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ABSTRACT

We develop a distributed algorithm to compute feature-aligned poly-square maps for large-scale 2D geometric regions
and use it to construct low-distortion semi-structured quad meshes. Our proposed algorithm has two main compo-
nents. The first is a feature-aware graph partitioning that considers workload balancing, minimal communication,
geometric regularity, and feature-preserving. The second is a feature-preserved poly-square parameterization. We
demonstrate that our algorithm is effective on meshing huge complex coastal/terrain data and can consequently
benefit scientific simulations that run on such meshes using high-performance computer clusters.

Keywords: Large-scale Geometric Data Processing, Feature-aware Graph Partitioning, Semi-
structured Quad Mesh Generation

1. INTRODUCTION

Generating high-quality mesh is essential to numer-
ical simulation tasks. While unstructured triangu-
lar meshes are commonly used due to their ease of
generation and good adaptivity, structured or semi-
structured paralleletope meshes (e.g., quad meshes
for 2D, hex meshes for 3D) are sometimes preferred
due to their better support for efficient finite element
analysis in many computation-intensive simulations in
structural mechanics, fluid dynamics simulations [1].
Here, a structured mesh is one whose vertices all have
constant valences and cells are arranged with regular
connectivity; and a semi-structured mesh, also called
block-structured mesh, is one that divides the domain
into sub-regions, each of which is tessellated by a struc-
tured mesh.

This work developed an automatic semi-structured
quad meshing algorithm for large-scale 2D planar geo-

metric regions. To process such large geometric data,
we develop a parallel algorithm to overcome the scale
and performance issue. Parallel meshing strategies in
existing literature are mainly on the generation of ir-
regular simplex meshes, using either Delaunay-based
methods or advancing front techniques to generate tri-
angular or quad meshes [2–4]. Feature preserving is
another important issue to consider in many scientific
computing tasks. To enforce accurate evaluation or
constraints on specific important points, curves, or re-
gions, one would like to have an accurate sampling
of these features. However, feature alignment is not
always trivial during mesh generation.

For very big or complex geometric region, a divide-
and-conquer approach is a natural strategy for par-
allel processing. We follow the approach similar to
[5]. First, we partition the data into solvable sub-
regions, considering a trade-off among their size, ge-
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ometry, and feature sampling. Then, we map sub-
regions onto canonical poly-square domains for mesh
generation. Unlike [5] that constructs meshes locally
using advancing front, which results in an unstruc-
tured mesh with potential artifacts along partitioning
boundary and without supporting feature alignment,
our new algorithm now (1) solves the local meshing
through a mapping-based method and hence yields
a locally structured (globally semi-structured) mesh,
(2) integrates feature alignment in partitioning and
mapping (mesh) computation, and (3) solves compo-
sition through a multi-pass global optimization and
hence produces the smooth transition across partition-
ing boundary and allows flexible insertion of interior
singularities to reduce mesh distortion.

The main contributions of this paper are as follows.
(1) A feature-preserving large-scale semi-structured
quad meshing algorithm is developed. Unlike existing
large-scale quad meshing algorithms that often cannot
handle feature preserving very well, our algorithm can
resolve user-determined features effectively. (2) A new
feature-aware graph partitioning model is proposed. It
can effectively decompose complex geometric models
into subregions by considering not just load balanc-
ing, minimal communication, but also geometric and
feature constraints. (3) Meshes generated using our
algorithm could lead to more accurate finite element
simulations. Hence, this algorithm can benefit large-
scale scientific computing.

2. RELATED WORK

2.1 Quadrilateral Mesh Generation

Quadrilateral mesh generation algorithms can be gen-
erally classified into three types, based on the mesh
regularity, namely, unstructured, structured, and semi-
structured meshes.

Structured Quad Meshing. Rigorously speaking, a
fully-structured quad mesh is a tensor-product patch
that deforms from an N × M grid. However, such
a fully regular grid topology is often too restrictive:
wrapping such a grid onto a region with a complex
topology is infeasible and covering a shape with long
and thin branches will result in severe distortion.
Therefore it is essential to introduce some singularities
or unstructured organization to a more flexible balance
the trade-off between regularity and distortion.

Unstructured Quad Meshing. Commonly used
and extensively studied quad meshing algorithms are
on generating unstructured meshes. Classic algo-
rithms include those based on triangle-to-quad con-
version [6, 7], quad-tree projection [8, 9]. A widely
studied strategy is the advancing front algorithm that
starts the construction of cells from the boundary, then
propagates layer inwards by layer, until the propaga-

tion fronts quench each other near media axes and
form singularity curves. Notable advancing front al-
gorithms include the classic paving [10], Q-Morph [11],
H-Morph [12], to the recent frontal Delauney algo-
rithm [13]. Another group of effective algorithms de-
veloped recently in the graphics field in constructing
low-distortion surface parameterization and meshing is
based on building a smooth cross-frame (2-rotational
symmetry) field. This strategy has been very suc-
cessfully in building low-distortion unstructured quad
meshes, as demonstrated by multiple recent algo-
rithms, such as QuadCover [14], Mixed-integer quad-
rangulation [15], Integer-grid maps [16], singularity-
restricted field [17], QMorph Cross Field [18]. These
methods can produce meshes with very desirable
(i.e., low-distortion) element shape quality. However,
the unstructured nature of these meshes sometimes
still hampers their performance (compared with using
more structured meshes) in scientific computing.

Semi-structured Quadrilateral Mesh Genera-
tion. Semi-structured or block-structured meshes di-
vide the domain into sub-regions, call blocks, each of
which is tessellated by a structured grid. The global
layout of these blocks is often unstructured and can
be encoded using a graph with irregular connectiv-
ity. The semi-structured mesh can be constructed
on an arbitrary complex domain and offers a flexi-
ble trade-off between regularity and element distor-
tion. The macro-unstructured-micro-structured hi-
erarchy layout of a semi-structured mesh also natu-
rally supports parallelization where the calculations
on local blocks can be executed on parallel proces-
sors fully utilizing the numerical efficiencies of its reg-
ularity. On curved surfaces, recent frame-field ap-
proaches [19,20] use rectangle patches to generate high
quality semi-structured meshes, however they are hard
to be extended to large scale geometric data. Polycube
parameterizations have been used to generate semi-
structured meshes where each rectangular sub-patch is
tessellated regularly, and the global layout is described
by the topology of the polycube polyhedron. Multiple
semi-automatic or automatic polycube parameteriza-
tion algorithms have been developed for quad- or hex-
meshing [21–26]. However, with polycube parameteri-
zation, the singularities locate at the polycube corners.
Distortion is often significant near these singularities.
Furthermore, solving optimal polycube parameteriza-
tion is usually expensive and prohibitive to be directly
applied to large-scale geometric data.

2.2 Quad Meshing by Divide-and-Conquer

To process large-scale geometric data, we adopt a
domain decomposition approach that partitions the
data into solvable subparts for distributed and par-
allel processing. Related to our approaches are var-
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ious divide-and-conquer algorithms in mesh genera-
tion. For example, medial axis decomposition was
used to partition geometric regions [27, 28]. The gen-
eral ideas of these approaches are first to extract me-
dial axis of regions then insert cuts on them to cut
the region into smaller “shape atoms” which could be
meshed using templates. Voronoi diagrams have also
been used [5, 29] to generate coarse cells upon which
quad meshes can be constructed. On curved surfaces,
quad patch layout design has been studied to facil-
itate the construction of low-distortion quad mesh-
ing of surfaces. The Morse-Smale Complex has been
used [30, 31] to design quadrilateral patches. More
generally, the cross-frame field on the surface can be
optimized to generate principal-direction-aligned quad
layouts [19]. These geometry-adaptive quad patch lay-
outs have been shown effective in generating high-
quality quad meshes for curved surfaces. The down-
side of these algorithms is their computational com-
plexity. When dealing with large-scale geometric data,
globally solving a non-linear (mixed) integer optimiza-
tion would be infeasible.

2.3 Feature Alignment Quad Meshing

In some physical simulation problems, we often need
to preserve the feature regions in the generated mesh
for special study. T-mesh is a widely used approach
to generate feature aligned quadrilateral mesh [32–34].
But T-junction is not acceptable in some largely scaled
physics simulation system [35]. Another approach to
generating feature aligned mesh is cross-field based
parameterization [36, 37]. They can generate high-
quality feature aligned quadrilateral mesh. However,
the unstructured nature and their algorithm are not
easy to be parallelized for largely scaled mesh gen-
eration. In this paper, we design a distributed and
parallel meshing framework that can effectively gener-
ate high-quality feature aligned/preserved quadrilat-
eral mesh.

3. FEATURE-AWARE GRAPH
PARTITIONING

To effectively process a very big and complex geomet-
ric region, we first do a data partitioning to split the
data into small, solvable subparts. In [38], a graph par-
titioning is solved to obtain subregions for quad mesh
generation. An algorithm was proposed to optimize
three criteria: (1) workload balancing where subre-
gions should have similar sizes; (2) small communica-
tion cost where length of subregion boundary should
be minimized; and (3) geometry regularity where each
subregion should have corner angles close to kπ/2,
k ∈ {0, 1, 2, 3}. In our partitioning task, all these
three criteria are still desirable, and we further con-
sider one more criterion on feature preservation. To

have features points or feature curves sampled in the
final mesh, we can partition the geometry so that sub-
region boundaries go through these features since all
the boundary elements will be exactly sampled in the
final mesh. So we have the four criteria formulated
as (4) the partitioning separators should go through
feature curves as much as possible.

3.1 Notation and Recap of Geometry-
aware Partitioning

We adopt the notations from [38] and recap that par-
titioning algorithm first before we explain our modifi-
cation to the algorithm in the next section.

Given a triangulated 2D region M = (VM , EM , FM ),
where VM , EM , FM are the sets of vertices, edges, and
faces (cells), respectively, let G = (V G, EG) denote its
dual graph, where V G, EG are the sets of nodes and
arcs. The weight of a node v ∈ V G is defined to be
the area of its associated cell f ∈ FM , and the weight
of an arc is the length of its associated edge. A k-way
partitioning on M can be computed on G. Without
losing generality, we explain its idea using the 2-way
partitioning in the following (which can be directly
generalized to k-way [5]) that partitions G into two
sub-graphs G0 = (V G0 , EG0) and G1 = (V G1 , EG1),
where V G1 = V G \ V G0 . An indicator variable xi is
assigned to each node vGi ∈ V G,

xi =

{
0, if vGi ∈ V G0

1, if vGi ∈ V G1
.

Then for each arc eGij = [vGi , v
G
j ], we assign a variable

yij = xi − xj :

yij =

{
0, if vGi , v

G
j in the same sub-graph

1 or − 1, otherwise

We have y = Ux, where x and y are node and arc
variable vector respectively, and U is an |EG| × |V G|
matrix.

Firstly, to balance the workload and avoid big area
difference between subregions, we have the following
constraint

c1 ≤ xTwv − c ≤ c2, (1)

where x = (x1, x2, . . . , xn)T is the variable vector,
wv = (wv1 , wv2 , . . . , wvn)T is the node weight vector,
c = 1

2

∑
i wvi , and c1, c2 are the constant thresholds.

In our experiments, we set c1 = c2 = 0.1c.

Secondly, a smaller total separator length means less
inter-process communication in parallel computing.
Therefore, it is desirable to minimize the total sepa-
rator length

LS = yTWey = xTUTWeUx, (2)
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where y = (ye1 , ye2 , . . . , yen)T is the edge variable vec-
tor, We = diag(we1 , wen , . . . , wen) is a diagonal ma-
trix composed of arc weights. Combining these above
criteria one and two we have the common graph par-
titioning formulated on triangular meshes.

Thirdly, in quad meshing, it is desirable to have angles
between separators close to kπ

2
. Ideally, we can use

a separator angle term to penalize each such angle’s
deviation from kπ

2
. Consider two edges ei, ej ∈ EM of

the original mesh M , we use Inc(i, j) = 1 to denote ei
and ej are incident, and Inc(i, j) = 0 if they are not.
If Inc(i, j) = 1, suppose they form an angle θi,j . We
define an angle deviation function

δθi,j =

{
min

k∈{1,2,3,4}
|θi,j − kπ

2
|, if Inc(i, j) = 1

0, if Inc(i, j) = 0
(3)

to describe the deviation from angle θi,j to the nearest
kπ
2

angle. The accumulated separator angle deviation
can then be formulated as

Dθ = yTWθy = xTUTWθUx, (4)

where y = (ye1 , ye2 , . . . , yen)T is the edge variable vec-
tor, and

Wθ =


0 δθ1,2 δθ1,3 . . . δθ1,n

δθ2,1 0 . . . . . . δθ2,n
. . . . . . . . . . . . . . .
δθn,1 . . . . . . . . . 0


is an |EG|×|EG| matrix storing deviation angles δθi,j .

However, this dense angle deviation matrix Wθ need
to be computed from all the edge pairs of the tessella-
tion M , and directly minimizing this angle deviation
term is very expensive. In [38], a two-stage approxi-
mate algorithm is adopted. They first tessellate the 2D
geometry using L∞-CVT whose cells have near-90 deg
angles, then they perform a common graph partition-
ing on these cells to get an approximate partitioning.

3.2 Feature Curve Preservation

To preserve feature curves/points in the final mesh,
one approach is to let the partitioning separators go
through the features because the sampling of these
separators (subregion boundaries) can directly and
easily guarantee as boundary constraints in the sub-
sequent parameterization step. In Fig. 1(a), a feature
curve is indicated inside the mesh as red color and
we want the final partitioning separator go through
this curve. In Fig. 1(b), the separator (in blue color)
roughly divides the region from the middle and does
not pass the curve since the partitioning does not have
a feature curve preservation mechanism. In Fig. 1(c),
by applying the feature preservation term we will in-
troduce in Eqn. 6, we can get the resultant separator
pass the feature curve.

(a) (b) (c)

Figure 1: Partitioning results with or without feature
preserving. (a) A rectangle region with feature lines high-
lighted, (b) partitioning without features preserved, (c)
partitioning with features preserved.

Therefore, we incorporate a feature-preserving
term into the graph partitioning algorithm as a soft
constraint, to attract the partitioning boundary to-
wards features as much as possible. As a soft con-
straint, some features may not be on subregions
boundaries, and they will be handled in the next step
during mapping computation.

A feature curve is discretely represented as a list of
edges {ef1 , ef2 , . . . , efm} ∈ EM , where m is the total
number of feature edges, fi is the index of the edge in
EM . We first define a feature edge indicator

σei =

{
1, ei ∈ {ef1 , ef2 , ..., efm}
0, otherwise

, (5)

then, define the feature-preserving term as

Df =

m∑
i=1

y2
efi

= yTWfy = xTUTWfUx, (6)

where y = (ye1 , ye2 , . . . , yen)T is the edge variable vec-
tor, and Wf = diag(σe1 , σen , . . . , σen) is an |EG| ×
|EG| diagonal matrix. To get Wf , we just need to
traverse all the edges once.

If a feature line ei locates on a sub-region’s boundary,
then its contribution to Df is 1 since its edge variable
yei 6= 0 and σei = 1. On the other hand, for a non-
feature edge or an edge that is not on the boundary,
either its yei or σei is zero, so its contribution to Df
is 0.

Thus, to make the separators align with most of the
feature edges, we need the edge variables y which can
minimize −Df .

3.3 Formulation of the Optimization

Finally, the partitioning reduces to minimizing the
separator angle deviation and feature-preserving
penalty together with the total separator length, sub-
ject to the workload balance constraint, namely,

min
x∈{0,1}n

E(x) = LS+λ1Dθ−λ2Df , subject to Eq. (1),

(7)
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where λ1, λ2 are weighting factors. In our experi-
ments, we simply set λ1 = 1, λ2 = 1.

This is an NP-hard integer programming problem.
Solving such an optimization problem accurately is
prohibitively expensive for large graphs. So in scien-
tific computing, where meshes often contain millions or
billions of vertices, a more efficient approximate solv-
ing algorithm is needed.

3.4 Approximate algorithm

METIS [39] is a widely used open-sourced program
for partitioning unstructured graphs. METIS using is
a heuristic algorithm called Hill-Scanning, which can
iteratively move vertices to corresponding groups and
keep the balance of the partitioning by checking the
energy gaining.

To have the feature-preserving term minimized, we
modified the algorithm of METIS and developed a
new solver incorporating the feature terms. We
adopt the Metropolis-Hastings algorithm [40] which
are widely used in stochastic optimization problems
such as Monte-Carlo simulation, etc. For each possi-
ble moving of the vertices, we evaluate the change of
energy, ∆E, (Eqn. 7). If ∆E < 0, then we will accept
this moving. Otherwise, if ∆E > 0, we will perform a
random test:

• Generate a random number p ∈ [0, 1]

• Test whether p < e−λMH∆E , if so, accept the
moving; otherwise reject it.

In our experiments, we set the λMH to a small number
0.01, so we can accept more energy increase move to
avoid local minima.

The advantage of this stochastic optimization strategy
is that it can be easily parallelized and give us very
good partitioning results.

Fig. 2 shows an example of partitioning that incorpo-
rates feature curves. (a) shows a turtle shell region
with feature curve highlighted. Without considering
these features, the partitioning result is shown in (b).
The feature-preserved partitioning result is shown in
(c).

4. FEATURE-PRESERVED
POLY-SQUARE MAPS

After partitioning, we can construct quad meshes on
sub-regions in parallel. This section illustrates our lo-
cal mesh construction. To ensure the element con-
sistency across the subregion boundaries, we would
select meshing algorithms that allow us to enforce a

(a) (b) (c)

Figure 2: Partitioning results with or without feature
preserving. (a) A turtle shell region with feature lines
highlighted, (b) partitioning without features preserved,
(c) partitioning with features preserved.

pre-determined boundary constraint, rather than us-
ing free-boundary parameterization algorithms, which
is difficult to control and refine. One straightforward
meshing strategy is to conduct an advancing front al-
gorithm [10] to generate meshes on subregions from
their consistently pre-sampled subregion boundaries.
Despite its simplicity and efficiency, the advancing
front algorithm has several limitations: (1) it only
generates unstructured meshes; (2) the element qual-
ity near the media axes is hard to control and saliently
worse than those near the subregion boundary; (3) for
elements near subregion boundaries, their directional
smoothness across the boundary could be undesirable,
due to that the meshes are generated individually and
in a one-pass manner. To overcome these three limi-
tations to generate better-structured meshes and ob-
tain a better control on mesh quality and boundary
smoothness, we adopt a mapping based meshing strat-
egy by computing a poly-square parameterization.

4.1 Poly-square Parameterization

A poly-square is a 2D orthogonal polygon whose edges
are all parallel to coordinate axes. The 3D anal-
ogy of the poly-square parameterization is polycube
parameterization, which has been extensively stud-
ied in graphics and computer-aided design litera-
ture [23–26, 41] and applied in texturing spline con-
struction, and mesh generation (for 3D surfaces). Our
partitioning produces 2D subregion with relatively
simple geometry. So we follow the polycube parame-
terization algorithm of [41] and implemented it in 2D.

Each local subregion M is described by its bound-
ary ∂M . First, we tessellate it using a triangle mesh
M̄ = {T, X̄} conforming to this boundary, where
T = {ti} and X̄ = {x̄i} are the sets of triangles and
vertex coordinates, respectively. The output is a de-
formed triangle mesh N = {T,X} where X is the new
corresponding vertex positions. ∂N is a poly-square.
This deformation is solved by minimizing an objective
function consisting of two terms: (1) boundary normal
alignment error, and (2) element distortion.
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Boundary Normal Alignment. The boundary ver-
tices should be deformed to align with coordinate axes
to make a poly-square. In Fig. 3(a), we have a pen-
tagon region to be deformed. Only when we align its
boundary normal to coordinate axes, the result will be
a valid poly-square (Fig. 3(b)). Otherwise (Fig. 3(c))
it cannot become a poly-square.

(a) (b) (c)

Figure 3: Boundary Normal Alignment for Poly-Square.
(a) A pentagon before deformation; (b) deformation
without boundary normal alignment; (c) deformation
with boundary normal alignment.

This can be formulated by minimizing the L1-norm
deviation,

d(n) = ‖n‖1 − 1,

where ‖n‖1 =
∑k
i |ni| is the L1-norm of vector n.

Given a boundary edge e ∈ ∂N , whose normal is ne,
its deviation from axis coordinates is d(ne). The ac-
cumulative boundary normal alignment error over the
entire ∂N can be written as:

EB(X) =
∑
ei∈∂N

L(ei)(‖nei‖1 − 1). (8)

where L(e) is the length of e.

Deformation Distortion. To suppress the element’s
shape distortion during deformation, we shall also
minimize the deformation distortion. In [41], the
MIPS energy [42] is used to measure the distortion.
On a triangle ti, the MIPS distortion is defined as
εMIPS(ti) =

σi,1
σi,2

+
σi,2
σi,1

, where σi,1, σi,2 are the two

singular values of the Jacobian of transformation on
triangle ti. In [5], it is observed that having a heavier
penalty on the severely distorted element is desirable
to produce better shaped poly-square domain topol-
ogy. Hence, they used an exponential form of MIPS,

εEMIPS(ti) = e
σi,1
σi,2

+
σi,2
σi,1 , to measure the distortion

on triangle ti. In [43], an Advanced MIPS energy
(AMIPS) was developed, and it used the exponential
terms to penalize the angle distortion as well. It also
contains an area distortion term and allows us to find
a balance between these two terms. AMIPS is formu-
lated as

εAMIPS(ti) =

e
αs· 1

4
(
σi,1
σi,2

+
σi,2
σi,1

)+(1−α)s· 1
2

(det(J(ti))+det(J(ti))
−1)

where J(ti) is the Jacobian matrix of transformation
on ti, α is a parameter controlling the weight of angle

distortion and area distortion, and s is a parameter
controlling the level of penalty. This AMIPS energy
allows us to control the area distortion better. A small
s has little effect on penalizing the maximal distortion,
and a large s will cause numerical instability. There-
fore, we adopted AMIPS in this pipeline. In our ex-
periment, we choose α = 0.5, s = 5. Accordingly, the
accumulative AMIPS distortion on the entire mesh can
be computed as ED(X) =

∑
ti∈T εAMIPS(ti).

Finally, combining these two terms, the poly-square
deformation reduces to solving the following optimiza-
tion problem:

φ = argminX ED(X) + λEB(X), (9)

where λ is the weighting factor balancing the two dif-
ferent emphases of the Domain shape optimization. A
small λ indicates more emphasis on minimizing distor-
tion and could result in a non-orthogonal and invalid
poly-square. A big λ, in contrast, produces a valid
poly-square by possibly introducing larger distortion
and more singularities.

In all our experiments, we use λ = 5 which is the
balance point that can give a valid poly-square and
least singularities.

We solve this problem using the Hybrid L-BFGS
(Limited Memory Broyden-Fletcher-Goldfarb-Shanno
Method) optimization framework [44].

4.2 Preserving Feature Lines

To ensure feature (lines) to be sampled in the final
mesh, we require the feature points to be mapped to
integer coordinates. In the data partitioning stage,
feature lines are incorporated as a soft constraint. So
some feature lines, not sampled as boundary region
separators, need to be resolved here during parame-
terization.

To preserve feature lines in poly-square parameteriza-
tion, we just need to force the sampled feature points
to be deformed to integer coordinates.

To enforce this integer constraints, first, we add
a soft constraint, to minimize the deviation of de-
formed feature lines’ directions (or their normals) from
axes coordinates. Namely, for feature edges F =
{ef1 , ef2 , . . . , efm}, we have the third penalty term,

EF (M) =
∑
ei∈F

L(ei)(‖nei‖1 − 1). (10)

Then finally, after the optimization, we round the re-
sultant coordinates of each feature line segment’s end
nodes to integers. Fig. 4 shows an example of feature-
preserving in mapping computation. The red curve
is the feature to sample. After deformation, they are
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mapped onto horizontal or vertical line segments with
integer coordinates.

(a) (b) (c)

Figure 4: Poly-square mapping to mesh a square domain
with features (red curve). (a) The original triangular
mesh, (b) the deformed mesh, and (c) the final quad
mesh.

4.3 Initialization and Pre-orientation

The deformation-based algorithm transforms each
boundary edge to its nearest coordinate axis. So this
deformation is affected by the shape’s initial orienta-
tion. Optimizing a pre-orientation of M before the
deformation could provide a good initialization for
the poly-square parameterization and lead to a bet-
ter mapping result.

Adopting the strategy of [45], we select the pre-
orientation that makes the directions of M ’s bound-
ary line segments to have the smallest deviations from
coordinate directions. More specifically, suppose we
use a function Φ to measure the deviation of an edge’s
normal n from a coordinate axis, Φ(n) = n2

xn
2
y where

nx and ny are n’s x and y components respectively.

Then an optimal pre-orientation, rotation R, mini-
mizes the following function,

R̂ = argminR
∑

ei∈∂M

Φ(R · ni). (11)

The 2-dimensional rotation R can be represented using
an angle and the above problem can be solved using
gradient descent method efficiently.

(a) (b) (c)

Figure 5: Pre-orientation for Poly-square Mapping.
(a) The original mesh; (b) resultant poly-square with-
out pre-orientation; (c) resultant poly-square with pre-
orientation.

Fig. 5 shows an example of how pre-orientation im-
proves the poly-square map. The direct poly-square

deformation performed on the model (a), without pre-
orientation, results in (b). With a pre-orientation, the
deformation results in (c) which have fewer boundary
corners, and also, smaller mapping distortion.

5. CONQUERING LOCAL MAPS INTO
GLOBAL PARAMETERIZATION

5.1 Global Poly-square Map (GPM)

When processing a large or complicate region M , if
we directly compute its poly-square parameterization,
the optimization becomes too expensive. With the
previous data partitioning, one simple strategy is to
solve the poly-square parameterization distributedly.

Suppose the given domain M is partitioned into sub-
regions M =

∑
i ∪Mi. For each adjacent subregion

pair Mu and Mv, their separator is a common bound-
ary curve Luv, which is defined by a set of common ver-
tices {Xuv} = Xu ∩Xv. Since each subregion will be
mapped onto a poly-square domain on a separate pro-
cessor. We need to enforce the following consistency
constraint on common separators to keep boundary
consistency:

xuIuvu,i = xvIuvv,i , ∀i = 1, ..., Nuv, (12)

where Iu,i is the index of the i-th vertex from Luv in
Mu, Iv,i is the index of the i-th vertex from Luv in
Mv, Nuv is the total number of vertices on Luv. This
constraint means each pair of corresponding vertices
on the shared subregion boundary should have the
same image after their deformations. Although this
map is solved in a distributed way, this strict bound-
ary constraint ensures the resultant parameterization
is a globally continuous poly-square map. In the fol-
lowing, we denote this computed parameterization a
Global Poly-square Map (GPM).

Fig. 6 demonstrate the GPM updating process for the
sub-regions of the key, for the clearly visualization pur-
pose, we use 8 subregions to do this demonstration.
We can see that all the regions will continuously de-
form to a poly-square shape and the shared subregion
boundaries will keep the same shape and orientation
during all the time.

5.2 Piecewise Poly-square Map (PPM)

The poly-square map has all its singularities on the
poly-square’s corners. So usually, these regions have
big distortion and cells near these singularities may be
severely sheared (See Fig. 13 (b,e,h) for examples). To
reduce the mapping distortion, designing a mechanism
to allow placing interior singularities at suitable places
is often very helpful.
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(a) (b) (c) (d) (e)

Figure 6: The deformation process of a GPM algorithm.
(a) The partitioning before deform. (b) Iteration number
= 1. (c) Iteration number = 5. (d) Iteration number =
10. (e) Final poly-square result (Iteration number = 209)

In our computational pipeline, with data partitioning,
we get subregions that have near perpendicular corner
angles, which is desirable for poly-square parameteri-
zation. More importantly, we can build upon this par-
titioning a mechanism that could support the flexible
insertion of interior singularities.

Following the previous notations, instead of using
Equation 12, we enforce the following new consistency
constraint on common separators:

L(Iu,1, Iu,k) = L(Iv,1, Iv,k), ∀k = 2, . . . , Nuv, (13)

where Iu,i is the index of the i-th vertex from Luv in
Mu, Iv,i is the index of the i-th vertex from Luv in Mv,
L(I1, I2) is the curve length from point I1-th vertex to
I2-th vertex, Nuv is the total number of vertex on Luv.
This constraint means that for each pair of vertices
on the common separator, their curve length on both
subregions, after deformation, should be the same.

Interior Singularities. We do not require the para-
metric coordinates from two subregions to exactly
overlap, and on the poly-square corners we We do not
require the sum of its incident angles to be exactly 2π.
For a corner whose surrounding angles do not sum up
to 2π, we generate an interior singularity. We call this
poly-square parameterization that allows interior sin-
gularities a Piecewise Poly-square Map (PPM).

Parallel Computation. Since different subregions
are processed separately, during a subregion’s defor-
mation, its neighboring regions’ deformation is un-
known. If we process all the subregions simultane-
ously, the consistency constraint cannot be directly en-
forced. Therefore, we perform deformation in a multi-
pass manner. All the non-adjacent subregions can de-
form simultaneously; then their new boundary geome-
try is propagated to adjacent subregions, which will be
used as initial poses of their deformations in the next
round. To do this, we perform a graph coloring algo-
rithm [46] to divide all the subregions {S1, S2, ..., Sp}
into k group {G1, G2, ..., Gk}. Each group consists of
non-adjacent subregions and can be processed in par-
allel simultaneously.

Propagation on Atlas until Convergence. To
support a more efficient propagation of boundary con-
dition from a subregion to its neighbors, we construct
a multi-layer buffer-zone around each subregion. From
the boundary of subregion ∂Mi, we grow outwards to
construct an offset contour ∂Bi, and call the region
bounded by ∂Mi and ∂Bi the buffer zone Bi. In Fig. 7,
we illustrate the relationship between a subregion Mi

and its buffer zone Bi. For simplicity, we can con-

Figure 7: A subregion Mi and its buffer zone Bi.

struct Bi using the k-ring elements from ∂Mi. Then
we call the enlarged patch Ci = Mi

⋃
Bi the defor-

mation chart. During iterative deformation, instead
of only deforming Mi, we deform Ci subject to two
constraints (1) ∂Mi should deform to an orthogonal
polygon, and (2) the vertices on ∂Ci should not move.
Namely, we solve

φi = argminED(Ci) + λEB(Mi), s.t. ∂Ci being fixed.
(14)

In the k-th iteration, Mi deforms to make itself orthog-
onal while vertices on ∂Ci are fixed to the positions
from their last iteration. This ensures positional con-
sistency across ∂Ci with the neighboring regions. Ver-
tices in the buffer zone Bi deform together with Mi,
and propagate to Mi’s neighboring regions for their
deformation in next iteration.

Atlas and Transitions among Local Charts. De-
formation of Mi (Ci) is performed under its local coor-
dinate system Fi. Each vertex v ∈ Mi stores its local
coordinates with respect to Fi. If we denote the ini-
tial global coordinate system using a reference frame
Fr, then Fi can be described using a rotation from Fr
(No translation is introduced between coordinate sys-
tems). Hence, in the following, we also use the symbol
Fi to denote the coordinate transformation from Fr.
For example, given a point x originally considered in
Fr, Fi ◦ x indicates its coordinates after being trans-
formed into the coordinate system of Fi. During the
j-th iteration, we first solve a re-orientation R̂ji for
Mi, and update Fi accordingly, Fi ← R̂ji ◦ Fi. Then,
to construct Ci in the coordinate system of Fi, we
transform vertices in buffer zone Bi from their own lo-
cal coordinates into Fi, namely, ∀x ∈Mk (represented
under Fk), we get x̃ = Fi ◦ F−1

k ◦ x. Now, x̃ is in
the coordinate system of Fi. After local poly-square
deformation, φi(x̃) should be updated in its own coor-
dinate system Fk after being transformed back to it,
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i.e., x← Fk ◦ F−1
i ◦ φi(x̃). In Fig. 8, we demonstrate

the pipeline of the updating of a local chart and its
propagation.

Figure 8: Update a local char and its propagation.

PPM Algorithm. Algorithm 1 summarizes our
PPM algorithm. The deformations (Steps 5-12) are
performed iteratively. In each iteration, we go through
each subgroup Gk and deform the independent sub-
regions simultaneously. Deformations are performed
on all the deformation charts Cj = Mj

⋃
Bj . After

each deformation, Mj is mapped to an updated poly-
square and elements in Bj is modified and updated
in their patches. In Step 13, a threshold T is used
to check whether the deformation converges: when no
vertex’s movement is bigger than T during the last it-
eration, the algorithm stops. In our experiments, we
set T = 10−2, and the algorithm usually converges
after around 15 iterations.

Algorithm 1 PPM Algorithm.

1: In: Subregions {Mj}, where
⋃
Mj = M ;

2: Out: Poly-square Parameterization of M , i.e.,
φj = Ωj →Mj subject to consistency constraints;

3: Divide {Mj} into K disjoint groups {Gk}, each
group contains independent (non-adjacent) subre-
gions;

4: For each Mj , grow its buffer-zone Bj and get its
deformation chart Cj = Mj

⋃
Bj ;

5: for k = 1 to K do
6: Deform all the Cj ∈ Gk in parallel:
7: Solve optimal re-orientation R̂j

(Prob. (11));
8: Update Fj : Fj ← R̂j ◦ Fj ;
9: Rotate Mj : x ∈Mj ,x← R̂j ◦ x;

10: Build Cj : For ∀x ∈ Bj
⋂
Mr, x̃ = Fj ◦

F−1
r ◦ x;

11: Solve map φj (Prob. (14));
12: Propagate: x ← Fr ◦ F−1

j ◦ φj(x̃), ∀x ∈
Bj ∩Mr;

13: If Converge, STOP; Otherwise, GOTO STEP 5.

5.3 Adaptive Singularity Refinement

While PPM introduces some interior singularities, we
can also further refine mesh locally when needed. In-
spired by [47], we propose a new local singularity re-
finement method for regions that have large distortion
or where singularities were inappropriately placed.

Poly-square maps generate two types of corners in the
parametric domain, namely, 90◦ and 270◦ corners. If
such corners are mapped to a flat boundary or feature
curve, it will introduce big distortion and cannot be
suppressed through variational relaxation. Fig. 12 (a)
(blue points in pink patches) illustrates an example of
such corners. We develop a set of topological strategies
to modify such patches.

If we detect a vertex on boundary or feature curves
which is 2-valent, then it means a 90 deg corner in the
poly-square domain has been flattened here. Usually
a Triangle Patch can be used to modify the patch
surrounding such 90◦ corner. See Fig. 12(a): each pink
region contains a triangle patch. When large distor-
tion is detected in this region, it is because a 90◦ corner
is mapped to a flat boundary region of R. Hence, such
a region can be treated as a topological triangle (con-
sidering the arc on the boundary as one edge). We can
quadrangulate this patch by the following algorithm.

As shown in Fig. 10, to quadrangulate a triangle patch,
we just need to find a partition for the vertices on each
edge. To form a valid quad tessellation, we need to
assure the interval matching for this triangle patch.
This leads to the following system:


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 1 −1 0 0




a0

a1

a2

b0
b1
b2

 =


N0

N1

N2

0
0
0



↔


a0 + b0 = N0

a1 + b1 = N1

a2 + b2 = N2

a0 − b1 = 0
a1 − b2 = 0
a2 − b0 = 0


If there exists an integer solution, then this triangle
patch can be quadrangulated with a 3-valent singu-
larity inside that patch as shown in the left figure. If
there is not an integer solution for it, we will quad-
rangulate it similar to the way we mesh the triangle
region in Fig. 9, we can perform an extra partition
in this local region. Specifically, we just need to run
a 3-way partitioning on this region, and by balancing
loads (region size), separator lengths, and geometry,
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(a) (b) (c)

Figure 9: Quad Meshing of a Triangular Region. (a) The original mesh and the partitioning, (b) constructed poly-square
of each sub-region, (c) meshing result.

Figure 10: Quadrangulation a Triangle Patch

we will always get a partition like (a) in Fig. 9. These
three newly obtained subregions can then be processed
like all other subregions using the PPM algorithm. A
singularity point will be generated in the middle while
the boundary corner is removed. Fig. 12(b) illustrates
the result of this operation applied to the two pink
regions of (a). The distortion in this local area can be
greatly reduced.

Another case is a vertex on boundary or feature curves,
which is 4-valent. Then it means a 270 deg corner in
the poly-square domain has been flattened here. Then
a Pentagon Patch can often be traced around the
270◦ corner. See Fig. 12(c): each blue region contains
a pentagon patch. Large distortion is detected in this
region as well. This region can be treated as a topolog-
ical pentagon. Similarly, with triangle patch, we can
quadrangulate this patch by the following algorithm.

Figure 11: Quadrangulation a Pentagon Patch

As shown in Fig. 11, to quadrangulation a pentagon
patch. We just need to find a partition for the ver-
tices on each edge. And we need to assure the interval

matching for this pentagon patch. This leads to the
following system:



1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 −1 0
0 1 0 0 0 0 0 0 0 −1
0 0 1 0 0 −1 0 0 0 0
0 0 0 1 0 0 −1 0 0 0
0 0 0 0 1 0 0 −1 0 0





a0

a1

a2

a3

a4

b0
b1
b2
b3
b4



=



N0

N1

N2

N3

N4

0
0
0
0
0


↔



a0 + b0 = N0

a1 + b1 = N1

a2 + b2 = N2

a3 + b3 = N3

a4 + b4 = N4

a0 − b3 = 0
a1 − b4 = 0
a2 − b0 = 0
a3 − b1 = 0
a4 − b2 = 0


If there exists an integer solution, then this pentagon
patch can be quadrangulated with a 5-valent singular-
ity inside that patch as shown in the left figure. If not,
we can treat it with our more general Polygon patch
quadrangulation algorithm.

A Polygon patch can always be traced as a (n+ 2)-
sided topological polygon on the parametric domain
(by iteratively performing (n+2) times of moving for-
ward then turning to the other iso-line counterclock-
wise). Then on this (n+ 2)-sided topological polygon
we also perform a k-way partitioning, where we itera-
tively try integer k from

⌈
n
2

⌉
to (n+ 2). The intuition

behind this range is that we will try different combi-
natorial partitions on this (n + 2)-sided polygon: the
lower bound

⌈
n
2

⌉
is the subregion number that we will

get if we keep removing 4-sided polygons from the re-
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(a) (b) (c) (d)

(e) (f) (g)
0.97/0.32/0.07 0.97/074/0.05 0.98/0.84/0.05

Figure 12: Adaptive refinement of boundary singulari-
ties. The quality shown in second row is scaled Jacobian
(average/minimum of Scaled Jacobian/standard devia-
tion). (a) The PPM result without any singularity mod-
ification: each pink patch contains a Type-1 boundary
singularity (Type-1 corner); (b) Refining the type-1 sin-
gularity; (c) Blue patch contains a Type-2 boundary sin-
gularity (Type-2 corner). (d) Refining the type-2 singu-
larity. (e) The meshing result of GPM. (f) The meshing
result of PPM without singularity modification. (g) The
meshing result of PPM after singularity modification.

gion until we can no longer do it; while (n+2) indicate
a topological Catmull-Clark subdivision which directly
splits this (n+ 2)-gon into n+ 2 quads. For example,
when n = 4, we have a topological hexagon. We first
try the

⌈
n
2

⌉
= 2-way partitioning (a hexagon could

split into 2 quad patches), then try 3, 4, till 6-way
partitioning. When n = 3 we get a pentagon, and we
will try k ∈ [2, 5]. Among all the partitioning results
generated by different k, we can pick the one with
the maximized minimal angle as our partition. Since
n is usually very small, this selection is very quick.
Fig. 12(d) illustrates the result of the modification on
Type-2 corners in the blue regions in (c). In practice,
users can get involved in this step to interactively se-
lect the template to repartition this local region and
modify its singularity distribution. More complicated
topological operations such as [47] can also be adopted.

6. EXPERIMENTAL RESULTS

We compare our algorithm with the advancing front al-
gorithm [48] and the Global Poly-square Map (GPM)
meshing discussed in Section 5.1. The advancing front
generates unstructured meshes; GPM generates full
structured meshes, while our algorithm, denoted as
Feature-aligned Piecewise Poly-square Map (FPPM),
generates semi-structured meshes.

The meshing distortion is measured using three met-
rics: Scaled-Jacobian, Skewness, and Edge Ratio.

The scaled Jacobian ηf (Q) of each quad cell Q is cal-

culated based on [49]:

ηf (Q) =
1

4
(η(x1, Q) + η(x2, Q) + η(x3, Q) + η(x4, Q)),

(15)
where η(x,Q) is the scaled Jacobian distortion of ver-
tex x in cell Q. ηf ∈ (0, 1] for a valid quad cell, where
1 is ideal. ηf < 0 indicates a flipped cell.

The Skewness κ defined on a quad cell measures the
deviation from the 90◦ angle:

κ(Q) = max[
θmax − 90

90
,

90− θmin
90

], (16)

where θmax and θmin are the maximal and minimal
interior angles in quad Q. κ ∈ [0, 1] for a convex quad
cell, where 0 is optimal. If κ > 1 the quad cell becomes
concave.

The Edge Ratio r is the ratio of the longest edge length
to the shortest one in cell Q, which measures the cell’s
deviation from a equilateral quad cell,

r(Q) =
lmax
lmin

, (17)

where lmax and lmin are the maximal and minimal
edge lengths in cell Q. r ∈ [1,∞) where 1 is optimal.

Using either one of the above 3 metrics, we can mea-
sure all the quad cells, and document the average and
worst values, and the standard deviation. For exam-
ple, we use the triplet (η̄, ηw, ση) to indicate the av-
erage, minimum (worst), and standard deviation of
the scaled Jacobian, and (κ̄, ηκ, σκ) to indicate the av-
erage, maximum (worst), and standard deviation of
skewness.

6.1 Comparing Meshing Quality on Small
Geometries

Meshing Letters “IMR”. Fig. 13 shows the quad
meshing on three letters, I, M and R. The input is
these letters’ boundary contours extracted from im-
ages. The FPPM meshing results significantly outper-
form those generated by the other two algorithms.

Table. 1 reports the numerical measures computed on
meshing results generated on small testing geomet-
ric regions. Besides the measure on scaled Jacobian
((η̄, ηm, ση)), we also report the triplets calculated
on skewness and edge ratio, namely, (κ̄, κm, σκ) and
(r̄, rm, σr). Besides distortion, we also report the num-
ber of singularities Ns. Because the advancing front
algorithm [48] also generates triangular cells in the fi-
nal quad meshes, we also calculate the number of tri-
angular elements and denote it as Nt. In all our GPM
and FPPM results, Nt are zero. From these statistics,
we can see that our PPM algorithm generates signifi-
cantly less distorted (especially on skewness and edge
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Table 1: Mesh Quality Comparison among the Advancing Front, GPM (Global Poly-Square Mapping), and PPM (Piecewise
Poly-Square Mapping) algorithms. Nt is the number of triangle cells; Ns is the number of singularities; k is the sub-regions
number, for advancing front, we solve the whole region directly without paritioning; tp / tm are the running time of
partitioning and the running time of meshing in seconds; η̄∗/η∗w/σ

∗
η are the average, minimum, and standard deviation

of Scaled Jacobian before applying Refinement; η̄/ηw/ση are the average, minimum, and standard deviation of Scaled
Jacobian; κ̄/κw/σκ are the average, maximum, and standard deviation of Skewness; and r̄/rw/σr are the average,
maximum, and standard deviation of edge ratio.

Model Meshing Method # Cells Nt Ns k tp/tm η̄∗/η∗w/σ
∗
η η̄/ηw/ση κ̄/κw/σκ r̄/rw/σr

I
Advancing Front 407 15 19 - -/0.323 0.98/0.72/0.04 0.98/0.72/0.04 0.18/0.61/0.10 1.20/2.22/0.22

GPM 477 0 4 10 0.085/0.728 0.99/0.71/0.02 0.99/0.77/0.02 0.16/0.73/0.05 1.11/2.36/0.17
PPM 509 0 12 10 0.085/0.918 0.99/0.69/0.02 0.99/0.91/0.01 0.19/0.57/0.10 1.16/1.92/0.16

M
Advancing Front 550 27 37 - -/0.141 0.99/0.84/0.02 0.99/0.84/0.02 0.15/0.54/0.11 1.24/2.95/0.20

GPM 686 0 16 10 0.081/0.529 0.95/0.31/0.07 0.99/0.56/0.05 0.10/1.00/0.14 1.13/3.30/0.24
PPM 744 0 1 10 0.081/0.736 0.97/0.48/0.09 0.99/0.81/0.01 0.13/0.75/0.09 1.13/1.72/0.11

R
Advancing Front 677 42 71 - -/0.141 0.98/0.60/0.04 0.98/0.60/0.04 0.18/1.00/0.17 1.43/6.47/0.40

GPM 818 0 28 10 0.081/0.529 0.98/0.42/0.07 0.98/0.47/0.07 0.12/1.00/0.28 1.15/4.31/0.24
PPM 832 0 8 10 0.081/0.736 0.97/0.32/0.07 0.97/0.74/0.05 0.15/0.47/0.13 1.20/4.02/0.23

(a) (b) (c)
0.98/0.72/0.04 0.99/0.77/0.02 0.99/0.91/0.01

(d) (e) (f)
0.99/0.84/0.02 0.99/0.56/0.05 0.99/0.81/0.01

(g) (h) (i)
0.98/0.60/0.04 0.98/0.47/0.07 0.97/0.74/0.05

Figure 13: Meshing results of letters I, M and R. Quad
meshing results generated by the advancing front, GPM,
and PPM algorithms are illustrated in the left, middle,
right columns respectively. (η̄, ηw, ση) are reported in
captions accordingly.

ratio) meshes than advancing front and GPM algo-
rithms. For the generated quad meshes, we define a
vertex to be a singularity if it is (1) a boundary vertex
but is not valence-3, or (2) an interior vertex but is
not valence-4. Note that FPPM places the singulari-
ties according to geometry, while the GPM constructs
a big poly-square with many boundary singularities.
Thus, FPPM often has fewer singularities.

6.2 Meshing with Feature Alignment

Meshing a Smile Face. Fig. 14 shows the meshing
of a smiling face. The feature lines include the con-
tours of the two eyes and the mouth curve, as shown
in (a). The partitioning and meshing result without
considering these features are shown in (b) and (c),
while results preserving these feature lines are shown
in (d) and (e). Here feature preserving is fully enforced
during the partitioning stage.

(a) (b) (c)

(d) (e)

Figure 14: Meshing for a smiling face. (a) The smiling
face image; (b) The partitioning result without feature;
(c) Meshing without feature; (d) Feature aligned parti-
tioning; (e) Feature preserved meshing

Meshing a Turtle Shell. Fig. 15 illustrates the
meshing result of a turtle shell image. We extract
a turtle shell’s boundary contour and some feature
curves from this image (a) and uniformly sample it
using 400 points. The partitioning and meshing result
without considering these features are shown in (b)
and (c), while the feature-preserved results are shown
in (d) and (e). Feature alignment is fully resolved.

Runtime Statistics. We run our algorithm in se-
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(a) (b) (c)

(d) (e)

Figure 15: The quad meshing of a turtle shell model.
(a) Features on the model, (b) data partitioning without
considering features, (c) PPM meshing result without
considering features, (d) data partitioning with feature
considered, and (e) PPM meshing result with feature
considered.

quential, 2-core, 5-core, 10-core, and 20-core scenarios
to evaluate its scalability. The results are shown in
Table 2.

Table 2: Running Time in seconds. tp / tm are the
partitioning and meshing time, respectively.

Sequential 2-core 5-core 10-core 20-core

Smile Face 0.881/10.34 0.491/5.807 0.169/2.101 0.094/1.162 0.055/0.647

Turtle Shell 1.138/15.84 0.624/8.024 0.242/3.242 0.126/1.638 0.070/0.842

6.3 Meshing for large-scale Geometry

We evaluate the FPPM algorithm on big dataset ob-
tained in practical modeling and scientific computing
tasks. An example is a subsection of the Mississippi
river as shown in Fig. 16(a). The levees and river
boundary are treated as feature lines in the mesh gen-
eration. Using 50 cores, FPPM partitions this domain
into 256 sub-regions in 113 seconds, and generates the
quad mesh in 439 seconds. The final mesh contains
17, 382, 945 elements with a minimum scaled Jacobian
of 0.34. We can see the color-encoded result of the
Scaled Jacobian in Fig. 16(b). In Fig. 16(c), a portion
of the meshing result is zoomed in for closer visualiza-
tion: the features are preserved very well.

6.4 Simulation Experiments

We solve partial differential equations on different
meshes to compare these meshes’ effectiveness in sci-

(a) (b) (c)

Figure 16: Quad meshing of the Mississippi river subsec-
tion and its levees. (a) The river subsection on Google
Earth, (b) Color-encoded Scaled Jacobian of the mesh,
and (c) a zoom-in meshing result.

entific computing. We compare the simulation ef-
ficiency using the convergence of Error Residual on
three types of meshes: (1) triangle meshes, (2) un-
structured quad meshes generated by advancing front,
(3) semi-structured quad meshes generated by our
FPPM.

6.4.1 Heat Diffusion Simulations

We solve a heat diffusion (the Laplacian Equation)
∂T
∂t

+∇(Dt∇T ) = 0 where T is the temperature, and
coefficient Dt is the thermal conductivity, on a me-
chanical part model as shown in Fig. 17(a): the red
circle curve is the feature contour to be preserved in
the final mesh. Initially, the outer boundary tempera-
ture is set as 273K (Kelvin), the interior area is set as
0K. The temperature on the boundary and the cen-
ter feature circle is fixed to 273K and 0K respectively.
Fig. 17 shows the iteration-residual plot from the sim-
ulation. From the result statistics shown in Table. 3,
we find that (1) The error residuals from the simula-
tions performed on the quad meshes are one to two
orders of magnitude smaller than that on the triangle
meshes. (2) between the two quad meshes examined in
this paper, our PPM algorithm produces significantly
smaller error residuals in simulations.

Table 3: Simulation on mechanical part with the Delau-
nay triangle meshes, quad meshes generated by advanc-
ing front, and by our PPM algorithm.

# Cells Ns ηw ε(t = 1) ε(t = 10)

Triangle Mesh 2.1k - - 5.4 ×10−4 1.3 ×10−4

Advancing Front 1.4k 122 0.63 3.4 ×10−4 0.5 ×10−4

PPM 1.9k 12 0.66 1.9 ×10−4 0.5 ×10−4

6.4.2 Coastal Flow Simulations

One application of this meshing technique is to gen-
erate high-resolution best-fitting meshes in riverine,
coastal, and estuarine areas for hydrodynamic simula-
tions. To improve model accuracy and avoid numer-
ical errors, a qualified mesh needs to fit some special
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(a) (b)

(c) ε(t = 1) (d) ε(t = 10)

Figure 17: The iteration-residual plot of solving a Lapla-
cian on three meshes generated from a Mechanical part
model, at different t. (a) and (b) show show the meshing
results from FPPM and the advancing front, respectively.
(c) and (d) show the Iteration-residual at t = 1 (c) and
t = 10 (d).

features for the area of interest, such as coastlines, lo-
cal bathymetries, hydraulic or marine structures. The
normal structured (curvilinear) meshes are not suit-
able to fit sophisticated features in these areas, such
as coastlines, river banks, small lakes, canals, levees,
and breakwaters. There is a need to generate high-
quality feature-preserved meshes for effective coastal
simulations.

We set up an idealized case to demonstrate the advan-
tage of this meshing technique. The process-based nu-
merical model package, the Delft3D model by Deltares
(http://www.deltares.nl/en/), is utilized for this hy-
drodynamic simulation. The Delft3D model suite by
Deltares [35], which has been widely used in the world,
is capable of simulating flows, sediment transport,
waves, water quality, morphological changes and eco-
logical processes in coastal, riverine and estuarine ar-
eas [50].

In our experiment, there is a flow channel (80×200×5
m) with double thin dams in it. The direction between
the dam and the channel is 10 degrees. Two meshes
with same sizes (80 × 200) are generated for compar-
ison. One is a quad mesh that does not consider the
feature of dams in Fig. 18(a). The other our generated
quad mesh that fits double thin dams in Fig. 18(b).
In our mesh, the double dams are sampled exactly by
two straight lines in Fig. 18(d) and (f); while in the
uniform mesh, the dams can only be represented ap-
proximately by two “zigzagged” lines in Fig. 18(c) and
(e). Constant current conditions (1m/s) are applied at
both ends of the flow channel. The result of flow ve-
locity using our generated mesh in Fig. 18(d, f) which
has the zoom-in details in Fig. 18(h) shows a smooth-
ing distribution between double thin dams, which is

reasonable. On the other hand, the result using the
uniform mesh in Fig. 18(c, e) which has the zoom-
in details in Fig. 18(g) shows numerical errors at the
corners of “zigzagged” lines, which is unreal. We can
see some “velocity arrows” are blocked because of the
“zigzagged” lines and their directions are distorted.
They are fake results which will not occur in the real
world. These indicate the advantage of our meshing
technique for hydrodynamic simulations. We can see
the results in Fig. 18.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 18: A flow simulation on a rectangle channel
with double thin dams (features) in it. (a) The gener-
ated mesh without feature-preserving; (b) The feature-
preserved mesh by considering the dam as the feature
lines; (c, d) The simulated flow velocity fields using (a)
and (b), respectively; (e, f) The zoom-in flow velocity
fields around the dams from (c) and (d), respectively;
(g, h) The more close zoom-in flow velocity filed for a
small region from (c) and (d), respectively.

7. CONCLUSIONS

We present a new distributed computational frame-
work to generate semi-structured quad meshes on
large-scale 2D regions in parallel. This framework sup-
ports feature-preservation and interior singularity in-
sertion. As a result, it can produce high-quality, low
distortion meshes. We demonstrate the effectiveness
of this meshing algorithm and its application to large-
scale scientific simulations.

205



Limitations. One limitation of our generated semi-
structured quad meshes is that the singularity place-
ment and structured block layout are not globally op-
timized. Unnecessary singularities may be introduced
during data partitioning. However, this cannot be eas-
ily solved due to the distributed nature of this algo-
rithm, where each local processor is not aware of the
global layout and distant subregions’ geometry. In this
work, such a limitation is partly remedied through sin-
gularity refinement. In the near future, we will explore
distributed block layout optimization and singularity
placement.
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