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ABSTRACT

One challenge in the generation of high-order meshes is that mesh tangling can occur as a consequence of moving
the new boundary nodes to the true curved boundary. In this paper, we propose a new optimization-based method
that uses signed angles to untangle invalid second- and third-order triangular meshes. Our proposed method consists
of two passes. In the first pass, we loop over each high-order interior edge node and minimize an objective function
based on the signed angles of the pair of triangles that share the node. In the second pass, we loop over face nodes
and move them to the mean of the high-order nodes of the triangle to which the face node belongs. We present several
numerical examples in two dimensions with second- and third-order elements that demonstrate the capabilities of our
method for untangling invalid meshes.

Keywords: high-order mesh untangling, optimization, curvilinear triangular meshes

1. INTRODUCTION

One appealing aspect of high-order methods for solv-
ing partial differential equations is their ability to
obtain more accurate solutions with a lower compu-
tational overhead than the corresponding low-order
methods. One barrier to the adoption of these meth-
ods in the presence of curved domains is the lack
of software capable of robustly generating high-order
meshes [1]. In particular, to achieve the full potential
of high-order methods in the presence of curved do-
mains, these methods need to be paired with a high-
order mesh that conforms to the curved domain [2, 3].

The typical approach used by high-order mesh gener-
ation methods is to apply a transformation to a coarse

low-order mesh [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19]. The main difficulty in applying the
transformation is obtaining a valid high-order mesh as
the result. In general, these methods consist of the
following three steps: (1) additional nodes are added
to the low-order mesh; (2) the newly-added bound-
ary nodes are projected onto the curved domain, and
(3) the interior nodes are moved as a result of the
boundary deformation. There are generally two ap-
proaches which are especially popular for transform-
ing the low-order mesh. The first approach transforms
the mesh based on optimization of an objective func-
tion [4, 6, 7, 11, 12, 14, 15, 16, 17, 20, 21]. Many of
the proposed objective functions include a measure of
element validity, which allows the methods to address
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invalid elements. While not all of the methods guar-
antee successful untangling, many of them are robust
[4, 6, 7, 11, 12, 17]. The second approach transforms
the mesh based on the solution of a partial differen-
tial equation [5, 8, 10, 19]. More specifically, Xie et
al. [19] employed a linear elasticity approach, while
Persson and Peraire [10] considered a nonlinear elas-
ticity approach. Moxey et al. [8] used a thermoelastic
model, and Fortunato and Persson [5] expressed the
problem in terms of the Winslow equations.

In this paper, we describe a new two-pass method for
untangling invalid second- and third-order triangular
meshes. The first pass is an optimization-based ap-
proach that minimizes an objective function based on
signed angles for each high-order interior edge node.
The second pass is a smoothing step for the face nodes.
The main focus of this work is to untangle invalid
meshes that result from the boundary curving step of
a typical high-order mesh generation method. Toward
that end, we apply our method to several second- and
third-order meshes that have invalid elements follow-
ing the boundary curving process. The remainder of
this paper is organized as follows. In Section 2, we
present our new two-pass method for high-order mesh
untangling. In Section 3, we demonstrate the perfor-
mance of our method on several two dimensional ex-
amples. Finally, in Section 4, we offer concluding re-
marks and discuss some directions for our future work.

2. UNTANGLING HIGH-ORDER
CURVILINEAR MESHES

In this section, we propose a two-pass local node-
based method for untangling high-order curvilinear
triangular meshes. The first pass is based on the
signed angles of curvilinear triangles, where a negative
angle indicates tangling. For each iteration of the
problem, we consider a high-order interior edge
node. Then, we identify the two triangles that share
the node and examine the four angles made by the
tangent vectors adjacent to that edge. Our algorithm
then moves the high-order edge node with the goal
of making these angles positive. In our first pass,
we solve the following unconstrained optimization
problem:

f(x) = (1− β)||x− xI||2 + β

4∑
i=1

e−10∗αi(x),

x∗ = argmin
x

f(x). (1)

where αi is the ith entry of the vector of the four signed
angles adjacent to a given interior edge; x is the nodal
position of the high-order edge node to be moved; xI

is the initial position of the node at the start of the
optimization, and β is a user-defined weighting param-

eter. By changing the value of β, more emphasis can
be applied to the angles or the displacement of the
node from its initial position. Note, if too much em-
phasis is placed on the displacement of the node, then
the norm will dominate the objective function values,
and the mesh will not be untangled.

To better understand the behavior of the objective
function, consider the examples shown in Fig. 1 and
the corresponding values shown in Fig. 2(a). The β
value in this example was 0.35. In Fig. 1(a), we show
the initial tangled mesh. At this point, the first term
of f(x) is zero because the interior node has not been
moved. The second term will thus dominate the value
of f(x). In Fig. 1(b), we show the mesh after applying
two iterations of the optimization method. As we see
in the first two rows of Fig. 2(a), in both examples, the
exponential term is the primary contributor to f(x)
because of α3, the negative angle. In Fig. 1(c,d), we
see that the impact of the exponential term decreases
as the values of the angles increase (e.g., from nega-
tive to positive) after four and nine iterations, respec-
tively. In other words, the second term in f(x) acts as
a penalty function to enforce positive angles (i.e., an
untangled mesh). Once the angles become sufficiently
positive, then the first term in f(x) becomes a larger
contributor to the overall value of f(x). The goal of
this term is to reduce the amount of displacement for
a given node by minimizing the node’s distance from
its initial location.

To find a local minimum of our unconstrained opti-
mization problem, we use a derivative-free method.
We do so because of the complexity of evaluating f(x),
specifically, the signed angle calculations. In partic-
ular, to solve our optimization problem, we use the
Nelder-Mead simplex method [22]. For the motiva-
tional example in Fig. 1, a relaxed convergence tol-
erance of 0.01 was used for the Nelder-Mead simplex
method. For all of our examples in the next section,
the tolerance and maximum number of iterations for
Nelder-Mead were 0.0001 and 400, respectively. Con-
vergence is reached when the change in function values
and the step size both satisfy the tolerance.

As described in [22], the Nelder-Mead simplex method
is a direct search method that maintains a simplex at
each step of the method. This simplex is defined by
n + 1 vertices and the corresponding function values,
where n is the dimension of the problem space. Before
moving forward, let us introduce the following nota-
tion for the description of the 2D method. Let the ver-
tices of the current simplex be represented as v1, v2,
and v3. In addition, denote their corresponding func-
tion values f(v1), f(v2), and f(v3). Given these defini-
tions, each iteration of a typical Nelder-Mead method
consists of the following steps. First, the vertices are
ordered from the lowest function value, say f(v1), to
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their highest function value, say f(v3). Second, the
midpoint m of the best side of the simplex is com-
puted, i.e., the side opposite v3. Third, a new simplex
is computed from the current one using reflection, ex-
pansion, or contraction steps. In Fig. 3, we show
examples of the reflection, expansion, and contraction
steps, denoted by r, e, and co/ci, respectively. We
also illustrate the current simplex with a solid black
line and the simplices computed via the operations in
dashed black lines. To compute the new simplex, an
attempt is made to replace v3 by reflecting the vertex
about the best side. If the reflected vertex r leads to a
decrease in the objective function, then an attempt is
made at further reduction by computing an expansion
vertex e. If f(e) < f(r), then v3 is replaced with e.
Otherwise, v3 is replaced with r. If the reflected vertex
does not lead to a decrease in the objective function,
then r is contracted back to co, and the function values
are compared again. If this step fails to decrease the
function, then co is reflected about the best edge to
get ci. If all of these steps are unsuccessful, then the
simplex is shrunk toward vertex v1, and a new sim-
plex is formed with v1, m, and the midpoint between
v1 and v3

After minimizing the objective function for every high-
order interior edge node (i.e., completing the first pass
of our untangling algorithm), we perform a second pass
to move the non-edge nodes. In this pass, for each
non-edge node, we move the node to the mean of the
high-order nodes of the triangle to which it belongs.
To better motivate the need for two passes, we have
included an example in Fig. 4. In Fig. 4(a), we show
the initial tangled mesh. In Fig. 4(b), we show the
mesh after completing the first pass of our method.
Since the objective function applied in the first pass
is formulated in terms of angles between edges, which
do not apply to face nodes, the first pass neglects to
improve the quality of these elements with respect to
their face nodes. Thus, a face node’s close proximity
to the edge of its element could result in an invalid
element. To address this kind of situation, we have
included the second pass as shown in Fig. 4(c). This
pass moves the face nodes toward the interior of the
elements to which they belong. These two passes are
performed until a tolerance is satisfied. In Alg. 1,
we provide a pseudocode description of our untangling
method. In the next section, we discuss how the signed
angles αi(x) of the curved elements are calculated.

2.1 Computing the signed angles of curvi-
linear triangles

To compute the angle between two curves at a given
node, we compute the derivatives of the curves, eval-
uate the derivatives at the given node, and then com-
pute the angle between the resulting tangent vectors.

(a)

(b)

(c)

(d)

Figure 1: Motivating example: (a) the initial tangled
mesh, (b) the mesh resulting from our method after
two iterations, (c) the mesh resulting from our method
after four iterations, and (d) the final mesh resulting
from our converged method.
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Iteration
Number

Term 1 Term 2 f(x)

0 0.0000 29.1931 29.1931

2 0.0812 4.9445 5.0257

4 0.3096 0.1620 0.4716

9 0.2538 0.1963 0.4501

(a)

(b)

Figure 2: Figure showing (a) the contributions of
each term in f(x) during different iterations of the
optimization method, and (b) a convergence plot of
our method applied to the example in Fig. 1.

Figure 3: The current simplex marked by a solid
line, and the simplices computed using the reflection,
expansion, and contraction inside/outside operations
during a single iteration of a typical Nelder-Mead
method.

(a)

(b)

(c)

Figure 4: Motivating example for two pass approach:
(a) the initial tangled mesh, (b) the mesh after com-
pleting the first pass with impacted nodes shown in
red, and (c) the mesh after completing the second pass
with influenced nodes shown in red.
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Algorithm 1 Pseudocode for our node-based mesh
untangling method

X0 = the zero matrix
X1 = the matrix of node positions at iteration 1

while ||X
k−Xk−1||F
||Xk||F > 10−4 do

First Pass:
for each high-order interior edge node i do

1. Find the two triangles t1 and t2 which share
node i
2. Solve (1) for x∗ using Nelder-Mead simplex
method [22]
3. Update nodal position i to x∗

end for
Second Pass:
for each high-order interior face node i do

1. Find the triangle t1 which contains node i
2. Update nodal position i to the mean of t1’s
high-order edge nodes

end for
Xk+1 = the matrix with updated node positions

end while

Using this approach, we compute the angles between
each pair of edges of curvilinear triangles. For the
following derivation, we use the third-order Lagrange
element. The derivation for other orders is similar.

Consider the third-order Lagrange triangle shown in
Fig. 5. To compute the angles between each pair of
edges, we need to define mappings from each node on
the edges of the reference element to the corresponding
node on the edges of the physical element. Each edge
corresponds to a third-order Lagrange element in one
dimension. The shape functions associated with these
elements are defined as:

n1(t) =
9

2
(1− t)

(
2

3
− t
)(

1

3
− t
)
,

n2(t) =
27

2
(1− t)

(
2

3
− t
)

(t) ,

n3(t) =
27

2
(1− t)

(
1

3
− t
)

(−t) ,

n4(t) =
9

2

(
2

3
− t
)(

1

3
− t
)

(t) .

The derivatives of these shape functions with respect
to t are given by:

n1
′(t) =

1

2

(
−11 + 36t− 27t2

)
,

n2
′(t) =

1

2

(
18− 90t+ 81t2

)
,

n3
′(t) =

1

2

(
−9 + 72t− 81t2

)
,

n4
′(t) =

1

2

(
2− 18t+ 27t2

)
.

Figure 5: Third-order Lagrange reference unit trian-
gle

Using these shape functions, we can define the map-
pings from each edge in the reference element to each
edge in the physical element as:

f12(t) = x1n1(t) + x4n2(t) + x5n3(t) + x2n4(t),

f23(t) = x2n1(t) + x6n2(t) + x7n3(t) + x3n4(t),

f31(t) = x3n1(t) + x8n2(t) + x9n3(t) + x1n4(t).

The notation fij denotes the edge between nodes i
and j in Fig. 5. Now that we have the mappings,
we need to compute the derivatives of our functions.
Taking the derivative with respect to t results in the
following:

f12
′(t) = x1n1

′(t) + x4n2
′(t) + x5n3

′(t) + x2n4
′(t),

f23
′(t) = x2n1

′(t) + x6n2
′(t) + x7n3

′(t) + x3n4
′(t),

f31
′(t) = x3n1

′(t) + x8n2
′(t) + x9n3

′(t) + x1n4
′(t).

Given these derivatives, we can return to the problem
of calculating the angles between edges. As an
example, suppose that we want to calculate the angle
between edge e12 and edge e31 in Fig. 5. To calculate
the unsigned angle in radians, we could use the
following formula:

θ = arccos

(
−f12′(0) · f31′(1)

||f12′(0)|| ||−f31′(1)||

)
=
π

2
.

In order to calculate the signed angle in radians,
we need to modify our calculations. First, we need
to include an orientation unit vector n. Then we
need to modify our tangent vectors by adding a third
component with a value of zero so that the cross
product is defined, as well as normalize them. With
these modifications, we can compute the signed angle
using the following formula:

signed angle = sgn(n · (v1× v2)) · arccos (v1 · v2)

where

v1 =
[f12

′(0), 0]

|| [f12′(0), 0] ||2
,

v2 =
[−f31′(1), 0]

||[−f31′(1), 0]||2
,

n = [0, 0, 1].
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3. NUMERICAL RESULTS

In this section, we demonstrate the results from apply-
ing our method to untangle several high-order meshes.
In each example, the nodes are processed in the order
in which they occur in the original mesh. While we
have explored other node orderings and found that the
order does impact the number of outer iterations re-
quired for convergence, we note that this ordering does
not influence the final resulting mesh. For each exam-
ple, we provide a description of the mesh, the initial
mesh (with tangled elements shown in red), the mesh
which results from applying our untangling method,
and the mesh element distortion as measured by the
scaled Jacobian:

scaled Jacobian =
min J(ξ)

max J(ξ)
,

where J(ξ) is the Jacobian determinant. When
reporting the mesh distortion, we list the minimum
distortion and maximum distortion values. We also
list the execution times for our untangling method
(excluding I/O) in Table 1. The method was imple-
mented in C++, and the wall-clock execution times
were measured on a machine with 16GB of RAM and
an AMD Ryzen 7 1700 CPU. All mesh visualizations
and distortion evaluations were done using Gmsh
[23, 24, 25].

In our first example, we use a simple annulus geometry
consisting of 30 elements to show the impact of differ-
ent values of β on the result. In Fig. 6(a), we show the
initial mesh with two tangled elements. In Fig. 6(b-
d), we show the meshes resulting from β values of 0.1,
0.5, and 0.9, respectively. In Fig. 6(e), we show the
min and max element distortions and execution times
for each of the three values of β. As expected, higher
values of β place more emphasis on the angular com-
ponent of the objective function which tends to result
in larger displacements of the edge nodes. Initially,
increasing the value of β from 0.1 to 0.5 led to better
elements with respect to distortion. Beyond 0.5, ad-
ditional emphasis on the angles resulted in increased
element distortion. For the remaining examples in
this section, we report the value of β that resulted
in the mesh with the least distortion. We also plot
histograms of the mesh element distortion in addition
to reporting the maximum and minimum values.

In the second example, we applied our method to a
simple 2D mechanical part consisting of 295 second-
order elements. Curving the boundaries resulted in
two tangled elements near the innermost boundary.
The initial tangled mesh and resulting untangled mesh
are shown in Fig. 7(a,b). The minimum and maximum
distortion values for these meshes are shown in Fig.
7(c). Finally, we plot histograms for these distortion

values in Fig. 7(d,e). In this case, our solution raised
the minimum distortion value of the mesh from -0.178
to 0.228.

In our third example, we use a simplified bike gear with
672 second-order elements. In contrast with our previ-
ous examples, this mesh has several stretched elements
near the boundaries which increase the potential for
tangled elements after curving the boundaries. The
initial tangled mesh and untangled mesh are shown in
Fig. 8(a,b). Close-up views of the top third of the
mesh are depicted in Fig. 8(c,d). The minimum and
maximum distortion values for this mesh are recorded
in Fig. 8(e). Lastly, histograms of the distortion val-
ues are plotted in Fig. 8(f,g). In this case, our method
increased the minimum distortion value from -1.730 to
0.211, thus untangling the initial mesh.

As our last simplified example, we use a pressure plate
consisting of 529 second-order elements. After curv-
ing the boundaries, six tangled elements were created
along the holes in the top and bottom of the geometry.
Fig. 9(a,b) show the original tangled mesh and the
untangled mesh resulting from our method. We show
detailed views of the center of (a,b) in Fig. 9(c,d),
respectively. In Fig. 9(e) we give the minimum and
maximum mesh element distortion values. Finally in
Fig. 9(f,g) we plot histograms of the distortion values.
For this example, our method increased the minimum
distortion value from -0.178 to 0.345.

For our remaining examples, we progress to more re-
alistic meshes with a larger number of elements. The
first example is a third-order gear composed of 1340 el-
ements, eight of which are tangled. In Fig. 10(a,b) we
show the initial tangled mesh and the final mesh pro-
duced by our untangling algorithm. In Fig. 10(c,d)
we show detailed views of the center holes in (a,b),
respectively. The minimum and maximum mesh ele-
ment distortion values are listed in Fig. 10(e). Finally
in Fig. 10(f,g) we plot histograms of the distortion
values. After applying our method, the minimum dis-
tortion value increased from -0.122 to 0.092.

Our next example is a brake rotor composted of 7015
second-order elements, thirty-four of which are tan-
gled. In Fig. 11(a,b) we show the initial tangled mesh
and the final mesh produced by our untangling algo-
rithm. In Fig. 11(c,d) we show detailed views of the
center holes in (a,b), respectively. The minimum and
maximum mesh element distortion values are listed in
Fig. 11(e). Finally in Fig. 11(f,g) we plot histograms
of the distortion values. After applying our method,
the minimum distortion value increased from -0.156 to
0.346.

Finally, our last example is an anisotropic boundary
layer mesh of an airfoil. This example is a modified
version of an example taken from the 2D benchmarks
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(a) (b)

(c) (d)

Distortion

Beta Min Max Runtime (s)

0.1 0.208 1.000 0.004

0.5 0.472 1.000 0.005

0.9 0.348 1.000 0.014

(e)

Figure 6: Annulus example with three different β values: (a) the initial mesh with two tangled elements; (b) to (d)
untangled meshes for β values of 0.1, 0.5, and 0.9, respectively, and (e), shows the minimum and maximum element
distortions and runtimes for each value of β.
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(a) (b)

Distortion

Example Min Max

original mesh -0.178 1.000

resulting mesh 0.228 1.000

(c)

(d) (e)

Figure 7: Mechanical part example: (a) the initial second-order mesh with two tangled elements; (b) the untangled
mesh resulting from our method; (c) the minimum and maximum element distortion, and (d,e) histogram plots of
the distortion metric for each mesh.
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(a) (b)

(c) (d)

Distortion

Example Min Max

original mesh -1.730 1.000

resulting mesh 0.211 1.000

(e)

(f) (g)

Figure 8: Bike gear example: (a) the tangled second-order mesh with fourteen tangled elements; (b) the mesh
resulting from our method; (c,d) detailed views of (a,b), respectively; (e) the minimum and maximum element
distortion, and (f,g) histogram plots of the distortion metric for (a,b), respectively.
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(a) (b)

(c) (d)

Distortion

Example Min Max

original mesh -0.178 1.000

resulting mesh 0.345 1.000

(e)

(f) (g)

Figure 9: Pressure plate example: (a) the tangled second-order mesh; (b) the mesh resulting from our method; (c,d)
detailed views of (a,b), respectively; (e) the minimum and maximum element distortion, and (f,g) histogram plots of
the distortion metric for each mesh.
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(a) (b)

(c) (d)

Distortion

Example Min Max

original mesh -0.122 1.000

resulting mesh 0.092 1.000

(e)

(f) (g)

Figure 10: Gear example: (a) the initial third-order mesh with eight tangled elements; (b) the mesh resulting from
our method; (c,d) detailed views of (a,b), respectively; (e) the minimum and maximum element distortion, and (f,g)
histogram plots of the distortion metric for (a,b), respectively.
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(a) (b)

(c) (d)

Distortion

Example Min Max

original mesh -0.156 1.000

resulting mesh 0.346 1.000

(e)

(f) (g)

Figure 11: Brake rotor example: (a) the initial second-order mesh with thirty-four tangled elements; (b) the mesh
resulting from our method; (c,d) detailed views of (a,b), respectively; (e) the minimum and maximum element
distortion, and (f,g) histogram plots of the element distortion metric for (a,b), respectively.
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(a)

(b)

Distortion

Example Min Max

original mesh -0.109 1.000

resulting mesh 0.053 1.000

(c)

Figure 12: Airfoil example: (a) the initial third-order mesh with two tangled elements near the leading edge; (b)
the mesh resulting from our method, and (c) the minimum and maximum element distortion.
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Runtime (s)

Example Number of
Elements

Mesh
Order

β Number of
Iterations

First Pass Second Pass

annulus 30 3 0.500 2 0.005 0.000

mechanical part 295 2 0.500 2 0.041 —

bike gear 672 2 0.035 5 0.321 —

pressure plate 529 2 0.350 5 0.249 —

gear 1340 3 0.950 8 11.323 0.005

brake rotor 7015 2 0.850 2 19.643 —

airfoil 5328 3 0.001 2 24.039 0.005

Table 1: The number of elements, mesh order, beta value, number of outer iterations, and the wall clock times for
each pass our untangling method (excluding I/O) for each example. Since the second-order meshes do not utilize the
second pass, the columns are marked with a dash.

in the Gmsh repository. The mesh contains 5328 el-
ements, with two tangled elements along the leading
edge. In Fig. 12(a,b) we show the initial tangled mesh
and the final mesh produced by our untangling algo-
rithm. The minimum and maximum mesh element
distortion values are listed in Fig. 12(c). The his-
togram plots for this example were omitted because
there was minimal distinction between the two plots
given the small percentage of tangled elements. After
applying our method, the minimum distortion value
increased from -0.109 to 0.053.

As we illustrated in Fig. 6, there are usually several
choices for the parameter β that will result in an un-
tangled mesh. As shown in Table 1, the trend we
have observed thus far is that smaller values of β per-
form better for meshes with stretched elements near
the curved features like our examples in Figs. 8 and 12.
In particular, a smaller value of β was critical to main-
taining the boundary layers in Fig. 12. Further exper-
iments are necessary to determine what other factors
influence the optimal value for β. The goal of these
test cases was to explore the types of tangling that oc-
cur as a result of small deformations (e.g., moving the
new boundary nodes onto the curved boundary dur-
ing the typical high-order mesh generation process).
With that in mind, our examples demonstrate that
our method successfully addresses the typical types of
tangling seen in this scenario. In addition to untan-
gling the invalid patches, our method tends to reduce
the amount of element distortion in all of our exam-
ples. In addition, there is potential to improve the
performance of our method using parallel computing,
as our local method can be applied to non-adjacent
patches simultaneously.

4. CONCLUDING REMARKS AND
FUTURE WORK

We have presented a new optimization-based method
for untangling second- and third-order triangular

meshes. The two-dimensional examples have shown
that our proposed method based on signed angles
is able to successfully untangle a variety of invalid
second- and third-order meshes. Furthermore, our
method tends to dramatically decrease the amount
of element distortion present in the mesh. As our fi-
nal example in Section 3 showed, the addition of the
weighting parameter gives the user increased flexibility
in defining the behavior of the objective function. One
limitation of our method is that it does not move the
low-order nodes. To address this, we plan to combine
our untangling algorithm with a weight-based scheme
like the one proposed in [14]. By combining these two
approaches, we could use the weight-based scheme to
move the low-order nodes, and the method we have
proposed in this paper to move the high-order nodes.

Our future work will include exploring techniques for
determining the ideal value of the weighting parameter
β. We will also extend our implementation to untangle
meshes composed of elements with p > 3. In addition,
we plan to extend the capabilities of our method to
three dimensions by using signed solid angles between
curved faces of high-order tetrahedral elements. We
also plan to add support for additional element types
(e.g., quadrilaterals, etc). Finally, we plan to explore
examples with larger deformations that result in more
complicated mesh tangling.
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