
ACCELERATING THE EXACT EVALUATION OF
GEOMETRIC PREDICATES WITH GPUS

Marcelo de Matos Menezes1 Salles Viana Gomes de Magalhães2

Matheus Aguilar de Oliveira3 W. Randolph Franklin4

Rodrigo Eduardo de Oliveira Bauer Chichorro5

1Universidade Federal de Viçosa (MG) Brasil, marcelo.menezes@ufv.br
2Universidade Federal de Viçosa (MG) Brasil, salles@ufv.br

3Universidade Federal de Viçosa (MG) Brasil, matheus.a.aguilar@ufv.br
4Rensselaer Polytechnic Institute, Troy NY, USA, mail@wrfranklin.org
5Universidade Federal de Viçosa (MG) Brasil, rodrigo.chichorro@ufv.br

ABSTRACT

This paper presents a technique for employing high-performance computing for accelerating the exact evaluation of
geometric predicates. Arithmetic filters are implemented using interval arithmetic to reduce the necessity of exact
arithmetic while ensuring the results of the predicates are still exact. Furthermore, the computation with interval
arithmetic is offloaded to a CUDA-enabled GPU. If the GPU detects that some results cannot be trusted, the
corresponding predicates are re-evaluated in parallel on the CPU using arbitrary-precision rational numbers. As a
case study, a red-blue segment intersection algorithm has been implemented. Since the intervals are implemented
using floating-point numbers, the parallel computing power of GPUs for processing these numbers led to a speedup
of up to 289 times (when compared against a similar sequential implementation) in the evaluation of these predicates
(and up to 40 times if the entire runnning-time of the algorithm is considered). The excellent performance associated
to the exactness makes this technique suitable for accelerating geometric operations in fields such as CAD, GIS and
VLSI design.

Keywords: computational geometry, exact computation, high-performance computing, GPU, CUDA

1. INTRODUCTION

A particular challenge in computational geometry
problems is to address the errors caused by floating-
point arithmetic. Inexact floating-point numbers vi-
olate most of the axioms of an algebraic field. For
example, addition is not associative. Roundoff errors
cause topological errors, such as causing an orientation
predicate to report a point to be on the wrong side of
a line segment. These errors may propagate to higher-
level operations (such as using orientation predicates
to compute a convex hull), what makes the design of
correct algorithms even harder.

While there are heuristics (such as epsilon-tweaking

and snap rounding) that try to solve this, they are not
guaranteed to always work.

A technique to guarantee computation will be free
from round-off errors is representing the coordinates
with exact arbitrary-precision rational numbers. The
drawback is that in some applications the overhead as-
sociated to these numbers may be unacceptable. Also,
the number of digits in the numerator and denomina-
tor of these numbers grow as arithmetic operations are
performed (the size is typically the sum of the number
of digits in the operands) and, thus, performance may
degrade if the computation tree is deep.

Some techniques have been proposed to cope with this

209

performance problem. Namely, arithmetic filters us-
ing interval arithmetic represent each exact number
e as an interval of floating-point values containing e.
Thanks to guarantees of the IEEE-754 floating-point
standard, for each arithmetic operation a new inter-
val (which is guaranteed to contain the exact result
of that operation) can be computed. Thus, predicates
can be initially evaluated using intervals. If it is de-
tected that the exact result of that predicate can be
inferred from the bounds of the interval, this result is
computed. Otherwise, the expression is re-evaluated
using exact arithmetic (or intervals with more precise
number types). As mentioned in [1], most of the time
computation with intervals is enough to infer the ex-
act result and, thus, predicates can be efficiently and
exactly evaluated without the overhead of exact com-
putation.

While recently the computing capabilities of desktop
computers and workstations have increased due to
multi-core processors and accelerators such as GPG-
PUs (General Purpose Graphics Processing Unit) and
MICs (Many Integrated Core Architecture), many al-
gorithms are still designed considering sequential ar-
chitectures and, thus, they cannot take advantage of
this computing power.

In this paper, we propose the use of a combination of
GPUs and multi-core CPUs to accelerate the evalua-
tion of exact predicates using arithmetic filters. Dur-
ing the parallel evaluation of predicates, the opera-
tions with intervals are offloaded to a GPU. Then, the
(few) unreliable results are filtered and re-evaluated
in parallel on the CPU using multiple-precision ratio-
nals. As a result, both high-efficiency and exactness
are achieved.

To obtain performance, the algorithms being acceler-
ated should be adapted so that the geometric pred-
icates are evaluated in batch. For example, consider
the problem of computing the intersection of two trian-
gulated meshes. One critical step consists in, given a
set of pairs of potentially intersecting triangles, deter-
mine which ones do intersect. Since the intersection of
two triangles can be computed using orientation pred-
icates, this algorithm could create a list of these predi-
cates and offload their evaluation to the GPU in batch.

The performance and correctness make this technique
suitable, for example, for processing large datasets
(where the chance of failure in inexact algorithms is
higher) in interactive applications such as GIS and
CAD systems.

As a case study, we have developed a fast and exact
algorithm for detecting red-blue intersections between
two sets of edges in 2D. We intend to also apply these
techniques to accelerate the solution of other impor-
tant problems such as performing boolean operations

on polygonal maps or polyhedral meshes.

2. BACKGROUND

2.1 Roundoff errors

Non-integer numbers are typically approximately rep-
resented in computers with floating-point values. The
difference between the value of a non-integer number
and its approximation is often referred as roundoff er-
ror. Even though these differences are usually small,
these errors accumulate as sequences of arithmetic op-
erations are performed. The presence of floating point
errors in computer programs often creates serious con-
sequences in diverse fields such as the failure of the
first Ariane V rocket [2] and the failure of the Patriot
missile defense system [3].

In geometry, roundoff errors can generate topological
inconsistencies causing globally impossible results. For
example, if the point of intersection of two lines seg-
ments is computed, the result may not lie in any of the
two lines. Kettner et al. [4] presented some examples
of failures caused by roundoff errors in computational
geometry problems. In this study, they presented ex-
amples of how the evaluation of orientation predicates
can be affected by floating-point errors. As a result,
algorithms (such as one for computing convex hulls)
relying on these predicates may fail.

The planar orientation predicate is the problem of
finding whether three points p = (px, py), q = (qx, qy),
r = (rx, ry) are collinear, make a left turn, or make a
right turn. This predicate is computed by evaluating
the sign of the following determinant:

∣∣∣∣∣∣
px py 1
qx qy 1
rx ry 1

∣∣∣∣∣∣
Positive, negative and zero signs mean that (p, q, r), re-
spectively, make a left turn, right turn or are collinear.
Roundoff errors may make the sign of this deter-
minant to be evaluated wrongly, mis-classifying the
orientation. To illustrate this problem, Kettner et
al. [4] implemented a program to apply the planar
orientation predicate (orientation(p, q, r)) on a point
p = (px + xu, py + yu) where u is the step between
adjacent floating point numbers in the range of p and
0 ≤ x, y ≤ 255. This results in a 256 × 256 matrix
containing either blue, yellow and red points meaning
that the corresponding point is detected to be above,
on or below the line that passes through q and r.
Figure 1 shows the geometry of this experiment for
p = (0.5, 0.5), u = 2−53, q = (12, 12) and r = (24, 24).
As it can be seen, several points have their orientation
computed incorrectly.

210

Figure 1: Roundoff errors in the planar orientation prob-
lem - Geometry of the planar orientation predicate for
double precision floating point arithmetic. Yellow, red
and blue points represent, respectively, collinear, nega-
tive and positive orientations. The diagonal line is an
approximation of the segment (q, r). Source: [4].

As shown by [4], these inconsistent results in the orien-
tation predicates could make algorithms that use this
predicate to fail.

Some techniques have been proposed to handle this
problem. The simplest one, the epsilon-tweaking, con-
sists of using an ε tolerance that considers two values
x and y are equal if |x − y| ≤ ε. However this is
a formal mess because equality is no longer transitive,
nor invariant under scaling. Thus, in practice, epsilon-
tweaking fails in several situations [4].

Snap rounding is another method to approximate arbi-
trary precision segments into fixed-precision numbers
[5]. However, Snap rounding can generate inconsisten-
cies and deform the original topology if applied consec-
utively on a data set. Some variations of this technique
attempt to get around these issues [6, 7, 8].

Shewchuk [9] presents the Adaptive Precision
Floating-Point technique for exactly evaluating pred-
icates. The idea is to perform this evaluation using
the minimum amount of precision necessary to achieve
correctness. As a result, it is possible to develop some
efficient exact geometric algorithms. Geometric pred-
icates can often be evaluated by computing the sign
of a determinant and, thus, the actual value of this
determinant does not need to be exactly computed as
long as the sign of the approximated result is guar-
anteed to be correct. To determine if the sign of an
approximation can be trusted, the approximation and
an error estimate are computed and, if the error is big
enough to make the sign possibly incorrect, the val-
ues are recomputed using higher precision. As men-
tioned by Shewchuk [9], this technique is not suitable
to solve all geometric problems. For example, “a pro-
gram that computes line intersections requires rational
arithmetic; an exact numerator and exact denomina-

tor must be stored” [9].

The formally proper way to effectively eliminate
roundoff errors and guarantee algorithm robustness is
to use exact computation based on rational number
with arbitrary precision [10, 11, 4, 12]. Computing
in the algebraic field of the rational numbers over the
integers, with the integers allowed to grow as long as
necessary, allows the traditional arithmetic operations,
+,−,×,÷, to be computed exactly, with no roundoff
error.

The cost is that the number of digits in the result of
an operation is about equal to the sum of the numbers
of digits in the two inputs. E.g., 214

433
+ 659

781
= 452481

338173
.

Casting out common factors helps, but that is rarely
possible. However, this behavior is acceptable if the
depth of the computation tree is small. Also, the
performance penalty associated with rationals can be
significantly reduced by employing techniques such as
arithmetic filtering with interval arithmetic, as we will
discuss in section 2.2.

2.2 Arithmetic filters and interval arith-
metic

One technique to accelerate algorithms based on ex-
act arithmetic is to employ arithmetic filters and in-
terval arithmetic [13]. The idea is to use an interval
of floating-point numbers containing each exact value.
During the evaluation of predicates (which typically
consists in the computation of the sign of an arithmetic
expression), the arithmetic operations are initially ap-
plied to the intervals. After each arithmetic operation
the result (an interval) is adjusted to guarantee that it
will still contain the exact result of the operation (this
is called the containment property). At the end, if the
sign of the exact result can be safely inferred based on
the sign of the bounds of the interval, its value is re-
turned. Otherwise, the predicate is re-evaluated using
exact arithmetic instead of the floating-point intervals.
The term arithmetic filter derives from the process of
filtering the unreliable results and recomputing them
with exact arithmetic.

The key to the correct and efficient implementation
of operations with interval arithmetic is the fact that
the IEEE-754 standard for floating-point numbers ex-
plicitly define how the arithmetic operations are ap-
proximated: “the result of operations can be seen as if
they were performed exactly, but then rounded to one
of the nearest floating-point values enclosing the ex-
act value” [13]. IEEE-754 also defines three rounding-
modes (that can be selected at runtime): the results
of the operations can be rounded to the nearest rep-
resentable floating-point value, towards −∞ or +∞
(which selects, respectively, the previous or the next
nearest representable floating-point numbers).

211

These rounding modes are employed to adjust the in-
tervals after each arithmetic operation, which guar-
antees that they always contain the exact value
of the expressions. [13] illustrates this process
with the addition operation. Suppose xInterval =
[x.lower, x.upper] and yInterval = [y.lower, y.upper]
are, respectively, floating-point intervals containing
the exact values xExact and yExact. The floating-
point interval [x.lower ± y.lower, x.upper ∓ y.upper]
(where ± and ∓ represent, respectively, rounding to-
wards −∞ or +∞) is guaranteed to contain the exact
value of the expression xExact+ yExact.

Since the intervals are computed in a way that the con-
tainment property is always preserved, if both bounds
have the same sign then this sign is equal to the exact
sign of the expression. Otherwise, the interval cannot
be employed to infer the exact sign and thus, the ex-
pression will have to be re-evaluated with exact arith-
metic (we refer to this as an interval failure). For
example, if xExact is in the interval [0.01, 0.03], then
xExact is certainly a positive number. However, if
xExact is in the interval [−0.0001, 0.0001], then the
sign of xExact can be either negative, zero or posi-
tive.

Since the roundoff errors accumulate, the width of the
intervals increases as arithmetic operations are per-
formed and thus, the deeper the computation tree
is, the higher are the chances that computation with
exact arithmetic will be necessary, which could slow
down the algorithms. However, many practical algo-
rithms do not present this problem [13].

While arithmetic filters can accelerate predicates, in
some situations the exact computation cannot be

avoided. For example, exact arithmetic would be nec-
essary in operations where new geometric objects (e.g.:
points) have to be computed (these types of operations
are called geometric constructions). To illustrate this
example, consider the problem of computing pairwise
intersections of line segments: arithmetic filters could
be employed to accelerate the orientation predicates
employed to detect if two line segments do intersect,
but exact arithmetic is necessary in order to output
the (exact) coordinates of the vertices generated by
the intersection of pairs of edges.

The excellent Computational Geometry Algorithms
Library (CGAL) [14] supports exact computation
through the use of arbitrary precision rational num-
bers (it also supports other number types) and arith-
metic filters in its algorithms. Furthermore, this li-
brary provides a framework that allows programmers
to easily develop algorithms with arithmetic filters.

There are multiple types of arithmetic filters [13]. List-
ing 1 illustrates one of the ways to develop an arith-
metic filter using C++ and CGAL: variables with the
suffix exact were created as GMP[15] (GNU Multi-
ple Precision Arithmetic Library) arbitrary precision
rationals (which are represented using the mpq class
type) while the ones with suffix interval were defined
using the interval arithmetic number type provided by
CGAL. Arithmetic and boolean operators are over-
loaded for both the interval and arbitrary precision
arithmetic types. If the comparison (line 8) cannot be
evaluated safely, CGAL throws an unsafe comparison
exception. Once that exception is caught, the predi-
cate can be re-evaluated using the exact version of the
respective variables (line 14).

Listing 1: Using CGAL interval arithmetic framework

1 // Pred i ca te : r e tu rn s t rue i f the sum of x exact with y exact i s p o s i t i v e
2 // and f a l s e o therw i s e . x i n t e r v a l and y i n t e r v a l must contain ,
3 // r e s p e c t i v e l y , x exact and y exact .
4
5 bool p r e d i c a t e (mpq class x exact , CGAL: : I n t e r v a l n t<> x i n t e r v a l ,
6 mpq class y exact , CGAL: : I n t e r v a l n t<> y i n t e r v a l) {
7 try {
8 i f (x i n t e r v a l + y i n t e r v a l > 0)
9 re turn true ;

10 e l s e
11 re turn f a l s e ;
12 }
13 catch (CGAL: : I n t e r v a l n t <>:: unsa fe compar i son& ex) {
14 i f (x exact + y exact > 0)
15 re turn true ;
16 e l s e
17 re turn f a l s e ;
18 }
19 }

212

A challenge happens when a sequence of operations
needs to be performed: in this situation, we may not
know the exact value of the operands (since they were
generated by several operations). CGAL provides a
more generic and reusable type of filter that solves this
by using a DAG (directed acyclic graph) to represent
the history of operations employed to generate each
geometric object.

This kind of filter is transparent to the user (not re-
quiring an explicit try... catch block similar to the one
shown above). For example, if the test if(a+2∗b+c <
0) is performed, then intervals will be employed to try
to evaluate the test without the necessity of computing
with the rationals. Assume temp = a+ 2 ∗ b+ c is the
temporary value computed during the evaluation of
if(a+2∗b+c < 0). If the sign of temp cannot be safely
evaluated, its precision is increased (for example, by
recomputing its value using rationals). This can be
performed because the DAG associated to temp rep-
resents the history of operations that originated that
value. I.e., temp knows it was computed by multiply-
ing b by 2 and adding the result to a and c. This exact
re-evaluation is lazily delayed until it is really needed
(“as hopefully it won’t be needed at all” [13]).

While these filters have some advantages (for example,
they are efficient and can be easily and transparently
used by developers), they also have some drawbacks.
For example, the history DAG has a significantly high
memory consumption, is hard to be maintained and
is not thread-safe. Thus, even operations that do
not modify the geometric objects (for example, “read-
only” operations such as orientation predicates) often
cannot be executed in parallel [16].

2.3 High-performance computing and
CUDA

The advent of powerful multi-core CPUs and General
Purpose GPUs (GPGPUs) with thousand of cores has
increased the computing capability of relatively inex-
pensive computers. For example, currently (2019) a
NVIDIA GeForce 1080 Ti (a GPU with 3584 cores)
can be purchased for $800 USD and provide 11 Tflop/s
of peak floating-point performance. Thus, it is im-
portant to design parallel algorithms able to use this
computing power.

High-performance computing has been employed to
accelerate some geometric algorithms. For exam-
ple, Geometric Performance Primitives (GPP), the
commercial product described in [17], performs (non-
exact) map overlays using GPUs.

Zhou et al. [16] and Magalhães et al. [18] have devel-
oped parallel (for shared-memory multi-core CPUs)
and exact algorithms for performing boolean opera-
tions on 3D meshes. Zhou et al. [16] uses CGAL

routines (for example, to detect triangle-triangle in-
tersections, to evaluate point-plane predicates, to per-
form Delaunay triangulations, etc) with an exact ker-
nel with a lazy number type. Since these operations
are not thread-safe, the authors have employed mutex
locks to ensure correctness. Magalhães et al. [18], on
the other hand, achieved thread-safeness by explicitly
managing the exact arithmetic operations. For exam-
ple, they implemented their own orientation predicates
(using CGAL’s interval arithmetic number type) and
explicitly re-evaluated these predicates when the in-
tervals were not reliable enough to ensure exactness
(thus, CGALs’ lazy evaluation using the history DAG
was not employed in this algorithm).

While there have been exact and parallel algorithms
for processing geometric data, porting these algo-
rithms to GPUs is still a challenge, particularly when
exact arithmetic operations with arbitrary-precision
rationals is required. The algorithms employed in
arbitrary-precision arithmetic “are not easily portable
to highly parallel architectures, such as GPUs or Xeon
Phi” [19]. One of the reasons for this is the typically
non-trivial memory management required by this kind
of computation [20].

Thus, libraries for performing higher-precision arith-
metic on GPUs (such as CAMPARI [20] and
GARPREC [21]) are typically designed to process
extended-precision floating-point numbers.

However, thanks to arithmetic filters, floating-point
operations can significantly reduce the frequency that
rationals are required [1]. In this work, we combine the
parallel computing capability of CPUs with GPUs for
exactly performing geometric operations. The exact
representation of the geometric objects is kept on the
CPU, while approximate intervals (represented with
floating-point numbers) are stored on the GPU. The
combinatorial component of the geometric algorithms
is executed on the CPU and the parallel evaluation of
geometric predicates is offloaded to the GPU, which
returns the exact result of each one or a flag indicating
that a given predicate could not be safely evaluated
with the intervals. The CPU, then, re-evaluates (also
in parallel) these predicates that failed on the GPU.

While there has been research [22, 23] on the field
of implementing interval arithmetic on GPUs, these
works have focused on computer graphics applications
(like ray tracing) and have not employed this technique
to accelerate exact geometric computation using arith-
metic filters.

3. IMPLEMENTING EXACT PARALLEL
PREDICATES

As stated in section 2.2, a correct implementation
of interval arithmetic relies on hardware compliance

213

to the IEEE-754 standard. NVIDIA’s GPUs double
and single precision floating point implementations are
in accordance with the standard since compute ca-
pabilities 1.3 and 2.0, respectively [24]. They adopt
its newest version (IEEE-754:2008, as of June 2019),
which allows the rounding criteria to be selected per
machine instruction, completely removing the mode
switching overhead [22].

In order to make interval arithmetic transparent dur-
ing the evaluation of geometric predicates, we created
a separate class, based on Collange et al. [22], to per-
form the calculations. Through operator overloading,

the predicate code remains clean and concise, once the
compiler intrinsics are hidden from the user.

For example, as mentioned by Collange et al. [22],
the addition of two intervals [a, b] and [c, d] can
be performed using the expression [a, b] + [c, d] =
[a+ c, b+ d] (where a+ c and b+ d indicate, respec-
tively, the expression is rounded towards −∞ and
+∞). Listing 2 illustrates the implementation of
the addition method, where the CUDA C functions
dadd rd and dadd ru switches the double precision

floating point rounding mode for additions to −∞ and
+∞, respectively.

Listing 2: Some methods of our CudaInterval class

1 c l a s s CudaInterval {
2 pub l i c :
3 d e v i c e h o s t CudaInterval (const double l , const double u)
4 : lb (l) , ub (u) {}
5 . . .
6 d e v i c e CudaInterval operator+(const CudaInterval& v) const {
7 return CudaInterval (dadd rd (th i s−>lb , v . lb) ,
8 dadd ru (th i s−>ub , v . ub)) ;
9 }

10 . . .
11 d e v i c e i n t s i gn () const {
12 i f (th i s−>lb > 0) // lb > 0 i m p l i e s ub > 0
13 re turn 1 ;
14 i f (th i s−>ub < 0) // ub < 0 i m p l i e s lb < 0
15 re turn −1;
16 i f (th i s−>lb == 0 && th i s−>ub == 0)
17 re turn 0 ;
18 // I f none o f the above c o n d i t i o n s i s s a t i s f i e d , the s i gn o f the
19 // exact r e s u l t cannot be i n f e r r e d from the i n t e r v a l , Thus , a f l a g
20 // i s returned to i n d i c a t e an i n t e r v a l f a i l u r e .
21 re turn 2 ;
22 }
23 . . .
24 p r i v a t e :
25 double lb , ub ; // Sto r e s the i n t e r v a l ’ s lower and upper bounds
26 } ;

Besides the other arithmetic operators, whose imple-
mentations are similar to addition, our class has also
the method sign, which returns 1, 0, or −1 if the in-
terval’s sign is guaranteed to be, respectively, positive,
zero or negative. If the sign can’t be inferred from
the interval’s bounds a special error flag is returned
instead. The 2D orientation predicate, described in
Section 2.2, can be easily implemented on the GPU
side with interval arithmetic using our class, as shows
listing 3. However, when an interval failure occurs dur-
ing the sign evaluation, the responsibility to correctly
handle the case is delegated to the CPU. Nonetheless,

as shown by [1], and reinforced by our case study (sec-
tions 4 and 5) interval failures are rare and they usu-
ally do not affect the algorithms’ overall performance.

Since GPUs are SIMT (Single Instruction, Multiple
Threads) devices, its processing power can be explored
by applying the same operation (for example, eval-
uating orientation predicates) on multiples triples of
points in batch.

Even though this example is focused on 2D orienta-
tion predicates, it can be extended to other geometric
operations using interval arithmetic.

214

Listing 3: Orientation predicate on GPU

1 s t r u c t CudaIntervalVertex {
2 CudaInterval x , y ;
3 } ;
4
5 d e v i c e i n t o r i e n t a t i o n (
6 const CudaIntervalVertex ∗ p ,
7 const CudaIntervalVertex ∗ q ,
8 const CudaIntervalVertex ∗ r) {
9 return ((q−>x − p−>x) ∗ (r−>y − p−>y) −

10 (q−>y − p−>y) ∗ (r−>x − p−>x)) . s i gn () ;
11 }

4. FAST RED-BLUE INTERSECTION
TESTS

To evaluate the ideas presented in this paper, we have
implemented a fast and exact algorithm for detecting
red-blue intersection of line segments. Given two sets
of segments M1 and M2 (assume the red and blue seg-
ments are from, respectively, M1 and M2), the ob-
jective is to find the pairs composed of red and blue
segments that do intersect. This is performed by doing
a pre-processing step with a uniform grid to cull pairs
of segments that may intersect and, then, filtering the
pairs that actually do intersect.

The uniform grid is typically employed in computa-
tional geometry to cull a combinatorial set of pairs
of objects, generating a smaller subset containing ele-
ments that are more likely to coincide [25]. If the input
is uniformly independently and identically distributed,
the expected size of the resulting subset is linear on the
size of the input plus the output [26, 27, 28]. Thanks to
its simplicity and uniformity, it can be constructed and
processed in parallel. For example, Audet et al. [17]
employed a uniform grid on a GPU parallel algorithm
for map overlay and Magalhães et al. [18] employed it
to intersect 3D meshes in parallel.

Given the sets of segments M1 and M2, a grid G with
resolution r (thus, containing r × r cells) and dimen-
sions equal to the bounding-box containing both M1

and M2 is created. Then, for each segment e from the
two input sets, e is inserted into the grid cells it inter-
sects. The intersecting segments can be found by, for
each grid cell c, testing all the pairs of red and blue
segments from c for intersection.

For performance and simplicity, as in Magalhães et
al. [18], instead of rasterizing each segment s in order
to determine which cells s intersects, the bounding-
box b of s is computed and s is considered to intersect
all grid cells intersecting b. While this may increase
the number of intersection tests that will have to be
performed later, the correctness of the algorithm is
maintained since the grid is employed only to find a

set of edges that may intersect.

Similarly to Magalhães et al. [18], we have chosen to
use a ragged array as the underlying data structure to
implement the uniform grid. The ragged array stores
a collection of arrays in a contiguous block of memory,
by keeping track of each array’s initial position. It
can be easily constructed in parallel, with the cost
of making two passes in the data to insert the edges,
and has the advantage of being more cache friendly
than storing one resizable array per cell, since it can
represent the entire grid in contiguous memory [25].
Figure 2 illustrates these two data structures.

The creation of the ragged array storing in the grid
the segments from each of the input sets Mi (i = 1
or 2) is performed in two passes. First, the number
of segments from Mi in each cell is counted. Then,
the array is allocated (with size equal to the sum of
the number of edges in all cells) and the segments are
scanned again and effectively inserted into the array.

In the first pass, the bounding-box of each segment s
in Mi is initially computed on the GPU. This compu-
tation is performed in parallel and basically consists
in determining the grid cells containing each of the
two endpoints of s (this is the only geometric opera-
tion performed during the construction of the uniform
grid). Then, a counter cellSize[c] is created to com-
pute the number of segments that will be inserted into
each grid cell c (we refer to this as the size of the cells).
Finally, each segment s is scanned (in parallel) and the
counter of the cells the bounding-box of s intersects is
incremented (using atomic operations).

After the cell sizes are computed, a parallel ex-
clusive prefix-sum operation is applied to the cell-
Size array. Assume cellStart is the content of cell-
Size after the prefix-sum. Thus, cellStart[0]=0,
cellStart[1]=cellStart[0]+cellSize[0] and, in general,
cellStart[c]=cellStart[c-1]+cellSize[c-1]. Therefore,
cellStart[c] represents the starting position of the
edges of cell c in the ragged array.

In the second pass, each segment s in Mi is pro-

215

cessed again in parallel. For each cell c intersecting the
bounding-box of s, s is inserted into the position cell-
Start[c]+count[c] of the ragged array, where count[c] is
a counter for the current number of segments inserted
into c. Since count may be incremented in parallel,
this operation is performed using an atomic increment
and capture operation (which returns the current value
in count and increments it).

Once the uniform grid is constructed, a list L of the
pairs of red and blue segments from all the grid cells
is created. This list is generated in parallel using a
strategy similar to the creation of the ragged-array.
I.e., an initial pass is performed to count the number
of pairs of edges in all grid cells and, then, a second
one effectively inserts the pairs into the list.

The intersection between a pair of segments can be de-
tected by evaluating 4 2D orientation predicates. Con-
sider, for example, the segments s1 (with endpoints A
and B) and s2 (with endpoints C and D). If the ori-
entation of (A,B,C) has a different sign than the one
of (A,B,D), then C and D are on opposite sides w.r.t.
s1 (the supporting line of s1 intersects s2). Similarly,
if the orientation of (C,D,A) has a different sign than
the one of (C,D,B), then the supporting line of s2 in-
tersects s1. If both supporting lines intersect, then the
segments do intersect. These 4 orientation predicates
are performed in parallel on the GPU (see listing 3)
for all pairs of segments in L.

Since edges may be inserted into multiple grid cells, a
pair may be tested for intersection more than once
(and, if they do intersect, multiple copies of them
would be outputed by the algorithm). Preliminary
experiments showed that a better performance is
achieved when the duplicates are removed after the
intersections are detected (instead of removing them
before the intersection tests). This can be explained
because, as it will be shown in section 5, detecting
intersections using the GPU is a fast process.

All the geometric operations (determining the grid
cells containing each segment endpoint and evaluat-
ing the orientation predicates for detecting intersec-
tions) are performed on the GPU in batch. However,
since some of the operations performed with intervals
(employed to determine the grid cells containing the
endpoints of each segment) may return a failure code,
after each batch of these operations the results are
copied back to the CPU and the ones that failed are
re-evaluated using arbitrary-precision rationals.

5. EXPERIMENTS

To evaluate the ideas proposed on this paper, the
fast algorithm for intersecting edges was implemented
on C++ and evaluated on a AMD Ryzen 5 desktop
with 6 3.2 GHz cores (and 12 hyperthreads), 16 GB of
RAM and a NVIDIA GeForce GTX 1070 Ti GPU.

t1 t2 t3

t4

t5 t6 t7

(a)

t1 t2 t3 t4 t5 t6 t7

(b)

Figure 2: Dynamic array versus ragged array - 3 × 3
uniform grid using dynamic arrays (a) versus ragged array
(b). Only the memory related to the first row of the grid
is shown. Source: [25]

Arbitrary-precision arithmetic was provided by the
GMP library [15] and the algorithm was parallelized
with OpenMP (for the code targeted to the CPU) and
CUDA (for the GPU code).

In all test cases a uniform grid with 2, 500 × 2, 500
cells has been created. However, there are heuristics
for automatically choosing a grid resolution basing on
statistics about the input datasets [25, 29]. For exam-
ple, the grid size could be determined as a function of
the input size in a way that the expected number of
pairs of edges per cell is a given constant. As shown by
Magalhães et al. [25], the range of grid configurations
with reasonable performance optimum is broad.

Experiments have been performed using segments
from four polygonal maps from two countries. The
two maps from Brazil were obtained from the IBGE
(the Brazilian geography agency) and represent the
kinds of soil (BrSoil) and the counties (BrCounty)
from Brazil. The two maps from the USA were ob-
tained from the ESRI ArcGIS and the United States
National Atlas web-pages. We also performed tests
intersecting the largest dataset (UsCounty) with a
version of itself (UsCountyRotated) rotated by 0.1◦

(counterclockwise) around the center of the bounding-
box of the original map. Experiments with UsCoun-
tyRotated are particularly hard for the uniform grid
because it generates a high amount of potentially in-
tersecting pairs of edges (thus, requiring more pairs of
edges for being tested for intersection).

216

Figure 3 illustrates four of the datasets and Table 5
present some statistics about the input maps and
about the intersection computation process. As it can
be seen, the size of the input datasets range from 200
thousand to 4 million segments. The average length
of the segments is presented as a percentage of the
diagonal of the bounding-box.

The last four rows of Table 5 present statistics about
the pairs of evaluated input maps. In all cases, most of
the uniform grid cells cover empty regions of the input
datasets. Row Average # pairs of segments/cell indi-
cates the average number of pairs of red-blue segments
per non-empty cell. Row Number of pairs of segments
indicates the total number of pairs of red-blue seg-
ments in all cells (i.e., the number of pairs tested for
intersection). As it can be seen in the last row, the ac-
tual number of intersections ranged from 6% to 0.005%
of the number of intersection tests performed. Indeed,
the dataset which generated the largest amount of in-
tersection tests was the one with the smallest number
of actual intersections.

We compared 5 versions of the algorithm (* marks a
sequential implementation):

• Rational*: sequential implementation employing
only arbitrary-precision rational arithmetic. This
algorithm was evaluated in order to show the ben-
efit obtained by the arithmetic filters in the other
versions.

• Interval*: same as Rational*, but employing
arithmetic filters with interval arithmetic.

• Rational: parallel (CPU) version of Rational*.

• Interval: parallel (CPU) version of Interval*.

• GPU: parallel (using the CPU and the GPU) ver-
sion of Interval*.

Furthermore, as a baseline, we also implemented an
algorithm using CGAL to detect intersections. This
algorithm employs CGAL’s method for intersecting
dD Iso-oriented Boxes as a pre-processing step to ini-
tially cull the pairs of potentially intersecting seg-
ments. This culling process is sequential and em-
ploys a hybrid method composed of a sweep-line and
a streaming algorithm to detect intersection between
pairs of Axis-Aligned Bounding Boxes. Then, CGAL’s
do intersect method is employed to check if each of the
remaining pairs of segment do intersect. For exact-
ness, the Exact predicates exact constructions kernel
kernel has been employed (this CGAL kernel stores ex-
act versions of the geometric constructors and employs
arithmetic filters and lazy evaluation to accelerate the
evaluation of predicates).

Table 5 presents the results obtained during the inter-
section of edges from pairs of input maps.

The pre-processing strategy performed by CGAL per-
forms a better culling than the other methods, elimi-
nating all pairs of edges whose bounding-boxes do not
intersect (thus, the number of pairs of segments that
really need to be checked for intersection is smaller
in the CGAL algorithm). However, this happens at a
cost of a more expensive pre-processing step (up to 5
times slower than Interval*). Besides having a faster
pre-processing step, the Interval* method can be par-
allelized, while CGAL is sequential.

Indeed, while the total processing-time of Interval*
was from 1.3 times faster to 7.7 times slower than
CGAL, the parallel version using the GPU had a
speedup ranging from 4 times to 10 times.

To better understand the influence of the GPU on the
results, consider the intersection of segments from Us-
County with UsCountyRotated as example. The to-
tal time spent by the Interval* implementation for de-
tecting intersections is 63.677s (0.685s to prepare the
predicates and 62.992s to evaluate them) and the time
spent by the GPU implementation is 1.367s (1.149s to
prepare the predicates and transfer the data to/from
the GPU and 0.218s to perform the evaluation). If
only the time to evaluate the intersection predicates is
considered, the achieved speedup is 289×. This sug-
gests that algorithms requiring a heavy usage of ge-
ometric predicates could benefit even more from the
techniques presented in this paper.

As expected, the number of failures of the intervals was
equal on the CPU and on the GPU. In the intersec-
tion of BrSoil with BrCounty, only 4 of the 877 thou-
sand evaluated predicates (0.0005%) evaluated failed,
requiring an exact re-evaluation. In the intersection of
UsCounty with UsAquifers, 3 of the 13 million predi-
cates (0.00002%) failed. Finally, in the intersection of
UsCounty with UsCountyRotated, 4 of the 224 million
predicates failed (0.000002%).

6. CONCLUSIONS AND FUTURE
WORK

We proposed the use of GPUs to accelerate the eval-
uation of exact geometric predicates filtered with in-
tervals of floating-point numbers. The idea is to eval-
uate the predicates using interval arithmetic on the
GPU. The (few) results that could not be guaranteed
to be correct are, then, re-evaluated on the CPU using
arbitrary-precision rationals.

As a proof of concept, a parallel algorithm for detect-
ing intersections of red and blue line segments has been
implemented. Because of the high computing power
of the GPU for processing floating-point numbers, a
speedup of up to 289 times (when compared against
the sequential version) was obtained in the evaluation
of the predicates (the speedup of the algorithm was up

217

Pairs of maps evaluated
BrSoil BrCounty UsCounty UsAquifers UsCounty UsCountyRot.

of segments 211, 011 326, 193 3, 740, 989 352, 924 3, 740, 989 3, 740, 989
Avg. segment length (% of bb.) 5× 10−4 4× 10−4 8× 10−7 1× 10−4 8× 10−7 8× 10−7

% of empty grid cells 86% 98% 98%
Avg. # pairs of segments/cell 0.3 2.0 34.7
of pairs of segments 300, 039 12, 756, 283 216, 542, 974
of intersections 20, 860 11, 948 11, 751

Table 1: Statistics about the input datasets and about the intersection computation process.

(a) (b)

(c) (d)

Figure 3: Maps employed in the experiments - BrSoil (a), BrCounty (b), UsAquifers (c), UsCounty (d) (these figures are
not to scale).

218

Datasets BrCounty and BrSoil

Method Rational* Interval* CGAL* Rational Interval GPU Speedup

Pre-processing 1.242 0.225 0.478 0.549 0.324 0.099 2
Inters. detec. 1.444 0.152 0.015 0.385 0.040 0.018 9
Total time 2.686 0.377 0.493 0.934 0.364 0.117 3
Inters. tests 300,039 300,039 70,332 300,039 300,039 300,039 -

Datasets UsCounty and UsAquifers

Method Rational* Interval* CGAL* Rational Interval GPU Speedup

Pre-processing 7.884 0.812 2.628 1.710 0.392 0.164 5
Inters. detec. 42.816 4.059 0.023 11.198 0.612 0.096 42
Total time 50.700 4.871 2.651 12.808 1.004 0.260 19
Inters. tests 12,756,283 12,756,283 158,653 12,756,283 12,756,283 12,756,283 -

Datasets UsCounty and UsCountyRotated

Method Rational* Interval* CGAL* Rational Interval GPU Speedup

Pre-processing 14.532 1.422 7.482 2.798 0.454 0.251 6
Inters. detec. 675.616 63.677 1.027 194.918 9.422 1.367 47
Total time 690.148 65.099 8.509 197.716 9.876 1.718 40
Inters. tests 216,542,974 216,542,974 11,254,031 216,542,974 216,542,974 216,542,974 -

Table 2: Times (in seconds) spent by the different version of the algorithms for 3 pairs of datasets. Column Speedup
shows the speedup of the GPU method when compared against the sequential implementation (Interval*).

to 40 times if the total running-time was considered).

The obtained performance and exactness makes this
technique applicable for interactive applications (par-
ticularly on the fields of CAD, GIS and computational
geometry).

As future work, we intend to apply this technique
to other problems such as convex hull computation,
2D and 3D point location and boolean operations on
meshes. Applications whose bottleneck is the evalua-
tion of predicates could particularly present a better
speedup.

Also, we intend to further improve the performance of
the predicates. For example, a significant overhead is
related to the communication between the CPU and
the GPU. Reducing this communication (e.g., by mov-
ing the combinatorial part of the algorithms to the
GPU) could lead to a performance improvement.

Finally, testing this technique in other architectures is
also a future work: for example, high-end Xeon proces-
sors and MICs such as the Intel Xeon Phi are MIMD
(Multiple Instruction, Multiple Data) processors (mak-
ing it easier to port the combinatorial components of
the algorithms to them). At the same time, these de-
vices have a high parallel computing power for pro-
cessing floating-point numbers (thanks to wide Single
Instruction, Multiple Data - SIMD instructions in the
individual cores). Thus, we believe both algorithms
and exact geometric predicates could be accelerated
on these devices using these instructions (keeping both

in the same device would reduce the communication
overhead).

7. ACKNOWLEDGEMENT

This research was partially supported by CAPES.

References

[1] Brönnimann H., Burnikel C., Pion S. “Interval
arithmetic yields efficient dynamic filters for com-
putational geometry.” Discrete Applied Mathe-
matics, vol. 109, no. 1-2, 25–47, 2001

[2] European Space Agency. “Ariane 501
inquiry board report.”, 2015. URL
ravel.esrin.esa.it/docs/esa-x-1819eng.pdf.
(Retrieved on 06/15/2015)

[3] Skeel R. “Roundoff error and the Patriot missile.”
SIAM News, vol. 25, no. 4, 11, July 1992

[4] Kettner L., Mehlhorn K., Pion S., Schirra S.,
Yap C.K. “Classroom Examples of Robustness
Problems in Geometric Computations.” Comput.
Geom., vol. 40, no. 1, 61–78, May 2008

[5] Hobby J.D. “Practical segment intersection with
finite precision output.” Comput. Geom., vol. 13,
no. 4, 199–214, Oct. 1999

219

[6] de Berg M., Halperin D., Overmars M. “An
intersection-sensitive algorithm for snap round-
ing.” Computational Geometry, vol. 36, no. 3,
159–165, Apr. 2007

[7] Hershberger J. “Stable snap rounding.” Comput.
Geom., vol. 46, no. 4, 403–416, May 2013

[8] Belussi A., Migliorini S., Negri M., Pelagatti G.
“Snap Rounding with Restore: An Algorithm for
Producing Robust Geometric Datasets.” ACM
Trans. Spatial Algorithms and Syst., vol. 2, no. 1,
1:1–1:36, Mar. 2016

[9] Shewchuk J.R. “Adaptive Precision Floating-
Point Arithmetic and Fast Robust Geometric
Predicates.” Discret. & Comput. Geom., vol. 18,
no. 3, 305–363, Oct. 1997

[10] Li C., Pion S., Yap C.K. “Recent progress in ex-
act geometric computation.” The J. Log. Algebr.
Program., vol. 64, no. 1, 85–111, July 2005

[11] Hoffman C.M. “The Problems of Accuracy and
Robustness in Geometric Computation.” Com-
put., vol. 22, no. 3, 31–40, Mar. 1989

[12] Yap C.K. “Towards exact geometric computa-
tion.” Comput. Geom., vol. 7, no. 12, 3 – 23, Jan.
1997

[13] Pion S., Fabri A. “A generic lazy evaluation
scheme for exact geometric computations.” Sci.
Comput. Program., vol. 76, no. 4, 307 – 323, Apr.
2011

[14] The CGAL Project. CGAL User
and Reference Manual, 4.8 edn., 2016.
http://doc.cgal.org/4.8/Manual/packages.html

(Retrieved on 10/19/2017)

[15] Granlund T., the GMP development team. GNU
MP: The GNU Multiple Precision Arithmetic Li-
brary, 6.0.0 edn., 2014. http://gmplib.org/ (Re-
trieved on 10/19/2017)

[16] Jacobson A., Panozzo D., et al. libigl:
A Simple C++ Geometry Processing Library,
2016. http://libigl.github.io/libigl/ (Re-
trieved on 10/18/2017)

[17] Audet S., Albertsson C., Murase M., Asahara
A. “Robust and Efficient Polygon Overlay on
Parallel Stream Processors.” Proc. 21st ACM
SIGSPATIAL Int. Conf. Advances Geographic
Information Systems, SIGSPATIAL’13, pp. 304–
313. ACM, New York, NY, USA, Nov. 2013

[18] Magalhães S.V., Franklin W.R., Andrade M.V.
“Fast exact parallel 3D mesh intersection algo-
rithm using only orientation predicates.” Proceed-
ings of the 25th ACM SIGSPATIAL International

Conference on Advances in Geographic Informa-
tion Systems, p. 44. ACM, 2017

[19] Popescu V. Towards fast and certified multiple-
precision librairies. Ph.D. thesis, Université de
Lyon, 2017

[20] Joldes M., Muller J.M., Popescu V., Tucker W.
“CAMPARY: CUDA multiple precision arith-
metic library and applications.” International
Congress on Mathematical Software, pp. 232–240.
Springer, 2016

[21] Lu M., He B., Luo Q. “Supporting extended pre-
cision on graphics processors.” Proceedings of the
sixth international workshop on data management
on new hardware, pp. 19–26. ACM, 2010

[22] Collange S., Daumas M., Defour D. “Chapter 9 -
Interval Arithmetic in CUDA.” W. mei W. Hwu,
editor, GPU Computing Gems Jade Edition, Ap-
plications of GPU Computing Series, pp. 99 – 107.
Morgan Kaufmann, Boston, 2012

[23] Collange S., Flórez J., Defour D. “A GPU interval
library based on Boost.Interval.” 8th Conference
on Real Numbers and Computers, pp. 61–71. 2008

[24] Whitehead N., Fit-Florea A. “Precision & perfor-
mance: Floating point and IEEE 754 compliance
for NVIDIA GPUs.” rn (A+ B), vol. 21, no. 1,
18749–19424, 2011

[25] Magalhães S.V.G., Franklin W.R. Exact and par-
allel intersection of 3d triangular meshes. Ph.D.
thesis, Rensselaer Polytechnic Institute, USA,
2017

[26] Akman V., Franklin W.R., Kankanhalli M.,
Narayanaswami C. “Geometric Computing and
the Uniform Grid Data Technique.” Comput.
Aided Des., vol. 21, no. 7, 410–420, Sept. 1989

[27] Franklin W.R., Chandrasekhar N., Kankanhalli
M., Seshan M., Akman V. “Efficiency of uni-
form grids for intersection detection on serial
and parallel machines.” N. Magnenat-Thalmann,
D. Thalmann, editors, New Trends in Computer
Graphics (Proc. Computer Graphics Int.’88), pp.
288–297. Springer-Verlag, Berlin, Germany, 1988

[28] Hopkins S., Healey R.G. “A Parallel Implemen-
tation of Franklin’s Uniform Grid Technique for
Line Intersection Detection on a Large Trans-
puter Array.” K. Brassel, H. Kishimoto, editors,
4th Int. Symp. Spatial Data Handling, pp. 95–104.
Zürich, 23-27 July 1990

[29] Audet S., Albertsson C., Murase M., Asahara A.
“Robust and efficient polygon overlay on paral-
lel stream processors.” Proceedings of the 21st

220

ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pp.
304–313. ACM, 2013

221

