of
the nodes of tetrahedra in Bt (line 5). Value dmin
gives the minimal dimension (0 for vertex, 1 for curve
for instance); the set {imin} contains the id of the
dmin-dimensional geometric entity. For instance, get-
ting (0, {1, 4, 2}) would mean that some nodes of Bt
are classified on geometric vertices 1, 4 and 2. At line
6, we get the number of singularity points nsp and the
number of singularity lines nsl that contain tetrahe-
dra of Bt. With data gathered at line 5 and 6, we can
check the validity of the rules previously given. For in-
stance: nsp must be less or equal to 1; and if dmin = 0,
|{imin}| must be equal to 1.

5. BLOCK EXTRACTION

Once dual zones are validated and classified through
function fc, we have to create the primal nodes and
the primal hexahedral blocks.

5.1 Primal node creation

Every tetrahedron t ∈ T3 is in a dual zone (fbl(t) 6= 0)
or in a dual sheet (fbl(t) = 0). By construction, a
dual zone is discretized as a set of tetrahedra bounded
by either dual sheets or domain boundary. From a
topological point of view, a dual zone corresponds to
a primal node in the block structure. In order to cre-
ate this node, we use the classification data stored in
fc. Let’s consider the dual zone i, and the correspond-
ing primal node ni, then fc(i) returns the dimension
and id of the geometric entity to classify ni. If the
dimension is equal to 0, ni is located on the corre-
sponding geometric point. Otherwise, we initialize ni
location at the center of mass of dual zone i and if the
dimension is equal to 1, respectively 2, we project ni
onto the corresponding geometric curve, respectively
the corresponding geometric surface.

Figure 15: Dual zone numbering for building primal
blocks. The label of a dual node n is a couple of 2 dual
sheet numbers (in red), which are the numbers of the
dual curves that intersect each other at n. Dual zones
are labeled by a p-uple of numbers, where each number
corresponds to a bounding dual curve.

5.2 Dual zone labeling

We build primal blocks from the dual structure di-
rectly. More precisely, we identify each dual zone by
a label that is a series of dual sheets numbers and we
compare this series with the numbers of the dual sheets
that intersect in a dual node. Let us consider the 2D
case illustrated on Figure 15. Each dual node being
the intersection of two dual curves in 2D, we label it

392

with two numbers5. For instance, the dual node inter-
sected by dual sheet 1 and 2 has label 1− 2 (the dual
node on the bottom left on Figure 15). Dual zones
are labeled with the numbers of the dual sheets that
surround them. As a consequence the label size of a
dual zone is not fixed and this label is not necessary
unique. For instance, the symmetry of the domain
exhibited on Figure 16 induces that dual curve 1 in-
tersects dual curve 2 twice. Two dual nodes have so
the label 1 − 2 and all the zone labels are carried by
two dual zones. This labeling strategy extends to 3D
where dual nodes are labeled with a triplet of dual
sheets numbers6.

Figure 16: As two dual lines can intersect each other
more that once, dual node and dual zone labeling is not
unique.

Our method is quite similar to [5], where they label the
dual zones, in a global way, according to their relative
locations to all dual sheets, that are represented by
implicit surfaces. They declare a dual zone as being
on one side of a dual sheet (flag +) or on the other
side (flag −). If you have n dual sheets, each zone is
then labeled by a n-size vector of flags (+,−). This
strategy is not adapted to our algorithm since it does
not allow us to handle self-intersecting dual sheets and
it doesn’t fit our inserting dual sheets for volumes that
are not homeomorphic to a sphere. In the example of
Figure 16, dual lines 3 and 4 should be merged into a
single line to apply the strategy given [5] and get the
right labeling for us. With our local strategy where we
label each dual zone with the labels of the dual sheets
it is enclosed in, we do not get such an issue.

5.3 Primal block creation

The label assignment previously done partially carries
the topology of the dual structure and so of the primal
hexahedral blocks. In order to create primal block,
we adopt a two-stages procedure where: (1) First, we

5Note that it can be twice the same number when a dual
curve intersects itself.

6The same number can occur twice in case of self-
intersecting dual sheets.

build hex corners for every node a, which are 3-tuples
of primal nodes Ca = (c1, c2, c3) corresponding to a
future block corner. In other terms, it means that
[a, c1], [a, c2] and [a, c3] will be three edges of a primal
hexahedron; (2) Then, we build hexahedral blocks by
combinatorial operations on hex corners.

Creation of hex corners. Each 3D dual node cor-
responds to a primal block. It is surrounded by 8 dual
zones, each of them corresponding to a primal node
that has been created at Section 5.1. We label each
3D dual node n, respectively a 2D one, with 3 num-
bers, resp. 2. These numbers correspond to the dual
sheets, resp. line, that intersect at node n. Let ln be
the label of n. In order to find out the dual zones sur-
rounding n, we traverse all the dual zone labels and
we keep those having ln as a sub-series of their own
label. Let Zn be the set of dual zones surrounding the
dual node n. If the dual node labeling is unique, i.e
every dual node has a different label, then we have the
standard configuration where |Zn| = 8 in 3D, resp. 4
in 2D, for all dual nodes.

But the dual node labeling can be not unique as soon
as two dual sheets in 3D, resp. dual lines in 2D, in-
tersect each other twice or more. It is the case on
Figure 16 where two nodes have the label 1 − 2 be-
cause lines 1 and 2 intersect twice. Both of those nodes
gather all the dual zones of this simple model into their
respective sets Zn. And we get |Zn| > 8 in 3D, respec-
tively |Zn| > 4 in 2D. In order to reduce Zn size to 8
in 3D, resp. 4 in 2D, we compute a distance between
each zone of Zn and n and we keep the 8 in 3D, resp.
4 in 2D, closest ones. This distance is computed as
follows. The dual node n is located into a simplex sn
of T . We pick the center of mass of sn as an approx-
imated location for n. Let pn be this location. Each
dual zone being a set of simplices7 S in T , we compute
the Euclidean distance between pn and each center of
mass of an element of S and we keep the smallest dis-
tance.

Figure 17: Final blocking for the models given in Fig-
ures 15 and 16.

At this stage, every primal node has a final geometric
location and every primal block has the list of the pri-

7triangles in 2D and tetrahedra in 3D.

393

Figure 18: 2D example of dual sheet traversal in order
to build corner data. Here, blue triangles belongs to 2
dual lines, while red ones are in a single dual line and in
contact with dual zone A. Those red triangles allow our
algorithm to connect dual zone A to dual zones B and C
to form a quad block corner.

mal nodes it is built from. It remains to build those
blocks in a non-inverted manner, as shown in Fig-
ure 19. Let N = {A,B,C,D,E, F,G,H} be the set
of nodes of a block. For each primal node n ∈ N we
have to create the hex corner Cn = (c1, c2, c3) ∈ N 3,
c1, c2 and c3 are the other end points of the three
edges starting from n in the block (see Figure 19-b).
By definition, a node of N corresponds to a dual zone,
which is a subset S of T . Starting from a tetrahedron
of S we propagate through the tetrahedra of the dual
sheets surrounding S in order to touch tetrahedra of
other dual zones. More specifically, we only propagate
into tetrahedra that belong to a single dual sheet. Let
us consider Figure 18 for a 2D example where we start
from dual zone A. All the red triangles belong to a
single dual sheet that surrounds A, while blue ones
belong to two dual sheets. Red triangles, the ones
we propagate through, are only in contact with dual
zones B and C. On the contrary, blue triangles stop
the propagation and so prevent us to reach the dual
zone D. In 2D, it allows us to build the hex corner
CA = (B,C). We follow the same principle in 3D.

Creation of primal blocks. Now that hex corner
data is built, we build faces of blocks. On Figure 19-c,
We start from node A with hex corner CA = (C,D,E).
Considering the node A, two of the neighbor nodes are
selected in CA, which are C and E here (see Figure 19-
c). We can then obtain the first face by getting the
node of CC ∪ CE − A, which is F (see Figure 19-d).
The first face is so AEFC. We build two other faces
adjacent to A by selecting D and E in CA, then C and
D. Those faces are respectively AEHD and ACGD
(see Figure 19-e). The final step is to create the last
faces with the remaining node B. Such a process ap-
plied in 2D gives blocks of Figure 17 for the examples
of Figures 15 and 16.

(a) (b)

(c) (d)

(e) (f)

Figure 19: Creation of a primal block from its 8 primal
nodes, where corner data is built first.

6. EXPERIMENTAL RESULTS

We applied our approach on several CAD models.
They were imported into the gmsh software [25] using
the step file format and gmsh was used to generate
initial tetrahedral meshes. Discrete frame fields were
then computed on each tetrahedral mesh by a method
similar to the one described in [10]. Each tetrahe-
dral mesh T enriched by a frame field defined at the
nodes of T is then taken as the input of our software.
The parameter λg used in the dual sheet creation pro-
cess is fixed to 0.2 for all the results shown in this
section. Some results we obtained are shown on Fig-
ures 20, 23, 27 and 28. For every model, we show
the tetrahedral representation of dual sheets and dual
zones and the final primal hexahedral blocks. Our
pipeline of operations - dual sheet creation, block prop-
erty checking, primal block generation - gives the ex-
pected results for those models when the input mesh
is refined enough and the frame field is valid. Some
statistics about the generation of all the presented re-
sults are given in Table 21.

6.1 Impact of the mesh resolution

Two steps are impacted by the mesh resolution: the
dual sheet creation and the block extraction. Build-
ing a single dual sheet requires to propagate a dual
surface into the tetrahedral mesh starting from a sin-
gle point and direction. This propagation being done
numerically by linearly integrating the field along each

394

Figure 20: Dual structure (left), dual zones (middle) and final hexahedral blocks (right) for several models.

Model |T | |Sheets| |Dual Zones| |B| avg min max validity blocks

B7 82879 4 15 4 0.3325 0.3 0.41 0.21 0.88
B8 74112 7 33 10 0.2816 0.24 0.31 0.21 1.58
B10 355048 10 40 12 1.8533 1.41 2.31 1 3.81
B28 362531 24 136 49 1.3209 0.45 7 0.95 6.63
B31 349598 15 96 37 1.7331 0.53 3.79 1.19 7.52
B40 57984 5 16 3 0.2280 0.12 0.38 0.15 0.38
B45 164904 7 24 6 0.6014 0.32 1.28 0.47 1.53
S3 932672 19 184 97 7.3423 3.1 21.03 2.32 19.78
S7 134494 13 96 51 0.5727 0.28 1.56 0.41 3.91
S34 122399 10 51 17 0.6144 0.11 1.46 0.31 1.73
S35 99829 9 50 16 0.3777 0.14 0.9 0.27 1.41
S37 595953 6 39 14 4.5050 1.78 7.28 2.11 10.64
S38 200245 18 112 44 0.70222 0.16 3.89 0.55 3.78
S40 414542 23 164 74 2.1820 0.48 9.01 1.24 7.26

Figure 21: Statistical results for our method. |T | is the number of tetrahedron in the mesh, |Sheet| the number of
dual sheets created, |Dual Zones| the number of dual zone generated and |B| the number of blocks extracted. avg,min
and max are respectively the average, minimal and maximal time for one sheet creation. validity is the time of our dual
validation algorithm and blocks the time for the blocks extraction algorithm. All times are given in seconds. Experiments
were made on a standard desktop computer.

395

traversed tetrahedron, their size has an obvious impact
on the result. For instance on Figure 22, the ”same”
dual sheet is created with two mesh resolutions. In (a)
with the coarser resolution the sheet creation process
stops when it hits a singularity line. In (b) with a re-
fined resolution, the gap between singularity lines and
the boundary is larger letting the dual sheet pass.

(a) (b)

Figure 22: Extraction of a ”same” dual sheet in a tetra-
hedral mesh of a geometric domain with two resolution
levels: coarser in (a) than in (b).

Figure 23 illustrates another impact of the mesh res-
olution on our algorithm. Contrary to the examples
of Figure 20, in both models of Figure 23, we have
introduced boundary dual sheets by following both the
frame field and the domain boundary. It is the case
of the red dual sheets in the left column. A boundary
dual sheet is created when we pick a tetrahedron along
the domain boundary and we select as a sheet direction
the normal to the surface. In this case, the dual sheet
extraction algorithm presented in Section 3.1 may fail
without adding this control. Indeed if the mesh resolu-
tion is too low, it may end up by hitting a singularity
line that is too close to the boundary.

As our approach consists in directly creating 3D dual
sheets, we can obtain 3D dual sheets bounded by sev-
eral loops that have different topologies. Two exam-
ples are given on Figure 25. For both of them, we don’t
know how the 3D dual sheets would be recovered from
the exhibited loops as done in [5, 6].

6.2 Wrong frame field configurations

The frame field is an input of our algorithm. As a
consequence, if the frame field does not fit the re-
quirement of hexahedral blocking, our algorithm fails
to generate a block structure. We currently distin-
guish two main issues that limit the application of
our algorithm8 : 3-5 singularity lines and ”ski-ramp”
configurations. The 3-5 singularity lines are known
characteristics of frame fields that do not correspond
to hexahedral block structure [26, 27]. Such a line

8This limitation is shared with other interactive ap-
proaches [5, 6] and automatic approaches that generate
block structures.

connects a 3-valent boundary singular point A to a 5-
valent singular point B. It means that this line should
correspond to a series of edges of the primal blocks
such as they would be adjacent to 3 hexahedra at A
and to 5 hexahedra at C. Such a transition is not
possible in a full-hex mesh without adding extra sin-
gularities. If you restrict the incident edges of a node
in a hexahedral mesh to be 3, 4 or 5-valent, authors of
[27] enumerate 11 topologically different interior node
types. Among those configurations, there is no config-
uration with only one 3-valent edge and one 5-valent
edge (others being regular 4-valent).

As a consequence, our approach only allow the user to
draw dual sheets far away from such a line (see Fig-
ure 24-left column), leading to an incomplete block so-
lution. Looking at the dual sheet structure (on middle-
left), we could expect to have more blocks generated
(on the bottom-left). If we relax some validity rules,
we can obtain a valid block structure that snaps the
singularity line along the boundary surface.

The ”ski-ramp” configuration corresponds to a
part of geometrical models that where a sur-
face is pinched forming a very narrow angle.
In such a situation, the frame field is to-
tally regular, i.e. has no singularity line.
As a consequence and
all the dual lines we
could build coming
from the left side of
the ski jumps follow
the parameterization
direction (blue lines)
and end up in the
single point on the right.It induces that our meshing
technique do not work in such a situation since two
lines end up at on the same geometric curve (see dual
structure on the top of Figure 26).

7. CONCLUSION

We have proposed an approach to build block hex-
ahedral meshes in an indirect interactive manner.
Starting from a 3D frame field, the user creates 3D
dual sheets and the proposed algorithm build a dual
structure that is eventually converted into hexahedral
blocks. This process is iterative and guided by valid-
ity rules the dual structure must respect. It has been
validated on several CAD models whose complexity
is similar to the ones presented in Section 6. It fun-
damentally differs from recent interactive attempt to
generate hexahedral blocks [5, 6] in the fact that we
directly handle 3D dual sheets. This difference induces
a totally different pipeline of algorithms and concepts:
dual zones, validity rules for the dual structure, pri-
mal blocks creations. In order to go further, we will
improve our approach following three main directions.

396

Figure 23: Dual structure (left), dual zones (middle) and final hexahedral blocks (right) for several models.

Figure 24: Because of a 3-5 singularity line (top-
left), dual sheets are not generated near the singularity
line (middle-left) and the block structure is incomplete
(bottom-left). By relaxing our validity rules for this type
of line, we can obtain a block structure that does not
strictly follow the frame field topology (rigth column).

Figure 25: Examples of 3D dual sheets bounded by sev-
eral boundary loops.

397

Figure 26: Example of a ”ski-ramp” configuration. The
dual structure is ill-formed with two dual sheets that al-
most merged together (top). Dual zones (bottom-left)
and obtained hexahedral blocks (bottom-right) are finally
incomplete.

Figure 27: Dual structure (left), dual zones (middle) and
final hexahedral blocks (right) for several models.

First, our dual sheet creation process requires a quite
refined mesh. When two singularity lines are separated
by only a few number of tetrahedra of T , or when a

singularity line is too close to the domain boundary,
it may happen that the user is unable to insert a dual
sheet in this area. We have provided a partial answer
by introducing a boundary dual sheet insertion pro-
cess, but we need a more global solution. Mesh adap-
tion techniques on T with frame field interpolation
seems reachable and would give the ability to adapt
the mesh when problematic situations occur. Another
option is to make the dual sheet creation algorithm
more precise on coarse meshes.

The second direction to go through is relative to in-
trinsic frame field limitations. A frame field input may
not corresponds to a valid hexahedral block structure.
It happens at least in two situations: (1) very sharp
regions with small angles (see Figure 26); (2) when a
singularity line connects a 3-type boundary singularity
point to a 5-type one (see Figure 24). For the former
case, we intend to add 3D interactors to ”cut” these
parts and replace them by an appropriate dual zone
directly. For the latter case, 3D interactors coupled
with a frame field modification algorithm should allow
us to get a valid dual structure.

The last direction is about user-guidance and interac-
tivity. We intend to provide support to the user when
the block structure is detected as being invalid. We
could also give to the user some suggestions of regions
where to a tetrahedron should be picked for creating
a dual sheet. Our current implementation can also be
drastically improved to get timings compatible with a
fluent interactive process (see Table 21 for our current
results).

398

Figure 28: Dual structure (left), dual zones (middle) and final hexahedral blocks (right) for several models.

References

[1] Slotnick J., Khodadoust A., Alonso J., Darmo-
fal D., William G., Elizabeth L., Mavriplis D.
“CFD Vision 2030 Study: A Path to Revolu-
tionary Computational Aerosciences, NASA/CR-
2014-218178, NF1676L-18332.” 2014

[2] Sokolov D., Ray N., Untereiner L., Lévy B.
“Hexahedral-Dominant Meshing.” ACM Trans.
Graph., vol. 36, no. 4, Jun. 2016

[3] Gao X., Jakob W., Tarini M., Panozzo D.
“Robust Hex-dominant Mesh Generation Using
Field-guided Polyhedral Agglomeration.” ACM

399

Trans. Graph., vol. 36, no. 4, 114:1–114:13, Jul.
2017

[4] Ray N., Sokolov D., Reberol M., Ledoux F., Lvy
B. “Hex-dominant meshing: Mind the gap!”
Computer-Aided Design, vol. 102, 94–103, 2018

[5] Takayama K. “Dual Sheet Meshing: An Inter-
active Approach to Robust Hexahedralization.”
Computer Graphics Forum, 2019

[6] Zheng Z., Wang R., Gao S., Liao Y., Ding M.
“Dual Surface Based Approach to Block Decom-
position of Solid Models.” Proceedinds of the 26th
International Meshing Roundtable, 2018

[7] Huang J., Tong Y., Wei H., Bao H. “Bound-
ary aligned smooth 3D cross-frame field.” ACM
Trans. Graph., vol. 30, no. 6, 143:1–143:8, 2011

[8] Kowalski N., Ledoux F., Frey P. “Block-
structured Hexahedral Meshes for CAD Models
Using 3D Frame Fields.” Procedia Engineering,
vol. 82, 59–71, 2014

[9] Kowalski N., Ledoux F., Frey P. “Smoothness
Driven Frame Field Generation for Hexahedral
Meshing.” Comput. Aided Des., vol. 72, no. C,
65–77, Mar. 2016

[10] Ray N., Sokolov D., Lévy B. “Practical 3D
Frame Field Generation.” ACM Trans. Graph.,
vol. 35, no. 6, 233:1–233:9, Nov. 2016. URL
http://doi.acm.org/10.1145/2980179.2982408

[11] Nieser M., Reitebuch U., Polthier K.
“CubeCover- Parameterization of 3D Vol-
umes.” Comput. Graph. Forum, vol. 30, no. 5,
1397–1406, 2011

[12] Li Y., Liu Y., Xu W., Wang W., Guo B. “All-
hex Meshing Using Singularity-restricted Field.”
ACM Trans. Graph., vol. 31, no. 6, 177:1–177:11,
Nov. 2012

[13] Timothy J. Tautges S.E.K., Rickmeyer T.J.
“Local Topological Modifications of Hexahedral
Meshes; Part I: A Set of Dual-Based Operations.”
ESAIM Proceedings Cemracs 2007, vol. 24, pp.
14–33. 2008

[14] Jurkova K., Ledoux F., Kuate R., Rickmeyer T.,
Tautges T.J., Zorgati H. “Local Topological Mod-
ifications of Hexahedral Meshes; Part II: Combi-
natorics and Relation To Boy Surface.” ESAIM
Proceedings Cemracs 2007, vol. 24, pp. 34–45.
2008

[15] Ledoux F., Shepherd J.F. “Topological and geo-
metrical properties of hexahedral meshes.” Engi-
neering with Computers, vol. 26, no. 4, 419–432,
2010

[16] Ledoux F., Shepherd J.F. “Topological modifica-
tions of hexahedral meshes via sheet operations:
a theoretical study.” Engineering with Comput-
ers, vol. 26, no. 4, 433–447, 2010

[17] T.J Tautges T.B., Mitchell S. “The Whisker
Weaving Algorithm: A Connectivity-based
Method for Constructing All-Hexahedral Finite
Element Meshes.” International Journal For Nu-
merical Methods in Engineering, vol. 39, 3327–
3349, 1996

[18] Folwell N., Mitchell S. “Reliable Whisker Weav-
ing via Curve Contraction.” proceedings of the
7th International Meshing Roundtable, pp. 365–
378. 1998

[19] Ledoux F., Weill J.C. “An extension of the reli-
able whisker weaving algorithm.” Proceedings of
the 16th International Meshing Roundtable, pp.
215–232, 2008

[20] Muller-Hannemann M. “Shelling Hexahedral
Complexes for Mesh Generation.” Journal of
Graph Algorithms and Applications, vol. 5, no. 5,
59–91, 2001

[21] Kremer M., Bommes D., Lim I., Kobbelt L.
“Advanced Automatic Hexahedral Mesh Gener-
ation from Surface Quad Meshes.” 22nd In-
ternational Meshing Roundtable. Springer-Verlag,
Berlin, 2013

[22] Kowalski N., Ledoux F., Staten M.L., Owen S.J.
“Fun sheet matching: towards automatic block
decomposition for hexahedral meshes.” Engineer-
ing with Computers, vol. 28, 241–253, 2012

[23] Staten M.L., Shepherd J.F., Ledoux. F., Shi-
mada K. “Hexahedral Mesh Matching: Convert-
ing non-conforming hexahedral-to-hexahedral in-
terfaces into conforming interfaces.” Interna-
tional journal for numerical methods in engineer-
ing, vol. 82, no. 12, 1475–1509, 2010

[24] Livesu M., Pietroni N., Puppo E., Sheffer A.,
Cignoni P. “Loopy Cuts: Surface-Field Aware
Block Decomposition for Hex-Meshing.” CoRR,
2019

[25] Geuzaine C., Remacle J.F. “Gmsh: A 3-D finite
element mesh generator with built-in pre- and
post-processing facilities.” International Journal
for Numerical Methods in Engineering, vol. 79,
1309 – 1331, 2009

[26] R. Viertel M.S., Ledoux F. “Analysis of
Non-Meshable Automatically Generated Frame
Fields.” Research Note in the 25th Inter-
national Meshing Roundtable. Springer-Verlag,
Berlin, 2016

400

[27] Liu H., Zhang P., Chien E., Solomon J., Bommes
D. “Singularity-constrained Octahedral Fields
for Hexahedral Meshing.” ACM Trans. Graph.,
vol. 37, no. 4, 93:1–93:17, Jul. 2018

401

